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Abstract 

To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do 
we make these predictions? Recent evidence points to simulation - the idea that we can introspectively manipulate 
rich, mental models of the world - as one possible explanation for how such predictions are accomplished. While 
theories based on simulation are supported by computational models, neuroscientific evidence for simulation is 
lacking and many important questions remain. For instance, do simulations simply entail a series of abstract 
computations? Or are they supported by sensory representations of the objects that comprise the scene being 
simulated? We posit the latter and suggest that the process of simulating a sequence of physical interactions is likely 
to evoke an imagery-like envisioning of those interactions. Using functional magnetic resonance imaging, we 
demonstrate that when participants predict how a ball will fall through an obstacle-filled display, motion-sensitive 
brain regions are activated. We further demonstrate that this activity, which occurs even though no motion is being 
sensed, resembles activity patterns that arise while participants perceive the ball’s motion. This finding suggests that 
the process of simulating the ball’s movement is accompanied by a sensory representation of this movement. These 
data thus demonstrate that mental simulations recreate sensory depictions of how a physical scene is likely to unfold. 
 
Introduction 

 An intuitive understanding of the laws of physics is 
one of the fundamental, underlying aspects of our daily 
interactions with the world around us.  Almost every 
action we take relies on our brain’s ability to effortlessly 
compute possible physical outcomes. Given the diversity 
of scenarios that we navigate every day, it seems likely 
that we use a variety of different strategies to parse 
physical scenes. One strategy that has recently risen in 
prominence is that of simulation (Bates et al., 2019; 
Fischer et al., 2016; Hegarty, 2004; Rajalingham et al., 
2021; Ullman et al., 2017). Simulation refers to one’s 
ability to run a “mental model” of a physical scene in 
order to determine an outcome. Physics simulations 
have long been a centerpiece of industries such as 
computer graphics, video games, and even architecture 
and construction. The idea that the human brain might 
rely on simulation as a general mode of cognition is not 
new. Dating as far back as the 18th century, philosophers 
David Hume and Adam Smith postulated that the way 
human beings enact empathy is by adopting mental 
models of one another (Hume, 1739; Smith, 1759). 
Kenneth Craik extended this concept beyond human 
interactions and argued that many everyday problems 
are resolved through the use of “small-scale models” 
that reflect reality while existing entirely in the mind 
(Craik, 1943). Most recently, the simulation theory has 
been put to the test in the lab in the context of physical 
scene understanding. For instance, Battaglia et al. have 
shown that computational models that make use of an 

“intuitive physics engine” to simulate rigid body 
dynamics of object interactions successfully capture 
human behavior on a variety of psychophysical tasks 
(Battaglia et al., 2013).  
 While the fact that people appear capable of physics 
simulation is an exciting finding, it marks only the 
beginning of potential interesting investigations into this 
topic. If we are to leverage our knowledge of simulations 
in the brain for real-world applications (for example, 
computer vision) or to inform therapeutic health 
interventions, it behooves us to fully understand the 
underlying mechanisms and circuits that enable our 
mental models. One immediate question that comes to 
mind concerns the fabric of the simulation itself. Are the 
physical simulations we employ represented in the brain 
as merely a series of computations between abstractly 
held entities? Or do our mental models evoke sensory 
representations of the physical interactions being 
simulated, even if they are not literally perceived?  
 Past research on the interplay between cognition 
and vision suggests that the latter might be true. For 
instance, decades of neuroimaging experiments have 
demonstrated that when we imagine stimuli with our 
eyes shut (a phenomenon termed “mental imagery” in 
the literature), early visual areas are activated as if those 
same stimuli were in fact being perceived (Klein et al., 
2004; Kosslyn et al., 1995, 1997, 2001). A similar finding 
emerges when people are asked to rotate 3D shapes in 
their mind. Specifically, area MT, which is known for its 
role in the perception of motion, appears to be activated 
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during mental rotation of objects, even in the absence 
of a visual stimulus (Shelton & Pippitt, 2006). Based on 
these discoveries, scientists have concluded that the 
process of internally envisioning stimuli that are not in 
fact present can evoke “simulated” sensory 
representations (Pearson, 2019). Given these findings, 
one may hypothesize that physics simulations of events 
could also evoke corresponding, internally generated 
visual representations. 
 We were interested in testing exactly this hypothesis. 
What might a visual representation of a physics 
simulation in the brain look like, and where might we 
expect to find its neural correlates? Considering the 
dynamic nature of our mental models, simulations of 
physical interactions must often incorporate the 
movements of objects, even if these movements are not 
being directly perceived at the time of the simulation. 
We thus theorized that, as in studies of mental rotation, 
we might find evidence of visual representations of 
physics simulations in brain regions such as area MT that 
are specialized for the perception of motion. This notion 
is further supported by past research showing that area 
MT can become active in response to static stimuli that 
contain elements of implicit or implied motion (Kourtzi 
& Kanwisher, 2000; Lorteijie et al., 2011). 
 In a previous study, we designed a novel task in 
which participants had to predict a ball’s likely trajectory 
as it fell through an obstacle filled display (Ahuja & 
Sheinberg, 2019). We refer to this as the ball fall task. 
The task could be solved by internally simulating the 
ball’s trajectory (including the various physical 
interactions encompassed within it) and using the 
outcome of that simulation to inform one’s answer. 
Through our prior work, we have provided behavioral, 
oculomotor, and computational evidence consistent 
with the idea that participants engage in simulation as 
they perform the ball fall task. In the present study, we 
recruited a new cohort of participants and asked them 
to perform the ball fall task while undergoing functional 
magnetic resonance imaging (fMRI). We sought to 
determine whether there was neural evidence 
supporting the idea that a physical simulation of an 
object’s trajectory would recruit neural circuits involved 
in the visual perception of that same trajectory. We 
hypothesized that if this indeed were the case, then we 
would observe voxel-wise activity pattern similarity in 
motion-sensitive regions of the brain between 
conditions in which participants simulated the ball’s 
motion trajectory, and conditions in which they 
perceived the ball’s motion trajectory. We found that 
this was indeed the case for all participants. This 
similarity effect between simulation and perception of 
the ball was not present outside of motion-sensitive 

brain regions. These findings provide evidence for a 
visual correlate of physical simulation.  

