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Abstract 6 

The emergence of drug resistant tuberculosis is a major global public health concern that 7 

threatens the ability to control the disease. Whole genome sequencing as a tool to rapidly 8 

diagnose resistant infections can transform patient treatment and clinical practice. While 9 

resistance mechanisms are well understood for some drugs, there are likely many 10 

mechanisms yet to be uncovered, particularly for new and repurposed drugs. We 11 

sequenced 10,228 Mycobacterium tuberculosis (MTB) isolates worldwide and determined 12 

the minimum inhibitory concentration (MIC) on a grid of twofold concentration dilutions for 13 

13 antimicrobials using quantitative microtiter plate assays. We performed oligopeptide- 14 

and oligonucleotide-based genome-wide association studies using linear mixed models to 15 

discover resistance-conferring mechanisms not currently catalogued. Use of MIC over binary 16 

resistance phenotypes increased heritability for the new and repurposed drugs by 26-37%, 17 

increasing our ability to detect novel associations. For all drugs, we discovered uncatalogued 18 

variants associated with MIC, including in the Rv1218c promoter binding site of the 19 

transcriptional repressor Rv1219c (isoniazid), upstream of the vapBC20 operon that cleaves 20 

23S rRNA (linezolid) and in the region encoding an α-helix lining the active site of Cyp142 21 

(clofazimine, all p<10-7.7). We observed that artefactual signals of cross resistance could be 22 

unravelled based on the relative effect size on MIC. Our study demonstrates the ability of 23 

very large-scale studies to substantially improve our knowledge of genetic variants 24 

associated with antimicrobial resistance in M. tuberculosis.  25 

 
1 For a list of all members of the CRyPTIC Consortium please see the section at the end of this manuscript. 
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Introduction 26 

Tuberculosis (TB) continues to represent a major threat to global public health, with the 27 

World Health Organization (WHO) estimating 10 million cases and 1.4 million deaths in 2019 28 

alone [1]. Multidrug resistance (MDR) poses a major challenge to tackling TB; it is estimated 29 

that there were 465,000 cases of rifampicin resistant TB in 2019, of which 78% were 30 

resistant to the first-line drugs rifampicin and isoniazid – called MDR-TB [1]. While 31 

treatment is 85% successful overall, that drops to 57% for rifampicin-resistant and MDR-TB 32 

[1]; underdiagnosis and treatment failures then amplify the problem by encouraging 33 

onward transmission of MDR-TB [2]. New treatment regimens for MDR-TB are therefore an 34 

important focus, introducing new and repurposed drugs such as bedaquiline, clofazimine, 35 

delamanid and linezolid [3,4]; however resistance is already emerging [5,6,7]. 36 

 37 

Understanding mechanisms of resistance in TB is important for developing rapid 38 

susceptibility tests that improve individual patient treatment, recommending drug regimens 39 

that reduce the development of MDR and developing new and improved drugs that expand 40 

treatment options [8,9]. Genomics can accelerate drug susceptibility testing, replacing 41 

slower culture-based methods by predicting resistance from the sequenced genome rather 42 

than directly phenotyping the bacteria [10]. Genome sequencing-based susceptibility testing 43 

for first-line drugs has achieved sensitivities of 91.3-97.5% and specificities of 93.6-99.0% 44 

[11], surpassing the thresholds for clinical accreditation, motivating its adoption by multiple 45 

public health authorities [12]. In low-resource settings, molecular tests such as Cepheid 46 

GeneXpertⓇ and other line probe assays offer rapid and more economical susceptibility 47 

testing by genotyping a panel of known resistance-conferring genetic variants [13], with 48 

performance close to that achieved by whole genome sequencing [14,15]. However, the 49 
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limited number of resistance-conferring mutations that can be included in such tests can 50 

lead to missed MDR diagnoses and incorrect treatment [11,16]. Both approaches rely on the 51 

development and maintenance of resistance catalogues of genetic variants [17,11]. 52 

 53 

In the discovery of resistance-conferring variants, traditional molecular approaches have 54 

been replaced by high-throughput, large-scale whole genome sequencing studies of 55 

hundreds to thousands of resistant and susceptible clinical isolates [18,19,20,21,22,23]. 56 

Despite the strong performance of genome-based resistance prediction for first-line drugs, 57 

knowledge gaps remain, especially for second-line drugs [24,25,17]. There are numerous 58 

challenges in the pursuit of previously uncatalogued resistance mechanisms. Very large 59 

sample sizes are needed to identify rarer resistance mechanisms with confidence. The lack 60 

of recombination in Mycobacterium tuberculosis makes it difficult to pinpoint resistance 61 

variants unless they arise on multiple genetic backgrounds, reiterating the need for large 62 

sample sizes. Sophisticated analyses are required that attempt to disentangle genetic 63 

causation from correlation [26]. A reliance on a binary resistance/sensitivity classification 64 

paradigm has hindered reproducibility for some drugs, by failing to mirror the continuous 65 

nature of resistance [27,28,29].  66 

 67 

The aim of Comprehensive Resistance Prediction for Tuberculosis: an International 68 

Consortium (CRyPTIC) was to address these challenges by assembling a global collection of 69 

over 10,000 M. tuberculosis isolates from 27 countries followed by whole-genome 70 

sequencing and semi-quantitative determination of minimum inhibitory concentration 71 

(MIC) to 13 first- and second-line drugs using a bespoke 96-well broth micodilution plate 72 

assay. The development of novel, inexpensive, high-throughput drug susceptibility testing 73 
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assays allowed us to conduct the project at scale, while investigating MIC on a grid of 74 

twofold concentration dilutions [30,31]. Here we report the identification of previously 75 

uncatalogued resistance-conferring variants through 13 genome-wide association studies 76 

(GWAS) investigating MIC values in 10,228 M. tuberculosis isolates. We employed a linear 77 

mixed model (LMM) to identify putative causal variants while controlling for confounding 78 

and genome-wide linkage disequilibrium (LD). We developed a novel approach to testing 79 

associations at both 10,510,261 oligopeptides (11-mers) and 5,530,210 oligonucleotides 80 

(31-mers) to detect relevant genetic variation in both coding and non-coding sequences, 81 

and to avoid a reference-based mapping approach that can inadvertently miss significant 82 

variation. We report previously uncatalogued variants associated with MIC for all 13 drugs, 83 

focusing on variants in the 20 most significant genes per drug. We highlight notable 84 

discoveries for each drug, and demonstrate the ability of large-scale studies to improve our 85 

knowledge of genetic variants associated with antimicrobial resistance in M. tuberculosis.  86 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.14.460272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460272
http://creativecommons.org/licenses/by/4.0/


 

Results 87 

 88 

CRyPTIC collected isolates from 27 countries worldwide, oversampling for drug resistance 89 

[31]. 10,228 genomes were included in total across the GWAS analyses; 533 were lineage 1, 90 

3581 lineage 2, 805 lineage 3, and 5309 lineage 4. Due to rigorous quality control, we 91 

dropped samples for each drug as detailed in the methods, resulting in a range of 6,388-92 