Methods 

Participants 
 Twelve individuals (4 male; 8 female) participated in 
this study. Participants were recruited from the Brown 
University campus and the surrounding community. All 
participants had normal vision and reported that they 
were not colorblind. Participants were screened for MRI 
contraindications, and were only included if they passed 
all screening requirements. Participants were 
compensated a base amount for their time, with 
additional compensation provided for correct responses 
on trials. Signed consent was received from all 
participants. The study was approved by the Brown 
University IRB. 

Motion Localizer 
 The first task the participants performed was a 
motion localizer task (Figure 3A). We used the motion 
localizer to define a motion-sensitive functional region 
of interest (ROI) for subsequent analyses. The localizer 
in this study was based on the one used in Sunaert et al., 
1999. Localizer runs started with a 16-second lead-in 
period with only a yellow fixation point on screen with a 
black background. Participants fixated on the point for 
the entire 16 seconds. This was followed by randomly 
ordered 20-second blocks of white dots that either 
coherently moved in a given direction (i.e., the Motion 
condition), or remained completely stationary (i.e., the 
Static condition). During the Motion and Static 
conditions, the yellow fixation point remained on 
screen, and participants were required to continue 
fixating (while ignoring the white dots in the 
background). The white dots were presented in a 
circular area with a radius of 6 degrees visual angle 
around the yellow fixation point. White dots were 0.07 
degrees visual angle in size and had a density of 
69/degrees2. During the Motion condition, the white 
dots moved at 5 degrees/second, randomly changing 
direction once per second. Each run had 3 blocks of each 
condition (leading to a total of one minute per 
condition). Participants performed either one or two 
runs of the localizer task, depending on the time 
constraints of the session.  

Task 
 To evoke dynamic physics simulations, we used what 
we refer to as the ball fall task (Figure 1A). The stimulus 
used for a single trial in the ball fall task consists of one 
“ball” at the top, a set of semi-randomly arranged 
“planks” throughout the middle, and two “catchers” at 
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the bottom. We refer to each display as a “board”. 
Participants were asked to determine which of the two 
catchers the ball would land in were it to be dropped 
from its given position, and indicate their choice by 
pressing one of two buttons.  

Boards were generated by randomly picking an x 
position, y position, length, and angle of rotation value 
for each of ten planks. We then used the Newton 
Dynamic library (http://newtondynamics.com), to 
simulate what would occur if the ball were dropped from 
its position at the top of a given board. A board was 
stored if the simulation resulted in the ball falling into 
one of the two catchers – otherwise, it was discarded, 
and the process was started over.  

In the present study, we sought to determine whether 
there was neural evidence for the idea that a physical 
simulation of an object’s trajectory (in this case, the ball) 
would recruit neural circuits involved in the visual 
perception of that same trajectory. We hypothesized 

that if this indeed were the case, then we would observe 
voxel-wise activity pattern similarity in motion-sensitive 
regions of the brain between conditions in which 
participants simulated the ball’s motion trajectory, and 
conditions in which they perceived the ball’s motion 
trajectory. To test this hypothesis, we devised three task 
variants that participants performed in the MRI scanner: 

1. Simulation variant: On this variant, participants were 
shown a board and asked to indicate which catcher 
they thought the ball would land in. This variant thus 
served as the experimental condition of interest. 

2. Perception variant: On this variant, the ball dropped 
on its own as soon as the board appeared, and 
participants indicated which catcher the ball landed 
in, after the fact. Participants were instructed to 
pursue the ball as it fell. This variant thus served as 
our positive control.  

3. Control variant: On this variant, participants were 
shown a board comprised of the same items as the 

Figure 1: Task Design. (A) An example of a board that constituted the primary stimulus in the ball fall task. 
Participants had to determine which of the two catchers the ball would land in if dropped (B) A schematic 
depicting the blocked design of the task variants (Simulation, Perception, Control, and Native), as well as the 
internal composition of a block. (C) A schematic depicting the trial outlines for each of the three variants of 
interest. The Native variant was not included in the subsequent fMRI analyses and is hence not shown here. 
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first two variants, except that the planks were more 
likely to adhere to either a vertical or horizontal 
orientation. Participants were asked to use this 
orientation property to inform their response – if the 
majority of the planks were vertical, they had to press 
one button, whereas if the majority of the planks 
were horizontal, they had to press the other. 
Although the ball was still present on screen during 
this variant, it was irrelevant to the task and was never 
dropped into either catcher. Note that the planks in 
the Simulation and Perception variants could also be 
horizontal or vertical – they were simply more likely 
to be so in the Control variant. Thus, for this variant, 
the visual stimuli were comprised of the same 
physical objects as in the previous two variants, but 
the task demands were changed entirely such that no 
physical interactions needed to be simulated. This 
allowed us to account for changes in BOLD signal 
attributable to the visual display (independent of the 
cognitive process acting on it) as well as eye 
movements (since all variants permitted free viewing 
of the scene). This variant served as the negative 
control. 

 A schematic depicting the progression of a trial for 
each of the three variants is shown in Figure 1C. We also 
had participants perform a fourth variant called the 
Native variant. This variant was essentially the 
Simulation and Perception variants combined – 
participants initially made a judgement about the ball’s 
trajectory, and once they had responded, we actually 
dropped the ball for them and let them view whether or 
not their answer was correct. The function of this variant 
was largely behavioral – it was necessary to have a 
condition where participants received immediate visual 
feedback about their choice so as to ensure that their 
internal model of the world and its physical properties 
remained accurate. While participants did perform this 
variant inside the scanner, the data from this variant was 
not analyzed for this study (nor were the trial timings 
optimized for fMRI data analysis). All the data presented 
comes from the Simulation, Perception, and Control 
variants. 
 Participants were pre-trained on all variants, and 
only progressed to the MRI scanner once they reported 
feeling comfortable with the demands of the task. 
Subjects generally reported feeling comfortable with the 
task after having attempted 10-20 practice trials per 
variant. Once in the scanner, variants were presented in 
unified blocks, with approximately 2 minutes of break 
time provided in between. Each scanning run was made 
up of one variant block. Each variant block was repeated 
three times over the course of a session, and variant 
block order was pseudorandomized. Each block started 

with a 16 second fixation period during which 
participants were asked to foveate a fixation spot 
presented at the center of the screen. Following this 
fixation period, the block progressed on to 24 task trials. 
Task variant identity was cued by the color of a fixation 
spot that was presented at the start of each trial. Trial 
durations depended on participants’ reaction times and 
were thus self-paced, although we did impose an 
eventual 6 second timeout for unusually long trials. 
Trials had a variable intertrial interval (ITI) of 1-6 
seconds, with an average ITI of 2 seconds. Finally, each 
block ended with another 16 second fixation period 
during which participants were asked to foveate a 
fixation spot presented at the center of the screen. A 
schematic depicting the progression of blocks through a 
session is shown in Figure 1B. Since each block 
corresponded to one run and participants performed a 
total of 3 blocks per task variant, we collected 12 total 
runs from each participant. 

Classification of Boards 
 To explicitly relate the properties of the stimuli to 
physics simulation, we leveraged our control over the 
embedded Newton Dynamics library to constrain certain 
properties of the boards. Specifically, we classified 
boards in the Simulation condition along two relevant 
dimensions. The first is what we have termed 
“simulation length”. This dimension refers to the length 
of the hypothetical simulation required to mentally 
recreate the ball’s full trajectory for a given board. We 
use the number of planks hit by the ball as the measure 
of simulation length because 1) as the number of planks 
involved increases, the length of the ball’s trajectory also 
inevitably increases, and 2) each additional plank 
represents a physical interaction that must be 
incorporated into the simulation, thereby lengthening it. 
We divided our boards into two simulation length 
categories – short (the ball hit 2 planks), or long (the ball 
hit 4 planks). Examples of short and long simulation 
length boards are shown in Figures 2A and 2B. 
 The second dimension that we looked at is what we 
have termed “simulation uncertainty”. This term refers 
to the degree of uncertainty involved in simulating a 
given trajectory. We assigned simulation uncertainty by 
determining the number of realistic alternate outcomes 
one might consider within a simulation strategy. 
Simulation uncertainty was quantified by repeatedly 
introducing some positional jitter to each plank on a 
given board, and re-simulating (via our physics engine) 
the ball’s trajectory on the jittered replicate. This 
process was carried out offline, 150 times for each 
board. For some boards, slight jitter of the planks caused 
major deviations to the ball’s calculated path (relative to 
the path in the original plank configuration). This meant 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.09.14.460312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460312
http://creativecommons.org/licenses/by-nc-nd/4.0/


that a noisy simulation could lead to any one of many 
plausible outcomes. If the majority of jittered 
configurations for a given board led to a change in the 
ball’s final position, that board would be classified as a 
high simulation uncertainty board. An example of a high 
simulation uncertainty board is shown in Figure 2D. For 
other boards, jitter had only a minor effect on the 
trajectory—the ball generally ended up in the same 
place. If the majority of jittered configurations for a 

given board resulted in no change in the ball’s final 
position, that board would be classified as a low 
simulation uncertainty board. An example of a low 
simulation uncertainty board is shown in Figure 2C. A 
dynamic demonstration of these uncertainty categories 
is shown in a supplementary video from our previous 
paper (Ahuja & Sheinberg, 2019). Simulation length and 
simulation uncertainty categories were 
counterbalanced, leading to six trials per length and 
uncertainty combination per block (2 length categories 
X 2 uncertainty categories X 6 = 24 trials). The Simulation 
and Perception variant blocks did not use exactly the 
same set of boards, but the boards in each variant were 
matched for length and uncertainty. 