9,418 genomes used in each GWAS (Figure 1). Minimum inhibitory concentrations (MICs) 93 

were determined on a grid of twofold concentration dilutions for 13 antimicrobials using 94 

quantitative microtiter plate assays: first-line drugs ethambutol, isoniazid and rifampicin; 95 

second-line drugs amikacin, ethionamide, kanamycin, levofloxacin, moxifloxacin and 96 

rifabutin and the new and repurposed drugs bedaquiline, clofazimine, delamanid and 97 

linezolid. The phenotype distributions differed between the drugs, with low numbers of 98 

sampled resistant isolates for the new and repurposed drugs which have not yet been 99 

widely used in tuberculosis treatment (Figure 1, Supplementary Figure 1). Assuming log2 100 

MIC epidemiological cut-offs (ECOFFs) of 0.25 (bedaquiline, clofazimine), 0.12 (delamanid) 101 

and 1 mg/L (linezolid) [31], the GWAS featured 66 isolates resistant to bedaquiline, 97 102 

resistant to clofazimine, 77 resistant to delamanid and 67 resistant to linezolid. We 103 

performed oligopeptide- and oligonucleotide-based GWAS analyses, controlling for 104 

population structure using linear mixed models (LMMs). We focused initially on 105 

oligopeptides, interpreting oligonucleotides only where necessary for clarifying results. 106 

 107 
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 108 

Figure 1 A Phylogeny of 10,228 isolates sampled globally by CRyPTIC used in the GWAS analyses. Lineages are 109 

coloured yellow (lineage 1), green (2), blue (3) and orange (4). Branch lengths have been square root 110 

transformed to visualise the detail at the tips. B Distributions of the log2 MIC measurements for all 13 drugs in 111 

the GWAS analyses, amikacin (AM), bedaquiline (BDQ), clofazimine (CFZ), delamanid (DLM), ethambutol 112 

(EMB), ethionamide (ETH), isoniazid (INH), kanamycin (KAN), levofloxacin (LEV), linezolid (LZD), moxifloxacin 113 

(MXF), rifabutin (RFB) and rifampicin (RIF). The red line indicates the ECOFF breakpoint for binary resistance 114 

versus sensitivity calls [31]. 115 

 116 

Estimates of sample heritability (variance in the phenotype explained by additive genetic 117 

effects) were higher for MIC compared to binary resistant vs. sensitive phenotypes for the 118 

new and repurposed drugs bedaquiline, clofazimine, delamanid and linezolid by at least 119 

26%. Across drugs, binary heritability ranged from 0-94.7% and MIC heritability from 36.0-120 

95.6%, focusing on oligopeptides (Figure 2, Supplementary Figure 2 and Supplementary 121 

Table 1). For delamanid, binary heritability was not significantly different from zero 122 

(2.99×10-6; 95% confidence interval (CI) 0.0-0.5%), while MIC heritability was 36.0% (95% CI 123 
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28.9-43.1%). Heritability estimates were more similar between binary and MIC phenotypes 124 

for the remaining drugs, differing by -3.6 to +5.2%. 125 

 126 

 127 

Figure 2 MIC heritability (orange) versus binary (resistant/sensitive) heritability (blue) assuming additive 128 

genetic variation in oligopeptide presence/absence across 13 drugs, DLM (delamanid), clofazimine (CFZ), 129 

linezolid (LZD), bedaquiline (BDQ), moxifloxacin (MXF), levofloxacin (LEV), kanamycin (KAN), ethambutol 130 

(EMB), ethionamide (ETH), amikacin (AM), rifampicin (RIF), isoniazid (INH), rifabutin (RFB). Lines depict 95% 131 

confidence intervals. MIC heritability was at least 26% higher than binary heritability for the new and 132 

repurposed drugs bedaquiline, clofazimine, delamanid and linezolid. 133 

 134 

GWAS identified oligopeptide variants associated with changes in MIC for all 13 drugs after 135 

controlling for population structure (Figure 3, Table 1, Supplementary Figure 3-4). In total, 136 

across the drugs, we tested for associations at 10,510,261 variably present oligopeptides 137 

and 5,530,210 oligonucleotides; these captured substitutions, insertions and deletions. The 138 
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drugs differed in the number of genes or intergenic regions that were significant, the drugs 139 

with fewest significant genes being isoniazid (12), levofloxacin (13) and moxifloxacin (6). We 140 

defined the significance of a gene or intergenic region by the most significant oligopeptide 141 

within it, and assessed all significant variants above a 0.1% minor allele frequency (MAF) 142 

threshold for the top 20 significant genes. The top 20 genes for each drug are detailed in 143 

Table 1. Some variants were identified in novel genes, some were novel variants in known 144 

genes, and some were known variants. We highlight examples of these (in reverse order) in 145 

the following sections. Highlighted examples have been chosen to exclude genes or variants 146 

in LD with other regions where possible; some are in LD with other less significant variants. 147 

 148 
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 149 

Figure 3 Manhattan plots of regions containing oligopeptide variants associated with MIC across 13 drugs. 150 

Significant oligopeptides are coloured by the direction (orange=increase, blue=decrease) and magnitude of 151 

their effect size on MIC, estimated by LMM [32]. Bonferroni-corrected significance thresholds are shown by 152 
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the black dashed lines. The top 20 genes ranked by their most significant oligopeptides are annotated 153 

alphabetically. Gene names separated by colons indicate intergenic regions. Gene names for those annotated 154 

with letters can be found in Table 1. Oligopeptides were aligned to the H37Rv reference; unaligned 155 

oligopeptides are plotted to the right in light grey. 156 

 157 

We assessed whether the top genes for each drug were in either of two previously 158 

described resistance catalogues [17,11]; we describe variants not in these catalogues as 159 

uncatalogued (Table 1). The interpretation of oligopeptides and oligonucleotides required 160 

manual curation to determine the underlying variants they tagged, and the most significant 161 

oligopeptide or oligonucleotide for each allele captured by the significant signals are 162 

described in Supplementary table 2 and the Supplementary text. For 8/13 drugs with 163 

previously catalogued resistance determinants, the most significant GWAS signal in CRyPTIC 164 

was a previously catalogued variant, consistent with previous GWAS [18,19,20,21,22,23]. 165 

The most significant catalogued variants for each drug were (lowercase for nucleotides, 166 

uppercase for amino acids): rrs a1401g (amikacin, kanamycin), embB M306V (ethambutol), 167 

fabG1 c−15t (ethionamide), katG S315T (isoniazid), gyrA D94G (levofloxacin, moxifloxacin), 168 

and rpoB S450L (rifampicin) [17,11]. For the remaining drugs with no previously catalogued 169 

resistance determinants, the genes identified by the top signals were: Rv0678 (bedaquiline, 170 

clofazimine), ddn (delamanid), fabG1 (ethionamide), katG (isoniazid), rplC (linezolid) and 171 

rpoB (rifabutin). The top variants identified for each drug were all significant at p<1.04x10-15.  172 