fMRI Procedure and Preprocessing 
 A Siemens 3T PRISMA MRI system with a 64-channel 
head coil was used for whole-brain imaging. First, a high-
resolution T1 weighted multiecho MPRAGE anatomical 
image was collected for visualization (repetition time, 
1900 ms; echo time, 3.02 ms; flip angle, 9°; 160 sagittal 
slices; 1 × 1 × 1 mm). Functional images were acquired 
using a fat-saturated gradient-echo echo-planar 
sequence (TR, 2000 ms; TE, 28 ms; flip angle, 90°; 38 
interleaved axial slices; 3 × 3 × 3 mm). Head motion was 
restricted using padding that surrounded the head. 
Visual stimuli were displayed on a 24-inch MRI safe 
screen (Cambridge Research Systems) and viewed 
through a mirror attached to the head coil. Participants 
responded using an MR compatible two-button 
response pad (VPixx Technologies). Preprocessing and 
analysis of fMRI data were performed using SPM12 
(www.fil.ion.ucl.ac.uk/spm). The images were first 
corrected for differences in slice acquisition timing by 
resampling slices in time to match the first slice. Next, 
images were corrected for motion by realigning them to 
the start of the session using a rigid transformation. 
Realigned images were then normalized to Montreal 
Neurological Institute (MNI) stereotaxic space. We 
opted to not smooth our images and instead preserve as 
much voxel-unique information as possible because our 
subsequent analyses focused on individual voxel-level 
comparisons between conditions. 

Behavioral Analyses 
 In our earlier experiments, we showed that 
participants’ reaction times increased commensurately 
with an increase in simulation length, suggesting that 
they were engaging in a simulation of the ball’s 
trajectory. Participants’ accuracy on the task, however, 
was unaffected by simulation length. Further, we 
showed that participants’ reaction times were greater 
and accuracy was lower on high simulation uncertainty 
boards relative to low simulation uncertainty boards. 

 
 

Figure 2: Board Designations for Behavioral 
Analyses. (A) An example of a board on which the 
ball only hit two planks. Such boards were classified 
as having a short simulation length. (B) An example 
of a board on which the ball hit four planks. Such 
boards were classified as having a long simulation 
length. (C) An example of a board where slightly 
jittering the position of each plank (four jittered 
examples are shown to the right) had a minimal 
impact on the ball’s final position. Such boards were 
classified as having a low simulation uncertainty. (D) 
An example of a board where slightly jittering the 
position of each plank (four jittered examples are 
shown to the right) greatly impacted the ball’s final 
position.  Such boards were classified as having a 
high simulation uncertainty. 
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(Ahuja & Sheinberg, 2019). Here, we sought to replicate 
these effects from our past experiments to verify that 
participants’ behavior on the task matched what we 
have previously presented as evidence in favor of 
simulation. To that end, we assessed participants’ 
reaction times and accuracy on the Simulation variant of 
the task as a function of simulation length and 
uncertainty. 

General Linear Modeling 
 To account for neural activity of interest, we 
modeled our hypothesized BOLD response during the 
pre-trial period of each variant using a boxcar regressor 
that spanned the period from stimulus onset till 
participant response. Because we used a variable 
duration boxcar model that reflected participants’ 
reaction times, we were able to appropriately account 
for the shape of the observed BOLD signal on a trial-by-
trial basis, even though each trial lasted for a slightly 
different amount of time (Grinband et al., 2006; Yarkoni 
et al., 2009). We modeled the first two trials of each run 

as nuisance regressors to account for potential noise 
associated with block initiation and changes in variant 
identity. Additional nuisance regressors included trials 
with outlier reaction times, six motion estimates 
(translation and rotation), and run identity. These were 
combined with the HRF-convolved task regressors in a 
design matrix for the entire session. Finally, we used 
general linear modeling to fit our regressors of interest 
to the observed BOLD signal and derived beta and t-
statistic values by estimating a linear contrast for our 
task variants relative to an implicit baseline. This analysis 
was carried out for each of the twelve participants. 

Representational Similarity and Searchlight Analysis 
 Having derived activity estimates for all variants 
across all participants, we carried out Representational 
Similarity Analysis (RSA). In RSA, an activity pattern 
across a set of voxels for a given condition is treated as 
the “representation” of that condition in the brain 
(Kriegeskorte et al., 2008). Representations for various 
conditions can then be compared to one another to 

 
 

Figure 3: fMRI Analysis Pipeline. (A) A schematic of the motion localizer task. The display alternated between 
blocks of moving and static dots, flanked by periods of fixation. (B) A hypothetical activation map of motion-
sensitive voxels derived from a Motion > Static localizer contrast, plotted as a 3D point cloud to demonstrate 
ROI selection. (C) An example participant’s t-values in the ROI from (B) for each of the three task conditions, 
contrasted to baseline. Based on these t-maps, we assessed whether the voxel-wise representation in the 
Simulation condition was more similar to the Perception condition (S-P) or the Control condition (S-C). (D) A line 
graph showing an example comparison of S-P and S-C similarities. The participant shown in (C) is highlighted in 
color in (D), and the grey lines represent a hypothetical group effect if the analysis were repeated for all 12 
participants. 
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calculate the degree of similarity between them using a 
metric such as the Euclidean Distance or Spearman 
correlation (Nili et al., 2014). In the present study, we 
used the voxel-wise t-statistics derived for each 
condition (contrasted against baseline) as the activity 
estimates because they are univariately noise-
normalized and have been shown to be more reliable 
than beta values for RSA (Walther et al., 2015). For the 
similarity metric, we opted to use a Spearman 
correlation. Example t-maps from one participant in the 
Simulation > Baseline, Perception > Baseline, and 
Control > Baseline contrasts are shown in a motion-
sensitive ROI in Figure 3C. We calculated the degree of 
similarity between the Simulation and Perception 
conditions (S-P), as well as the Simulation and Control 
conditions (S-C) for each participant. We then directly 
compared the observed S-P and S-C similarities to one 
another (Figure 3D).  To reiterate, we hypothesized that 
if the process of simulation was capable of evoking 
sensory representations, then the S-P similarity would 
be greater than the S-C similarity in motion-sensitive 
areas of the brain. 
 We also repeated the aforementioned analyses using 
a searchlight approach. We did this to ensure that any 
effects that might be observed in the motion-sensitive 
ROI were in fact specific to those voxels. In a typical 
searchlight analysis, a cube of voxels is tiled across every 
possible location in the brain to form several mini-ROIs 
which can then be analyzed. In the present study, we 

tiled a 3x3x3 voxel cube over the entire brain for each 
subject and calculated the representational similarity 
between conditions at each location. Next, we assessed 
which loci exhibited a greater S-P similarity compared to 
S-C similarity in all twelve of our subjects. This approach 
allowed us to stringently safeguard against the inflated 
risk of false positives as well as the potential inter-
subject variability that comes with doing a searchlight 
analysis (Etzel, Zacks, & Braver, 2013). Finally, we 
analyzed the brain regions revealed by our searchlight 
analysis to evaluate whether our effect of interest was 
indeed specific to these motion-sensitive regions of 
interest.   

Results 

Behavioral Results 
 Figure 4A shows participants’ performance on the 
task across the three variants. Participants were 
generally very good at all three task variants and 
performed far better than chance, which was defined as 
50% correct (Simulation: 89.8%, [t11 = 39.745, p < 0.001]; 
Perception: 99.6% [t11 = 199.23, p < 0.001]; Control: 
99.4% [t11 = 155.45, p < 0.001]). Subjects’ reaction times 
in the three variants were significantly different from 
one another as assessed by a repeated measures 
analysis of variance (rmANOVA) followed by post-hoc 
pairwise t-tests with Holm-Bonferroni correction for 
multiple comparisons (F1,11 = 81.85, p < 0.001; 

 
 

Figure 4: Behavioral Results. (A) Participants’ mean task accuracy across the three variants of interest. 
Participants were extremely good at all three variants. (B) Participants’ mean reaction times as a function of 
simulation length and uncertainty. We found that simulation length and simulation uncertainty affected 
participants’ reaction times on the task. (C) Participants’ average accuracy on the task as a function of simulation 
length and uncertainty. We found that simulation uncertainty affected participants’ reaction times, whereas 
simulation length did not. Both of these behavioral effects were previously reported in Ahuja & Sheinberg, 2019. 
Error bars in all figures represent the standard error of the mean performance for the twelve subjects. 
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Simulation v Control: p < 0.001; Simulation v Perception: 
p < 0.05; Perception v Control: p < 0.001).   
 Previously, we showed that people perform the ball 
fall task via simulation by relating their reaction times 
and accuracy to two simulation-based metrics – length 
and uncertainty (Ahuja & Sheinberg, 2019). Specifically, 
we showed that as simulation length increased, so did 
participants’ reaction times. We also showed that as 
simulation uncertainty increased, participants’ reaction 
times increased, and their accuracy on the task 
decreased. To ensure that the participants in this study 
were also engaging in simulation, we repeated this same 
behavioral analysis on trials from the Simulation variant. 
Figure 4B shows participants’ average reaction times as 
a function of simulation length and uncertainty. A two-
way repeated measures analysis of variance (rmANOVA) 
revealed a main effect of both simulation length (F1,11 = 
6.2, p < 0.05) and simulation uncertainty (F1,11 = 51.22, p 
< 0.001). Figure 4C shows participants’ average accuracy 
on the task as a function of simulation length and 
uncertainty. A two-way rmANOVA revealed a main 
effect of simulation uncertainty (F1,11 = 93.78, p < 0.001) 
but not length (F1,11 = 0.04, p = 0.84). We were thus able 
to recreate the observed effects from our previous work 
and directly relate participants’ behavior to simulation-
based metrics, thereby verifying that participants were 

indeed engaging in a simulation of the ball’s trajectory 
during the Simulation variant. 

Localizer Activity 
 To delineate motion-sensitive voxels that could serve 
as an ROI for the subsequent analyses, we compared 
differential neural responses to passive viewing of 
moving dots versus stationary dots during the localizer 
task. Several brain regions, such as area MT and the 
Posterior Parietal Cortex (PPC) were found to be more 
active during the Motion condition relative to the Static 
condition in a second-level Motion > Static contrast 
(Figure 5). Both area MT and PPC have repeatedly been 
highlighted in past research for their responsivity to 
moving stimuli, and the same effect is replicated here 
(Bremmer et al., 2001).  Other early visual and premotor 
areas that have previously been reported to be activated 
by motion localizer tasks were also observed (Sunaert et 
al., 1999). Overall, our analysis was successful at 
identifying motion-sensitive voxels in brain regions that 
are well-known to be specialized for motion perception. 
To ensure that the ROI for our subsequent analyses 
would involve minimal experimenter bias, we used all 
voxels from the Motion > Static group level contrast 
(family-wise error [FWE] cluster corrected for multiple 
comparisons at p < 0.05, extent threshold 187) as our 

Table 1: MNI activation coordinates for the Motion > Static contrast from the motion localizer task 

Functional Designation Anatomical Designation BA Peak x Peak y Peak z Peak t-value 

Right V1 Calcarine fissure 17 16 -92 2 4.95 
Left V2/V3 Left middle occipital gyrus 18 -22 -96 10 8.16 

Right V2/V3 Right middle occipital gyrus 18 26 -84 16 5.65 
Left V5/MT+ Left middle temporal gyrus 19 -40 -66 6 8.1 

Right V5/MT+ Right middle temporal gyrus 19 40 -70 10 5.7 
Left superior PPC Left superior parietal gyrus 7 -32 -46 60 5.79 

Right superior PPC Right inferior parietal gyrus 7 30 -48 50 4.32 
Left premotor cortex Left superior frontal gyrus 6 -22 -6 60 5.03 

 

 
 

Figure 5: Localizer Results. Activation maps for a second level Motion > Static contrast at a p < 0.05 threshold 
(family-wise error [FWE] cluster corrected for multiple comparisons, extent threshold 187). We observed several 
canonically motion sensitive regions such as area MT and PPC in this contrast. These voxels were used to define 
ROIS for subsequent RSA analyses. 