 173 

For many drugs, the direction of effect of the most significant oligopeptide variants was to 174 

decrease MIC (Supplementary Figure 5), implying that low-MIC oligopeptides and 175 

oligonucleotides are more likely to be genetically identical across strains than high-MIC 176 
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haplotypes. This would be consistent with the independent evolution of increased MIC from 177 

a shared, low-MIC TB ancestor. Uncatalogued variants significantly associated with MIC are 178 

important because they could improve resistance prediction and shed light on underlying 179 

resistance mechanisms; they may be novel or previously implicated in resistance but not to 180 

a standard of evidence sufficient to be catalogued. We discuss the choice of catalogues in 181 

the Discussion [17,11]. 182 

  183 
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 184 

Drug Top significant genes and intergenic regions 
  

First-line 

Ethambutol 
embB, rpoB (A), katG (B), embA, pncA (C), gyrA (D), rpsL (E), Rv1565c (F), Rv2478c:Rv2481c (G), 
Rv1752 (H), Rv3183:Rv3188 R (I), dxs2:Rv3382c R (J), rpsA/coaE (K), ctpI (L), guaA (M), moaC3:Rv3327 R 
(N), lprF:Rv1371 R (O), fabG1 (P), spoU (Q), glpK (R) 

Isoniazid katG, proA:ahpC, fabG1, rpoB (A), inhA, embB (B), Rv1139c:Rv1140 (C), Rv1158c (D), rpsL (E), 
Rv1219c (F), ftsK/Rv2749 (G), gid (H) 

Rifampicin 
rpoB, katG (A), embB (B), Rv1565c (C), guaA (D), ctpI (E), spoU (F), dxs2:Rv3382c R (G), 
Rv3183:Rv3188 R (H), relA (I), proA:ahpC (J), fabG1 (K), moaC3:Rv3327 R (L), Rv0810c (M), fadD9 (N), 
Rv3779 (O), rpsL (P), rpoC (Q), Rv2190c:Rv2191 (R) 

Second-line 

Amikacin 
rrs, gyrA (A), rpoB (B), echA8 (C), Rv2896c (D), Rv0078A (E), Rv1830 (F), Rv0792c/Rv0793 (G), PPE54 
(H), Rv2041c (I), PPE42 (J), cyp141:Rv3122 (K), Rv1765cR (L), lprF:Rv1371R (M), espA:ephA (N), narU 
(O), rne (P), Rv1393c (Q), Rv1362c (R), Rv0579 (S), glnE (T), ethA (U), Rv0208c:Rv0209 (V) 

Ethionamide 
fabG1, ethA (A), rpoB (B), gyrA (C), inhA (D), whiB7 (E), PPE3 (F), mpt53 (G), embB (H), eccA1 (I), 
embA (J), Rv0565c (K), fadB4 (L), plsC (M), Rv0920c (N), Rv3698 (O), rrs (P), pncA (Q), PPE56 (R), 
Rv2019 (S), lprF:Rv1371 R (T) 

Kanamycin 
rrs, eis, gyrA (A), rpoB (B), ethA (C), fabG1 (D), Rv1830 (E), ptbB (F), PPE42 (G), echA8 (H), lprF:Rv1371 

R (I), Rv2348c:plcC (J), narU (K), pgi (L), mmaA4 (M), pncA (N), viuB (O), lprC (P), murA (Q), Rv1393c 
(R), Rv0579 (S), glnE (T), rne (U), Rv1362c (V), Rv0208c:Rv0209 (W) 

Levofloxacin gyrA, rrs (A), gyrB, embB (B), rpoB (C), vapC36 (D), mce2F (E), fabG1 (F), katG (G), folC (H), tlyA (I), 
ethA (J), Rv0228 (K) 

Moxifloxacin gyrA, rrs (A), rpoB (B), gyrB (C), embB (D), katG (E) 

Rifabutin 
rpoB, embB (A), katG (B), rpoC (C), Rv0810c (D), Rv2478c:Rv2481c R (E), Rv2647:Rv2650c R (F), rplP 
(G), Rv2797c (H), cpsY (I), lysA (J), mprB (K), mprA (L), Rv3228 (M), Rv1290c (N), pncA (O), 
Rv2277c:pitB R (P), Rv0726c (Q), cysA3/cysA2 (R), Rv0914c (S) 

New and repurposed 

Bedaquiline 
Rv0678, rpoB (A), rrs (B), atpE (C), pgi (D), mmaA4 (E), rplC (F), Rv0078A (G), era/amiA2 (H), viuB (I), 
pncA (J), murA (K), Rv0792c/Rv0793 (L), dnaB (M), Rv2665:clpC2 (N), PPE54 (O), Rv0332 (P), Rv2019 
(Q), vapC22 (R), Rv2896c (S) 

Clofazimine 
Rv0678, fabG1 (A), cyp142 (B), Rv3183:Rv3188 R (C), moaC3:Rv3327 R (D), dxs2:Rv3382c R (E), mmsA 
(F), Rv3723:Rv3725 (G), gid (H), rpoB (I), pks1 (J), mmaA2:mmaA1 (K), Rv3273 (L), mce3R/yrbE3A (M), 
Rv3796 (N), mez (O), Rv2390c (P), yrbE3B (Q), Rv0207c (R), argS (S) 

Delamanid 
ddn, fadE22 (A), fba (B), Rv2180c (C), gap (D), lprF:Rv1371 R (E), Rv0914c (F), Rv1200 (G), fadE10 (H), 
dinP (I), mmpL8 (J), cut1 R (K), PPE39 R (L), Rv3430a:gadB (M), Rv1429 (N), Rv3847 (O), pknH (P), plsC 
(Q), agpS (R), Rv3263 (S) 

Linezolid 
rplC, rpoB (A), emrB (B), Rv3552 (C), add (D), vapC33 (E), ppgK (F), pncB1:Rv1331 (G), lprA (H), pafA 
(I), PE_PGRS6 (J), vapB20 (K), Rv0061c (L), PE_PGRS4 (M), Rv1049 (N), lprF:Rv1371 R (O), 
Rv3183:Rv3188 R (P), dxs2:Rv3382c R (Q), Rv0556 (R), Rv0514 (S) 

Table 1 The top genes or intergenic regions ranked by their most significant oligopeptides per drug, up to a 185 

maximum of 20 (more only when the 20th was tied). Genes are highlighted in bold if they were catalogued for 186 

that drug by [17,11]. Gene names separated by colons indicate intergenic regions. Genes or intergenic regions 187 
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capturing repeat regions are highlighted with the superscript R. Alphabetic characters following gene names 188 

are used to cross-reference with the corresponding Manhattan plots in Figure 3. 189 

 190 

We next looked at uncatalogued variants in known resistance-conferring genes. We 191 

identified uncatalogued variants in gyrB associated with levofloxacin and moxifloxacin MIC 192 