V2/V3
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functional ROI. The complete set of activation 
coordinates for this contrast can be found in Table 1. 

Task Activity and RSA 
 Having defined an unbiased functional ROI for 
motion-responsive voxels in the brain, we turned to a 
representational similarity analysis of activity estimates 
in these voxels from the pre-response period of the 
three task variants. Specifically, we compared the 
degree of representational similarity between the 
Simulation and Perception conditions (S-P) as well as the 
Simulation and Control conditions (S-C). We then 
compared these S-P and S-C similarity estimates to one 
another for each participant. There were two potential 
outcomes of interest, each with a different 
interpretation. The first possibility was that the 
Simulation and Control conditions would be more 
similar to one another in their representations than the 
Simulation and Perception conditions. Given the 
sensorimotor properties of each variant and the motion-
sensitive ROI, this would not at all be surprising, and 
might even be expected. After all, the Simulation and 
Control conditions were both comprised of entirely 
static displays, and participants made self-directed  
saccades in each, whereas the Perception condition 
contained a moving ball in it, and participants largely 

engaged in guided smooth pursuit of its trajectory. A 
greater S-C similarity relative to S-P would likely suggest 
that these voxels faithfully represent the sensory 
experience of each condition and remain unmodulated  
by any higher-order cognitive processes or task 
demands.  
 The other possibility was that the S-P similarity would 
be greater than the S-C similarity. If this were the case, 
it would suggest that despite stimulus-level differences, 
the cognitive processing engaged in the Simulation 
condition, i.e., a simulation of the ball’s trajectory, can 
modulate the activity of motion-sensitive voxels to 
resemble how these voxels behave when perceiving the 
ball’s trajectory. In other words, even though the ball’s 
motion and physical interactions are not being literally 
perceived, the process of simulating them gives rise to a 
corresponding sensory representation that is akin to a 
weak form of perception. In the present study, we 
predicted that this latter possibility would be the case. 
 A comparison of the observed S-P and S-C similarity 
estimates is shown in Figure 6A. The S-P 
representational similarity was greater than the S-C 
representational similarity for each of our twelve 
participants. A paired t-test revealed a significant 
difference between the S-P and S-C similarities (t11 = 

 
 

Figure 6: RSA Results. (A) Pairwise comparisons of S-P and S-C representational similarities in a motion-sensitive 
ROI. Each pair of points represents one participant. We found that for all participants, the representational 
similarity between the Simulation and Perception conditions was greater (evidenced by a higher Spearman 
correlation) than the representational similarity between the Simulation and Control conditions (B) The same 
analysis as in (A), repeated for an MT ROI. (C) The same analysis as in (A), repeated for a PPC ROI.  
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5.75, p < 0.001). This finding reflects the second of the 
two possibilities mentioned earlier and provides 
evidence for our hypothesis that an internal simulation 
of physical interactions can give rise to sensory activity 
in visual areas that look as if one were indeed perceiving 
these interactions. Next, we wanted to check whether 
the effect we observed in our multi-region motion-
sensitive ROI would also be present in smaller sub-
regions within that ROI. We thus repeated the same RSA 
in two sub-regions – area MT and PPC – using the 
bilateral activation clusters outlined in Table 1 as the 
ROIs. A comparison of the observed S-P and S-C 
similarity estimates in these ROIs is shown in Figures 6B 
and 6C. We found that both in Area MT (t11 = 7.75, p < 
0.001) and PPC (t11 = 4.59, p < 0.001), the S-P 
representational similarity was greater than the S-C 
representational similarity. This finding shows that the 
effect shown in Figure 6A is not simply being driven by a 

small subset of voxels, but that it is present across 
several motion-responsive functional areas. 
 We further wanted to establish that the observed 
increase in representational similarity between the 
Simulation and Perception conditions was not simply a 
distributed property found all over the entire brain, but 
that it was specific to our motion-sensitive ROI. We 
accomplished this by calculating S-P and S-C similarity 
estimates at every possible 3X3X3 voxel locus in the 
brain using searchlight analysis (for more details, see 
Methods). We found that the voxel loci that consistently 
showed a greater S-P than S-C representational 
similarity fell largely within the same brain regions that 
we had already independently isolated using our motion 
localizer task. These voxel clusters are shown in Figure 7. 
Table 2 shows a comparison of regions highlighted by 
the searchlight analysis and the motion localizer. Rows 
shaded in green represent regions that were identified 
by both, rows shaded in yellow represent regions that 
were unilateral in one but bilateral in the other, and 
rows shaded in blue represent regions that were 
highlighted by the searchlight only. This result 
demonstrates that the effect we observed in the 
motion-sensitive ROIs is indeed quite specific to those 
voxels. 

Discussion 

 Recent studies suggest that simulation is a key 
cognitive faculty employed to make physics predictions 
(Ahuja & Sheinberg, 2019; Fischer et al., 2016; 
Rajalingham et al., 2021). While behavioral and 
computational evidence supporting this idea is 
compelling, little is known about the neural mechanisms 
that underlie such simulations. We theorized that a 
simulation of a series of events could evoke activity in 
the brain, akin to how the brain might respond were it 
to visually perceive the same events. As such, we liken 
simulation to mental imagery, except with a dynamic 

Table 2: Common ROIs highlighted by the motion 
localizer and the searchlight analysis 

Localizer ROIs BA Searchlight ROIs 

Right V1 17 Right V1 
Left V2/V3 18 Left V2/V3 

Right V2/V3 18 Right V2/V3 
Left V5/MT+ 19 Left V5/MT+ 

Right V5/MT+ 19  
Left superior PPC 7 Left superior PPC 

Right superior PPC 7 Right superior PPC 
Left premotor 

cortex 6 Left premotor 
cortex 

  Right premotor 
cortex 

 40 Left inferior PPC 
 39/40 Right inferior PPC 

 1 
Right primary 

somatosensory 
cortex 

 

 
 

Figure 7: Searchlight Results. Clusters of voxels that were highlighted by a searchlight analysis for consistently 
exhibiting the main effect from Figure 5. The searchlight largely revealed the same regions as we had previously 
isolated using the motion localizer task (slices here are the same as in Figure 4). 
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internal representation of the external world as opposed 
to a static one. 
 In this study, we asked human participants to 
perform a task in which they had to ascertain the path 
of a falling ball while in an MRI scanner. We have 
previously shown (and behaviorally replicated in this 
study) that participants solve this task via simulation. We 
found that when participants engaged in a simulation of 
the ball’s trajectory, motion-sensitive regions of the 
brain were active, even though no motion was being 
perceived. Further, this activity bore a high degree of 
representational similarity to conditions in which 
participants actually witnessed the ball fall. This finding 
thus directly complements previous research on mental 
imagery and rotation, and extends the idea of self-
generated sensory representations to dynamic physics 
simulations (Kaas et al., 2010; Shelton & Pippitt, 2006). 
  It is worth noting that the opposite perspective 
has been argued in the past (i.e., that simulations are 
explicitly non-imagery based) (Hegarty, 2004). This 
assertion has been based on a few findings. First, past 
research has shown that when individuals simulate 
complex mechanical systems (for example, a series of 
interconnected pulleys), they tend to do so in a 
piecemeal fashion (Hegarty, 1992). This finding has been 
used to argue that simulation must not involve holistic 
visual representations, since if that were the case, the 
entire scene could be inspected at once and the 
outcome could be determined without needing to 
sequentially simulate individual pieces. We would raise 
the counterpoint that scenes are in fact rarely perceived 
with uniform salience across one’s visual field, and that 
complex stimuli are often parsed in a piecemeal fashion 
via a shifting spotlight of attention (Buschman & Miller, 
2010). Given this fact, it is reasonable that a simulated 
visual representation would also be inspected step-by-
step depending on the progression of the corresponding 
physics simulation. Nonetheless, interesting questions 
persist about the role of attention in simulation that 
would be fruitful to explore in future studies. In the 
present study, the trajectory of the ball and the various 
plank interactions were inherently sequential in nature, 
which circumvented this issue entirely. 
 The second argument against the involvement of 
visual areas in simulation has to do with reported 
discrepancies between task performance when 
participants have their eyes open versus when they have 
them closed. For instance, it has been shown that when 
participants are asked to close their eyes and tilt a glass 
until an imagined amount of water has poured out, they 
tend to misestimate the exact angle of their own tilt and 
must usually adjust the tilt angle upon opening their 
eyes (Schwartz & Black, 1999). This has been interpreted 