(minimum p-value levofloxacin: p<10-15.6, moxifloxacin: p<10-11.6. The primary mechanisms 193 

of resistance to the fluoroquinolones levofloxacin and moxifloxacin are mutations in gyrA or 194 

gyrB, the subunits of DNA gyrase. The gyrB Manhattan plots for levofloxacin and 195 

moxifloxacin both contained two adjacent peaks within the gene, but for each drug just one 196 

of the two peaks was significant, and these differed between the drugs (Figure 4). 197 

Interpretation of oligopeptides and oligonucleotides requires an understanding of the 198 

variants that they capture, which we visualised by aligning them to H37Rv and interpreting 199 

the variable sites (e.g. Figure 4C-D). For levofloxacin the peak centred around amino acid 200 

461. Significant oligopeptides captured amino acids 461 and 457, which are both 201 

uncatalogued [17,11] with 457 falling just outside of the gyrB quinolone resistance-202 

determining region (QRDR-B) [33]. Oligopeptides capturing 461N were associated with 203 

increased MIC (e.g. NSAGGSAKSGR, -log10p = 15.65, effect size b = 2.46, present in 15/7300 204 

genomes). Oligopeptides capturing the reference alleles at codons 461 and 457 were 205 

significantly associated with lower MIC (e.g. 461D: DSAGGSAKSGR, -log10p = 13.47, b = -2.14, 206 

present in 7278/7300 genomes; 457V/461D: SELYVVEGDSA, -log10p = 12.51, b = -1.96, 207 

present in 7272/7300 genomes). For moxifloxacin, the peak centred around amino acid 501. 208 

Significant oligopeptides captured amino acids 499 and 501. Oligopeptides capturing 501D 209 

were associated with increased MIC (e.g. NTDVQAIITAL, -log10p = 10.64, b = 1.86, present in 210 

23/6388 genomes). Oligopeptides capturing the reference allele at codons 499 and 501 211 
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were associated with lower MIC (e.g. NTEVQAIITAL, -log10p = 11.63, b = -1.33, present in 212 

6332/6388 genomes). Amino acids 461 and 501 are at the interface between gyrB and the 213 

bound fluroquinolone [34]. gyrB is included in the reference catalogues for predicting 214 

levofloxacin but not moxifloxacin resistance, therefore our results support inclusion in 215 

future moxifloxacin catalogues [17,11].  216 

 217 

 218 

Figure 4 Interpreting significant oligopeptide variants for levofloxacin and moxifloxacin MIC in gyrB. 219 

Oligopeptide Manhattan plots are shown for A levofloxacin B moxifloxacin. Oligopeptides are coloured by the 220 

reading frame that they align to, black for in frame and grey for out of frame in gyrB. Oligopeptides aligned to 221 

the region by nucmer but not realigned by BLAST are shown in grey on the right hand side of the plots. The 222 

black dashed lines indicate the Bonferroni-corrected significance thresholds – all oligopeptides above the line 223 

are genome-wide significant. Alignment is shown of oligopeptides significantly associated with C levofloxacin 224 
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and D moxifloxacin. The H37Rv reference codons are shown at the bottom of the figure, grey for an invariant 225 

site, coloured at variant site positions. The background colour of the oligopeptides represents the direction of 226 

the b estimate, light grey when b < 0 (associated with lower MIC), dark grey when b> 0 (associated with higher 227 

MIC). Oligopeptides are coloured by their amino acid residue at variant positions only. 228 

 229 

Next we looked at specific examples of significant associations identified by GWAS in genes  230 

not catalogued by [17,11] for each of the drugs. A well-recognized challenge in GWAS for 231 

antimicrobial resistance is the presence of artefactual cross resistance. To mitigate this risk, 232 

we preferentially highlight variants significantly associated with a single drug. However, 233 

many catalogued resistance variants demonstrated artefactual cross resistance. For 234 

example, variants in the rifampicin resistance determining region were in the top 20 235 

significant associations for all drugs except for delamanid (Table 1). Interestingly, we 236 

observed that the magnitude of effect sizes was often larger on MIC of the drug to which 237 

catalogued variants truly confer resistance (Supplementary Figure 6). For example, the 238 

effect sizes for significant oligopeptides in rpoB were greater for rifampicin and rifabutin 239 

than for all other drugs. This suggests that the b estimates could help to prioritise drugs for 240 

follow up when genes are significantly associated with multiple drugs.  241 

 242 

First-line drugs 243 

Ethambutol and rifampicin. Oligonucleotides downstream of spoU (Rv3366) were 244 

significantly associated with ethambutol and rifampicin MIC (minimum p-value p<10-10.0, 245 

Supplementary Figure 7). SpoU is a tRNA/rRNA methylase, shown to have DNA methylation 246 

activity [35]. As the association was outside of the coding region, we interpreted 247 

oligonucleotides for this association. Oligonucleotides associated with increased MIC 248 
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captured the relatively common adenine 20 nucleotides downstream of the stop codon (e.g. 249 

CAAACCAGCCGGTATGCGCACAACGAAGCTC, RIF: -log10p = 12.82, b = 3.19, present in 250 

159/8394 genomes; EMB: -log10p = 10.86, b = 1.36, present in 163/7081 genomes). This 251 

mutation has been identified in previous association studies as associated with rifampicin 252 

and ethambutol resistance [36,37] but has not been catalogued. The new evidence provided 253 

by CRyPTIC supports re-evaluation of this putative resistance-conferring variant. The 254 

simultaneous association of spoU with rifampicin and ethambutol may be an example of 255 

artefactual cross resistance. The effect sizes on MIC for rifampicin (b = 3.19) were larger 256 

than for ethambutol (b = 1.36), suggesting prioritisation of the rifampicin association over 257 

the ethambutol association reported here. 258 

 259 

Isoniazid. Oligopeptides in Rv1219c were significantly associated with isoniazid MIC 260 

(minimum p-value p<10-8.5, Supplementary Figure 8). Rv1219c represses transcription of the 261 

Rv1217c-Rv1218c multidrug efflux transport system [38]. It binds two motifs, a high-affinity 262 

intergenic sequence in the operon's promoter, and a low-affinity intergenic sequence 263 

immediately upstream of Rv1218c [38]. The peak signal of association coincides with the C-264 

terminal amino acids 188-189 in the low-affinity binding domain of Rv1219c. Multiple 265 

extremely low frequency oligopeptides were associated with increased MIC, present in just 266 

one or two genomes. In contrast, oligopeptides containing the reference alleles at codons 267 

188-189 were present in 8919/8929 genomes and strongly associated with decreased MIC 268 

(e.g. EVYTEGLLADR, -log10p = 8.46, b = -3.63, present in 8919/8929 genomes). Substitutions 269 

at these positions may therefore derepress the multidrug efflux transport system. Indeed, 270 

overexpression of Rv1218c has been observed to correlate with higher isoniazid MIC in vitro 271 

[39]. 272 
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 273 

Second-line drugs 274 

Amikacin and kanamycin. Oligopeptides in PPE42 (Rv2608) were significantly associated 275 

with aminoglycoside MIC, for both amikacin and kanamycin (minimum p-value p<10-12.8, 276 