to mean that participants must not have an accurate 
visual representation of the glass while performing the 
task with their eyes closed – if they did, they would not 
need to make adjustments when reopening their eyes. 
However, there are a few other factors involved in this 
scenario that must be considered. First, since this 
specific experiment requires participants to directly 
interact with the object they are simulating, it is entirely 
possible that they prioritize motor and proprioceptive 
information over a visual representation. Just as 
simulation is not the only strategy one may employ to 
make physics predictions, it may indeed be that self-
generated visual representations only accompany some 
types of simulations but not others, depending on the 
task demands and context. Further, it is important to 
keep in mind that simulated visual representations are 
unlikely to be perfectly isomorphic and are instead 
better thought of as useful but crude approximations. As 
such, it is entirely possible that even if individuals had 
visually represented the glass in this study, that they 
would be inclined to make minor refinements when 
allowed to open their eyes.  
 Our goal in the present study was to simply assess 
whether visual areas have any involvement at all in the 
simulation process. As such, our design doesn’t lend 
itself to any strong causal conclusions about the 
contributions of individual brain regions. While this is a 
limitation of the study, we can still look at the network 
of regions in which we observed relevant activity for 
important clues. For instance, we showed that our main 
similarity effect was present both in area MT, which is 
known mostly for its role in perception of motion, as well 
as in PPC, which has been implicated not only in motion 
perception, but also in spatial reasoning and attentional 
allocation (Born & Bradley, 2005; Wendelken, 2015). We 
therefore theorize that PPC might contain the neural 
apparatus for representing a mental model of the 
physics within the task, whereas area MT may house the 
depictive elements of reasoning through it. The two 
areas may then cooperate as part of a larger network to 
successfully execute a physics simulation. It is important 
to note, however, that proponents of mental model 
theory and mental imagery theory have sought to 
distinguish the two as separate cognitive frameworks 
(Sima, Schultheis, & Barkowsky, 2013). For instance, 
Knauff and Johnson-Laird have argued that mental 
models are primarily propositional (Knauff & Johnson-
Laird, 2002). Kosslyn, on the other hand, places less 
emphasis on the mental model, and has argued that 
mental visual depictions are in fact the key piece of the 
puzzle for reasoning about complicated problems 
(Kosslyn, Thompson, & Ganis, 2006). We do not see the 
mental model theory and mental imagery theory as 
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necessarily distinct from one another. In the case of 
something as complex as a physics simulation, it seems 
entirely possible that the two theories can converge and 
that the relevant properties of a scene may be 
represented in a mental model which is then run with 
the aid of self-generated visual representations. A 
theoretical framework that unifies mental models with 
mental imagery is supported by the neural findings we 
report in this study. Additional research that specifically 
probes these theories is necessary to definitively assign 
causal roles to the various brain regions that likely 
contribute to the execution of physics simulations.  
 An important aspect of simulation to consider is the 
role of eye movements. We felt that it was important to 
let participants freely view the scene as they attempted 
to ascertain the ball’s trajectory to ensure that their 
approach would remain as naturalistic and ecologically 
valid as possible. To ensure that the effect of eye 
movements was properly accounted for in our 
comparisons, we also permitted free viewing of the 
scene in the Control condition. The Simulation and 
Control conditions were thus similar to one another at a 
sensorimotor level – both conditions contained entirely 
static stimuli as well as self-directed saccades. 
Conversely, the Perception condition, contained a 
moving stimulus that participants were instructed to 
smoothly pursue, making it different from the other two 
conditions. Despite this fact, the Simulation condition 
bore a closer neural resemblance to the Perception 
condition. This finding indicates that the encoded 
representation in motion-sensitive brain areas is not 
merely about the eye movements taking place, but 
rather about the cognitive process that they represent 
(in this case, simulation). This idea is supported by the 
theory of deictic coding, which states that eye 
movements serve to orient and ground cognitive 
phenomena in the real world (Ballard et al., 1997). 
Finally, the effect that we highlight here was present 
even when we constrained the ROI to areas such as area 
MT which has been shown to be unaffected by saccade-
induced retinal motion (Russ et al., 2016). 
 An alternate potential explanation for the finding we 
report here is that it is largely driven by the homogenous 
plank orientations that distinguished the Control variant 
from the Simulation and Perception variants. This 
possibility is plausible because regions such as area MT 
have been shown to contain orientation-selective 
neurons (Albright, 1984). That said, we observed the 
similarity effect even in a multi-areal motion-sensitive 
ROI as shown in Figure 6A. If it were the case that 
orientation-sensitive MT voxels were exclusively 
representing the similarity between conditions, it is 
unlikely that the effect would be present in the large, 

multi-area ROI. Next, when breaking the larger ROI into 
its component parts, we also examined anatomical 
designations outside of just area MT, such as area PPC 
(Figure 6C). Here too, we clearly observed the effect, 
even though we are not aware of any literature on PPC 
neurons responding selectively to oriented bars. The 
searchlight analysis also failed to raise other brain 
regions that would lend credence to the orientation 
hypothesis. Instead, we found that the effect is almost 
exclusively present in areas highlighted by the motion 
localizer. Taken together, we believe our findings make 
the orientation hypothesis unlikely, and that our results 
are driven by activity representing real and imagined 
motion. 
 A final topic worth discussing in a discussion about 
simulation is the role of experience and familiarity.  
While the idea of internal visual playback of mental 
models in the brain is certainly exciting, it also seems 
likely that implementing simulations in this way would 
be computationally costly. Intricate and vivid 
simulations might be useful in some contexts (especially 
ones that are novel and that permit ample decision 
time), but they may not always be the optimal approach. 
For instance, following extensive experience with a 
certain type of problem, one is likely able to form mental 
shortcuts which in turn allow for quick, approximate 
judgements. This fact has been shown to be true of chess 
players – novices tend to engage in “look ahead” 
strategies to plan out their moves, whereas 
grandmasters can make rapid but highly effective moves 
with only a momentary glance at the board (Calderwood 
et al., 1988; Gobet & Simon, 1996; Holding & Reynolds, 
1982). Given this fact, it is possible that participants with 
extensive experience on the ball fall task may not 
necessarily simulate the ball’s trajectory. In such a 
scenario, subjects’ behavior on the task would likely shift 
such that it would no longer be well-explained by 
simulation-based metrics. This idea is supported by the 
fact that convolutional neural networks that are trained 
to solve the ball fall task make very different errors than 
human participants do (Ahuja & Sheinberg, 2019). In 
regard to neural activity, we would hypothesize that 
motion-sensitive regions would no longer represent 
aspects of the ball’s motion, and that activity in these 
areas would likely more closely resemble what we see in 
the Control condition. However, more research on this 
question is warranted before any conclusions can be 
drawn about whether or not visual representations play 
a role in facilitating non-simulation based prediction 
methods. 
 To conclude, we have presented evidence supporting 
the idea that when simulating the trajectory of a falling 
ball, motion-sensitive areas of the brain respond as if the 
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ball’s trajectory were being perceived. This effect is 
specific to a motion-sensitive ROI and emerges despite 
differences in oculomotor dynamics during simulation 
and perception of the ball’s trajectory. These findings 
suggest that physics simulations evoke observable visual 
representations. Future research that tackles this 
question using more causal methods (such as 
transcranial magnetic stimulation) will be key in further 
elucidating the exact role of vision in physics 
simulations.  
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