Supplementary Figure 9). PPE42 is an outer membrane-associated PPE-motif family protein 277 

and potential B cell antigen. It elicits a high humoral and low T cell response [40] and is one 278 

of four antigens in the vaccine candidate ID93 [41]. The C-terminal major polymorphic 279 

tandem repeats (MPTRs) contain a region of high antigenicity [40]. The peak association 280 

with MIC occurred halfway along the coding sequence. The oligopeptides most associated 281 

with higher MIC captured a premature stop codon at position 290 (e.g. PLLE*AARFIT, 282 

amikacin -log10p = 11.25, b = 3.12, present in 38/8430 genomes; kanamycin -log10p = 10.25, 283 

b = 2.33, present in 40/8748 genomes). A nearby premature stop codon at amino acid 484 284 

was previously identified in a multi-drug resistant strain [42], supporting the proposition 285 

that truncation of PPE42 enhances aminoglycoside resistance. 286 

 287 

Ethionamide. Oligopeptides and oligonucleotides upstream and within the transcriptional 288 

regulator whiB7 (Rv3197A) were significantly associated with ethionamide MIC (minimum p-289 

value p<10-18.2, Supplementary Figure 10). Oligonucleotides associated with higher MIC 290 

captured a single-base guanine deletion 177 bases upstream of whiB7, within the 5’ 291 

untranslated region [43] (e.g. AACCGTGTCGCCGCCGCGACTGACGAGTCCT, -log10p = 18.18, b 292 

= 2.16, present in 46/8287 genomes), while oligopeptides associated with higher MIC 293 

captured multiple substitutions within the AT-hook motif known to bind AT-rich sequences 294 

[44,45] (e.g. DQGSIVSQQHP, -log10p = 10.85, b = 1.96, present in 22/8287 genomes). 295 

Substitutions in the AT-hook motif may disrupt the binding with the whiB7 promoter 296 
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sequence, while deletions upstream of whiB7 have been shown to result in overexpression 297 

of WhiB7 [46]. WhiB7 is induced by antibiotic treatment and other stress conditions and 298 

activates its own expression along with other drug resistance genes, for example tap and 299 

erm [45]. Variants in and upstream of another whiB-like transcriptional regulator, whiB6, 300 

were previously found to be associated with resistance to ethionamide [19,47], 301 

capreomycin, amikacin, kanamycin and ethambutol [22,23]. WhiB7 has been implicated in 302 

cross-resistance to multiple drugs, including macrolides, tetracyclines and aminoglycosides 303 

[45,46], however activation of WhiB7 is not induced by all antibiotics, for instance isoniazid 304 

[43]. Interestingly, oligopeptides and oligonucleotides in or upstream of whiB7 were not 305 

found to be significantly associated with any of the other 12 antimicrobials. This could 306 

indicate yet another mechanism by which whiB7 is involved in resistance to anti-307 

tuberculosis drugs. 308 

 309 

Levofloxacin. Oligopeptides in tlyA (Rv1694) were significantly associated with MIC of the 310 

fluoroquinolone levofloxacin (minimum p-value p<10-7.8, Supplementary Figure 11). tlyA 311 

encodes a methyltransferase which methylates ribosomal RNA. Variants in tlyA, including 312 

loss-of-function mutations, confer resistance to the aminoglycosides viomycin and 313 

capreomycin [48] by knocking out its methyltransferase activity [49].  314 

An extremely low frequency oligopeptide was associated with increased MIC, and captured 315 

a one-nucleotide adenosine insertion between positions 590 and 591 in codon 198 in a 316 

conserved region [50]. In contrast, oligopeptides containing the reference alleles in this 317 

region were associated with decreased MIC (e.g. GKGQVGPGGVV, -log10p = 7.83, b = -1.86, 318 

present in 7281/7300 genomes). The resulting frameshift likely mimics the knockout effect 319 

of deleting the 27 C-terminal residues of TlyA, which ablates methyltransferase activity [51]. 320 
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While loss-of-function mutations conferring antimicrobial resistance were previously 321 

reported to specifically increase aminoglycoside MIC, fluoroquinolones were not 322 

investigated [52]. The signal in tlyA may therefore reveal genuine, previously unidentified 323 

cross-resistance.  324 

 325 

Rifabutin. Oligonucleotides in cysA2 (Rv0815c) and cysA3 (Rv3117) were significantly 326 

associated with rifabutin MIC (minimum p-value p<10-7.7, Supplementary Figure 12). They 327 

encode identical proteins, which are putative uncharacterised thiosulfate:cyanide 328 

sulfurtransferases, known as rhodaneses, belonging to the essential sulfur assimilation 329 

pathway, secreted during infection [53]. No genome-wide significant signals associated 330 

specific oligopeptides or oligonucleotides with higher MIC. Significant oligonucleotides that 331 

aligned to cysA2 and cysA3 were associated with lower MIC. They captured two variants: a 332 

synonymous nucleotide substitution, a thymine at position 117 in codon 39, and a non-333 

synonymous nucleotide substitution, a guanine at position 103 inducing amino acid 334 

substitution 35D (e.g. CATATGACCGTGACCATATTGCCGGCGCGAT, -log10p = 7.74, b = -2.65, 335 

present in 9396/9418 genomes). These positions coincide with the rhodanese characteristic 336 

signature in the N-terminal region, important for rhodanese stability [54]. However, the 337 

mechanism of resistance against rifabutin remains to be elucidated. 338 

 339 

New and repurposed drugs 340 

Bedaquiline. Oligonucleotides situated in the region of overlap at the 3' ends of amiA2 341 

(Rv2363) and era (Rv2364c) were significantly associated with bedaquiline MIC (minimum p-342 

value p<10-10.5, Supplementary Figure 13). These genes encode an amidase and a GTPase, 343 

respectively, on opposite strands. Of the two top oligonucleotides associated with higher 344 
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MIC, the first captures two substitutions that are synonymous in era, 7-19 nucleotides 345 

upstream of the stop codon, and 3' non-coding in amiA2, 4-16 nucleotides downstream of 346 

the stop codon (e.g. CCCCAAACAGCTTGGCCGACTGGGGTTTTAG, -log10p = 10.47, b = 1.26, 347 

present in 7919/8009 genomes). The second additionally captures a variant that induces a 348 

non-synonymous guanine substitution at position 1451 in amiA2, and is 3' intergenic in era, 349 

one nucleotide downstream of the stop codon (e.g. 350 

CAAACAGCTTGGCCGACTGGGGTTTTAGCTC, -log10p = 7.87, b = 0.88, present in 7898/8009 351 

genomes). Interestingly, AmiA2 has previously been identified at lower abundance in MDR 352 

compared to sensitive isolates [55], and Era (but not AmiA2) has been shown to be required 353 

for optimal growth of H37Rv [56]. These variants may therefore enhance tolerance to 354 

bedaquiline. 355 

 356 

Clofazimine. Oligopeptides in cyp142 (Rv3518c), which encodes a cytochrome P450 enzyme 357 

with substrates of cholesterol/cholest-4-en-3-one, were significantly associated with 358 

clofazimine MIC (minimum p-value p<10-12.2, Supplementary Figure 14). Oligopeptides 359 

associated with higher MIC captured the amino acid residue 176I (e.g. EDFQITIDAFA, -log10p 360 

= 7.99, b = 1.14, present in 100/7297 genomes). The association signal falls within the F a-361 

helix of CYP142, which lines the entrance to the active site with largely hydrophobic 362 

residues, forming part of the substrate binding pocket [57,58]. Homology with CYP125 363 

suggests that residue 176 captured by the GWAS is within 5 Å of the binding substrate [58]. 364 

The potential for cytochrome P450 enzymes as targets for anti-tuberculosis drugs has been 365 

highlighted [59]; CYP142 is inhibited by azole drugs [59] and has been found to form a tight 366 

complex with nitric oxide (NO) [60]. The anti-mycobacterial activity of clofazimine has been 367 

shown to produce reactive oxygen species [61], therefore the substitution identified by the 368 
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GWAS may disrupt the binding of NO to CYP142. Methionine and isoleucine are both 369 

hydrophobic residues, so the mechanism for how this would disrupt binding is unknown. 370 

 371 

Delamanid. Oligonucleotides in pknH (Rv1266c), which encodes a serine/threonine-protein 372 

kinase, were significantly associated with delamanid MIC (minimum p-value p<10-30.2, 373 

Supplementary Figure 15). Delamanid is a prodrug activated by deazaflavin-dependent 374 

nitroreductase which inhibits cell wall synthesis. PknH phosphorylates the adjacent gene 375 

product EmbR [62], enhancing its binding of the promoter regions of the embCAB operon 376 

[63]. Mutations in embAB are responsible for ethambutol resistance [64]. The peak GWAS 377 

signal localized to the C-terminal periplasmic domain of PknH [62]. Oligonucleotides below 378 

our MAF threshold captured extremely low frequency triplet deletions of either ACG at 379 

nucleotides 1645-7 or GAC at nucleotides 1644-6. In contrast, oligonucleotides containing 380 

the reference alleles in this region were associated with decreased MIC (e.g. 381 

CAAGACGGTCACCGTCACGAATAAGGCCAAG , -log10p = 30.21, b = -3.29, present in 382 

7555/7564 genomes). These variants likely disrupt intramolecular disulphide binding linking 383 

the two highly conserved alpha helices that form the V-shaped cleft of the C-terminal sensor 384 

domain [65]. Since NO is released upon activation of DLM, and deletion of PknH alters 385 

sensitivity to nitrosative and oxidative stresses [66], these rare variants may alter tolerance 386 

to delamanid mediated by NO. 387 

 388 

Linezolid. Oligonucleotides in vapB20 (Rv2550c) were significantly associated with linezolid 389 

MIC (minimum p-value p<10-8.6, Supplementary Figure 16). VapB20 is an antitoxin 390 

cotranscribed with its complementary toxin VapC20 [67]. The latter modifies 23S rRNA [68], 391 

the target of linezolid which inhibits protein synthesis by competitively binding 23S rRNA. 392 
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The peak signal in vapB20 occurred just upstream of the promotor and VapB20 binding 393 

sites, 21 nucleotides upstream of the -35 region [68]. Oligonucleotides below our MAF 394 

threshold associated with increased MIC shared a cytosine 33 nucleotides upstream of 395 

vapB20, replacing the reference nucleotide thymine which was associated with decreased 396 

MIC (e.g. GAATCGGATGCTTGCCGCTGGCTGCCGAGTT, -log10p = 8.60, b = -2.02, present in 397 

6724/6732 genomes). This substitution may derepress the toxin, which could interrupt 398 

linezolid binding by cleaving the Sarcin-Ricin loop of 23S rRNA. 399 

 400 

Discussion 401 

In this study we tested oligopeptides and oligonucleotides for association with quantitative 402 

MIC measurements for 13 antimicrobials to identify novel resistance determinants. 403 

Analysing MIC rather than binary resistance phenotypes enabled identification of variants 404 

that cause subtle changes in MIC. This is important, on the one hand, because higher 405 

rifampicin and isoniazid MIC in sensitive isolates are associated with increased risk of 406 

relapse after treatment [69]. Conversely, low-level resistance among isolates resistant to RIF 407 

and isoniazid mediated by particular mutations may sometimes be overcome by increasing 408 

the drug dose, or replacing rifampicin with rifabutin, rather than changing to less desirable 409 

drugs with worse side effects [70,71,72,73,74]. The investigation of MIC was particularly 410 

effective at increasing heritability for the new and repurposed drugs. 411 

 412 

The MICs were positively correlated between many drugs, particularly amongst first-line 413 

drugs. Consequently, many of the 10,228 isolates we studied were MDR and XDR. In GWAS, 414 

this generates artefactual cross resistance, in which variants that cause resistance to one 415 

drug appear associated with other drugs to which they do not confer resistance. In practice, 416 
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it is difficult to distinguish between associations that are causal versus artefactual without 417 

experimental evidence. Nevertheless, we found frequent evidence of artefactual cross 418 

resistance: several genes and intergenic regions featured among the top 20 strongest 419 

signals of association to multiple drugs, including rpoB (12 drugs), embB (7), fabG1 (7), rrs 420 

(6), gyrA (6), katG (6), lprF:Rv1371 (6), pncA (5), ethA (4), Rv3183:Rv3188 (4) dxs2:Rv3382c 421 

(4), rpsL (3) and moaC3:Rv3327 (3). Among previously catalogued variants, we observed 422 

that the estimated effect sizes were usually larger in magnitude for significant true 423 

associations than significant artefactual associations (Supplementary figure 4). In future 424 

GWAS, this relationship could help tease apart true versus artefactual associations when a 425 

uncatalogued variant is associated with multiple drugs. 426 

 427 

We focused on variants in the top twenty most significant genes identified by GWAS for 428 

each of the 13 drugs, classifying significant oligopeptides and oligonucleotides according to 429 

whether the variants they tagged were previously catalogued among known resistance 430 

determinants, or not. While the interpretation of oligopeptides and oligonucleotides 431 

required manual curation to determine the underlying variants they tagged, the approach 432 

had the advantage of avoiding reference-based variant calling which can miss important 433 

signals, particularly at difficult-to-map regions. For 8/13 drugs with previously catalogued 434 

resistance determinants, the most significant GWAS signal in CRyPTIC was a previously 435 

catalogued variant. Among the uncatalogued variants there are promising signals of 436 

association, including in the Rv1218c promoter binding site of the transcriptional repressor 437 

Rv1219c (associated with MIC for isoniazid) upstream of the vapBC20 operon that cleaves 438 

23S rRNA (linezolid) and in the region encoding a helix lining the active site of cyp142 439 

(clofazimine). These variants would benefit from further investigation via replication studies 440 
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in independent populations, experimental exploration of proposed resistance mechanisms, 441 

or both. 442 

 443 

We elected to classify significant variants as catalogued versus uncatalogued, rather than 444 

known versus novel, for several reasons. The catalogues represent a concrete, pre-existing 445 

knowledgebase collated by expert groups for use in a clinical context [17,11]. We chose 446 

[17,11] as they are the most recent and up to date catalogues available for the drugs we 447 

investigated. The inclusion criteria for variants to be considered catalogued are therefore 448 

stringent; it follows that a class of variants exist that have been reported in the literature 449 

but not assimilated into the catalogues [17,11]. The literature is vast and heterogenous, 450 

with evidence originating from molecular, clinical and genome-wide association studies. 451 

Inevitably, some uncatalogued variants in the literature will be false positives, while others 452 

will be real but did not meet the standard of evidence or clinical relevance for cataloguing. 453 

Evidence from CRyPTIC that supports uncatalogued variants in the latter group is of equal or 454 

greater value than the discovery of completely novel variants, because it contributes to a 455 

body of independent data supporting their involvement. For instance, gyrB did not appear 456 

in the catalogues we used for moxifloxacin [17,11]. Yet our rediscovery of gyrB 501D 457 

complements published reports associating the substitution with moxifloxacin resistance 458 

[75,76,77], strongly enhancing the evidence in favour of inclusion in future catalogues. 459 

Indeed, the recent WHO prediction catalogue, published after the completion of this study 460 

and which draws on the CRyPTIC data analysed here includes the E501D resistance-461 

associated variant [78]. Moreover, of the five new genes added to the forthcoming WHO 462 

catalogue [78] but not featuring in the catalogues [17,11] used here – eis (amikacin), ethA 463 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.14.460272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460272
http://creativecommons.org/licenses/by/4.0/


 

(ethionamide), inhA (ethionamide), rplC (linezolid), gyrB (moxifloxacin) – we identify all as 464 

containing significant variants by GWAS except one, eis (amikacin). 465 

 466 

The combination of a very large dataset exceeding 10,000 isolates and quantification of 467 

resistance via MIC enabled the CRyPTIC study to attribute a large proportion of fine-grained 468 

variability in antimicrobial resistance in M. tuberculosis to genetic variation. Compared to a 469 

parallel analysis of binary resistance phenotypes in the same samples, we observed an 470 

increase in heritability of 26.1-37.1% for the new and repurposed drugs bedaquiline, 471 

clofazimine, delamanid and linezolid. The improvement was most striking for delamanid, 472 

whose heritability was not significantly different to zero for the binary resistance 473 

phenotype. In contrast, the scope for improvement was marginal for the better-studied 474 

drugs isoniazid and rifampicin, where MIC heritabilities of 94.6-94.9% were achieved. This 475 

demonstrates the ability of additive genetic variation to explain almost all the phenotypic 476 

variability in MIC for these drugs. Nevertheless, we were still able to find uncatalogued hits 477 

for these drugs. The very large sample size also contributed to increased heritability 478 

compared to previous pioneering studies. Compared to Farhat et al 2019 [22] who 479 

estimated the heritability of MIC phenotypes in 1452 isolates, we observed increases in 480 

heritability of 2.0% (kanamycin), 3.3% (amikacin), 14.0% (isoniazid), 10.8% (rifampicin), 481 

11.2% (ethambutol) and 19.4% (moxifloxacin). Furthermore, many of the uncatalogued 482 

signals we report here as significant detected rare variants at below 1% minor allele 483 

frequency, underlining the ability of very large-scale studies to improve our understanding 484 

of antimicrobial resistance not only quantitatively, but to tap otherwise unseen rare variants 485 

that reveal new candidate resistance mechanisms. 486 

 487 
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Materials and Methods 488 

 489 

Sampling frames 490 

CRyPTIC collected isolates from 27 countries worldwide, oversampling for drug resistance, 491 

as described in detail in [31]. Clinical isolates were subcultured for 14 days before 492 

inoculation onto one of two CRyPTIC designed 96-well microtiter plates manufactured by 493 

ThermoFisher. The first plate used (termed UKMYC5) contained doubling-dilution ranges for 494 

14 different antibiotics, the second (UKMYC6) removed para-aminosalicylic acid due to poor 495 

results on the plate [30] and changed the concentration of some drugs. Para-aminosalicylic 496 

acid was therefore not included in the GWAS analyses. Phenotype measurements were 497 

determined to be high quality, and included in the GWAS analyses, if three independent 498 

methods (Vizion, AMyGDA and BashTheBug) agreed on the value [31]. Sequencing pipelines 499 

differed slightly between the CRyPTIC sites, but all sequencing was performed using 500 

Illumina, providing an input of matched pair FASTQ files containing the short reads. 501 

 502 

15,211 isolates were included in the initial CRyPTIC dataset with both genomes and 503 

phenotype measurements after passing genome quality control filters [31,79], however 504 

some plates were later removed due to problems identified at some laboratories with 505 

inoculating the plates [31]. Genomes were also excluded if they met any of the following 506 

criteria, determined by removing samples at the outliers of the distributions: (i) no high 507 

quality phenotypes for any drugs; (ii) total number of contigs > 3000; (iii) total bases in 508 

contigs < 3.5x106 or > 5x106; (iv) number of unique oligonucleotides < 3.5x106 or > 5x106; (v) 509 

sequencing read length not 150/151 bases long. This gave a GWAS dataset of 10,422 510 

genomes used to create the variant presence/absence matrices. We used Mykrobe 511 
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[80,79,81] to identify Mycobacterium genomes not belonging to lineages 1-4 or 512 

representing mixtures of lineages. This led to the exclusion of 193 genomes, which were 513 

removed from GWAS by setting the phenotypes to NA. The number of genomes with a high 514 

quality phenotype for at least one of the 13 drugs was therefore 10,228. Of these 533 were 515 

lineage 1, 3581 lineage 2, 805 lineage 3, and 5309 lineage 4. Due to rigorous quality control 516 

described above, only samples with high quality phenotypes were tested for each drug, 517 

resulting in a range of 6,388-9,418 genomes used in each GWAS. 518 

 519 

Phylogenetic inference 520 

A pairwise distance matrix was constructed for the full CRyPTIC dataset based on variant 521 

calls [79]. For visualisation of the dataset, a neighbour joining tree was built from the 522 

distance matrix using the ape package in R and subset to the GWAS dataset. Negative 523 

branch lengths were set to zero, and the length was added to the adjacent branch. The 524 

branch lengths were square rooted and the tree annotated by lineages assigned by Mykrobe 525 

[80]. 526 

 527 

Oligonucleotide/oligopeptide counting 528 

To capture SNP-based variation, indels, and combinations of SNPs and indels, we pursued 529 

oligonucleotide and oligopeptide-based approaches, focusing primarily on oligopeptides. 530 

Where helpful for clarifying results, we interpreted significant associations using 531 

oligonucleotides. Sequence reads were assembled de novo using Velvet Optimiser [82] with 532 

a starting lower hash value of half the read length, and a higher hash value of the read 533 

length minus one; if these were even numbers they were lowered by one. If the total 534 

sequence length of the reads in the FASTQ file was greater than 1x109, then the reads were 535 
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randomly subsampled prior to assembly down to a sequence length of 1x109 which is 536 

around 227x mean coverage. For the oligopeptide analysis, each assembly contig was 537 

translated into the six possible reading frames in order to be agnostic to the correct reading 538 

frame. 11 amino acid long oligopeptides were counted in a one amino acid sliding window 539 

from these translated contigs. 31bp nucleotide oligonucleotides were also counted from the 540 

assembled contigs using dsk [83]. For both oligonucleotide and oligopeptide analyses, a 541 

unique set of variants across the dataset was created, with the presence or absence of each 542 

unique variant determined per genome. An oligonucleotide/oligopeptide was counted as 543 

present within a genome if it was present at least once. This resulted in 60,103,864 544 

oligopeptides and 34,669,796 oligonucleotides. Of these, 10,510,261 oligopeptides and 545 

5,530,210 oligonucleotides were variably present in the GWAS dataset of 10,228 genomes.  546 

 547 

Oligonucleotide/oligopeptide alignment 548 

We used the surrounding context of the contigs that the oligopeptides/oligonucleotides 549 

were identified in to assist with their alignment. First, we aligned the contigs of each 550 

genome to the H37Rv reference genome [84] using nucmer [85], keeping alignments above 551 

90% identity, assigning a H37Rv position to each base in the contig. Version 3 of the H37Rv 552 

strain (NC_000962.3) was used as the reference genome throughout the analysis. All 553 

numbering refers to the start positions in the H37Rv version 3 GenBank file. This gave a 554 

position for each oligonucleotide identified in the contigs, and after translating the six 555 

possible reading frames of the contig, each oligopeptide too. Each oligonucleotide/ 556 

oligopeptide was assigned a gene or intergenic region (IR) or both in each genome. These 557 

variant/gene combinations were then merged across all genomes into unique variant/gene 558 

combinations, where a variant could be assigned to multiple genes or intergenic regions. 559 
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Variant/gene combinations were then kept if seen in five or more genomes. In some specific 560 

regions where significant oligonucleotides or oligopeptides appeared to be capturing an 561 

invariant region, a threshold of just one genome was used to visualise low frequency 562 

variants in the region. This was used only for interpretation of the signal in the region, and 563 

not for the main analyses. To improve alignment for the most significant genes and 564 

intergenic regions, all oligonucleotides/oligopeptides in the gene/IR plus those that aligned 565 

to a gene/IR within 1kb were re-aligned to the region using BLAST. Alignments were kept if 566 

above 70% identity, recalculated along the whole length of the oligonucleotide/oligopeptide 567 

assuming the whole oligonucleotide/oligopeptide aligned. Oligopeptides were aligned to all 568 

six possible reading frames and only the correct reading frame was interpreted. An 569 

oligonucleotide/oligopeptide was interpreted as unaligned if it did not align to any of the six 570 

possible reading frames. A region was determined to be significant if it contained significant 571 

oligopeptides above a minor allele frequency (MAF) of 0.1% that were assigned to the 572 

region that also aligned using BLAST. If no significant oligopeptides aligned to the correct 573 

reading frame of a protein, or if the significant region was intergenic, then oligonucleotides 574 

were assessed. 575 

 576 

Covariates 577 

Isolates were sampled from 9 sites and minimum inhibitory concentrations (MIC) were 578 

measured on two versions of the quantitative microtiter plate assays, UKMYC5 and UKMYC6 579 

[31]. UKMYC6 contained adjusted concentrations for some drugs. Therefore in order to 580 

account for possible batch effects, we controlled for site plus plate type in the LMM by 581 

coding them as binary variables. These plus an intercept were included as covariates in the 582 

GWAS analyses. 583 
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 584 

Testing for locus effects 585 

We performed association testing using linear mixed model (LMM) analyses implemented in 586 

the software GEMMA to control for population structure [32]. Significance was calculated 587 

using likelihood ratio tests. We computed the relatedness matrix from the 588 

presence/absence matrix using Java code which calculates the centred relatedness matrix. 589 

GEMMA was run using no minor allele frequency cut-off to include all variants. When 590 

assessing the most significant regions for each drug, we excluded oligopeptides below 0.1% 591 

MAF. To understand the full signal at these regions, oligo-peptides and nucleotides were 592 

visualised in alignment figures to interpret the variants captured. When assessing the gene 593 

highlighted for each drug, we assessed the LD (r2) of the most significant oligo-peptide or 594 

nucleotide in the gene with all other top oligo-peptides or nucleotides for the top 20 genes 595 

for the drug. The top variants in the genes noted were not in high LD with known causal 596 

variants, in some cases they were in LD with other top 20 gene hits that were less 597 

significant. 598 

 599 

Correcting for multiple testing 600 

Multiple testing was accounted for by applying a Bonferroni correction calculated for each 601 

drug. The unit of correction for all studies was the number of unique “phylopatterns”, i.e. 602 

the number of unique partitions of individuals according to variant presence/absence for 603 

the phenotype tested. An oligopeptide/oligonucleotide was considered to be significant if 604 

its p-value was smaller than α/np, where we took α =0.05 to be the genome-wide false 605 

positive rate (i.e. family-wide error rate, FWER) and np to be the number of unique 606 

phylopatterns above 0.1% MAF in the genomes tested for the particular drug. The -log10p 607 
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significance thresholds for the oligopeptide analyses were: 7.69 (amikacin, kanamycin), 608 

7.65 (bedaquiline), 7.64 (clofazimine, levofloxacin), 7.67 (delamanid, ethionamide), 609 

7.62 (ethambutol, linezolid), 7.70 (isoniazid), 7.60 (moxifloxacin), 7.71 (rifabutin) and 610 

7.68 (rifampicin). The -log10p significance thresholds for the oligonucleotide analyses were: 611 

7.38 (amikacin, kanamycin), 7.34 (bedaquiline, clofazimine, levofloxacin), 7.36 (delamanid, 612 

ethionamide), 7.32 (ethambutol), 7.39 (isoniazid, rifabutin), 7.33 (linezolid), 7.31 613 

(moxifloxacin) and 7.37 (rifampicin). 614 

 615 

Estimating sample heritability 616 

Sample heritability is the proportion of the phenotypic variation that can be explained by 617 

the bacterial genotype assuming additive effects. This was estimated using the LMM null 618 

model in GEMMA [32] from the presence vs. absence matrices for both oligopeptides and 619 

oligonucleotides separately. Sample heritability was estimated for the MIC phenotype as 620 

well as for the binary sensitive vs. resistant phenotype. The binary phenotypes were 621 

determined using the epidemiological cutoff (ECOFF), defined as the MIC that encompasses 622 

99% of wild type isolates [31], all those below the ECOFF were considered susceptible, and 623 

those above the ECOFF were considered to be resistant. 624 

  625 
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