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24 Abstract:

25 Acacia senegal is a priority and important C3 tree species in drylands of Sudan and across the 

26 gum belt. Investigation of its seedlings response to elevated carbon dioxide (eCO2) is important 

27 as atmospheric ([CO2]) has increased and predicted to continue to rise. Many studies showed that 

28 eCO2 causes increased photosynthesis in plants, which leads to greater production of 

29 carbohydrates and biomass, and increased soil organic matter and carbon content. This study 

30 investigated the effects of eCO2 on A. senegal seedlings grown in sand and silt soils under 

31 irrigation intervals of every day and every two days. Seven days old seedlings were assigned to 

32 the treatments in Split - spilt plot design for 4 weeks. The main plot is eCO2 (600-800 ppm) and 

33 ambient (≤400 ppm) under Free Air CO2 Enrichment (FACE) system. Subplots are irrigation 

34 intervals and soil types. Seedling height and number of leaves were measured weekly, and 

35 seedlings were harvested after 4 weeks where growth parameters and soil properties were 

36 measured. The eCO2 showed no effect on the measured parameters except the significant 

37 increase in tap-root length. However, the irrigation every day showed significant increase than 

38 every two days in seedling's height, number of leaves, root length and seedling's dry weight but 

39 not seedling's and soil C% & N%. Soil treatment showed effects on stem height, leaf number, 

40 seedling's dry weight, leaves and root N% and soil C% but not root length, seedling C% and soil 

41 N%. The results indicate the importance of soil moisture, physical and chemical properties that 

42 reflects adaptation of the species to its dry land environment.
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47 1. INTRODUCTION

48 Atmospheric carbon dioxide (CO2) emission and concentration has risen since the start of the 

49 industrial revolution [1] and continued to rise [2-4]. Trees and plants may respond to rising CO2 

50 as elevated atmospheric (eCO2) acts to increase photosynthetic activity [5], plant growth and 

51 plant biomass production of many plant species [6,7]. Drylands vegetation include C3 and C4 

52 trees, shrubs and grasses [8]. In some of eCO2 experiments, C4 plants showed little or no 

53 enhancement of growth (dry matter production) in contrast, C3 species showed 3 times of that 

54 experienced by C4 plants in stimulation of photosynthesis by eCO2 [9]. 

55 The acacias are important C3 dryland species [10]. A. senegal is a multi-purpose tree producing 

56 gum Arabic a high-value export commodity from Sudan and some African countries, and 

57 important component of traditional dryland agroforestry resilience system and source of 

58 livelihoods in the Sudan [11]. The tree also provides animal fodder, multiple timber products, 

59 intercropping, firewood, food and medicines [12,13]. Furthermore, it is one of the most 

60 important sub-Saharan African trees inhabiting Savanna systems that are under threat of ongoing 

61 anthropogenic and climate-mediated degradation and that have led to substantial losses of natural 

62 habitats [14].

63

64 Seedlings are most responsive to eCO2 where the early growth enhancement under eCO2 

65 accelerates ontogeny and pattern of growth [15,16]. The effect of eCO2 on acacias as important 

66 components of the dryland natural plant communities’ needs to be studied. Soil types and soil 

67 moisture content are important determinants to A. senegal response [17]. The methodological 

68 and experimental developments such as the Free-Air Carbon Enrichment (FACE) are effective 
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69 way to quantify the effects of eCO2 on trees in field settings [18,19]. The FACE designs provide 

70 means  for studies without any direct perturbation of microclimate [20]. Therefore, the objective 

71 of the paper is to experimentally examine the responses of A. senegal seedlings to eCO2 under 

72 varying water and soil conditions using the FACE design. 

73

74  2. MATERIALS AND METHODS

75  2.1. Study site & settings:

76 The experiment was conducted in the nursery as Split-split plot design with the CO2 treatments 

77 as main plots, and the water interval and soil types as subplots. The nursery of the Faculty of 

78 Forestry, University of Khartoum at Shambat, Khartoum North-Sudan (15° 40' 5" North, 32 32' 

79 1" East). Shambat has a subtropical desert / low-latitude arid hot climate. The experiment was 

80 conducted using FACE system for eCO2 in the range of 600 to 800 and ambient treatments. The 

81 watering intervals were every day and every two days, while the soil treatments are sand and silt.

82 Bulk seeds collected from El-Damazeen forests was obtained from the National Tree Seed 

83 Center and germinated in  polymer bags of 10×20cm filled with silt or sand soils) and irrigated 

84 daily. After one week 60 seedlings per soil type were selected with minimum morphological 

85 variation (i.e. almost same size & branching pattern) among them. They were then assigned 

86 randomly in the experimental plots. The plot was divided into 4 subplots of five seedlings. Sixty 

87 seedlings of equal size from each soil type were assigned randomly to irrigation treatments. 

88 Three pairs of 1m×2m plots were prepared and each one assigned randomly for the eCO2 and the 

89 other for the ambient CO2 treatments. Then each plot was divided into two parts of 1×1m, and 

90 assigned randomly for the irrigation treatments every day and every two days.  Then 5 seedlings 
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91 from those raised in silt soil and 5 ones from sandy soil were assigned randomly to each of the 

92 watering treatments (total of 120 seedlings, 60 silt and 60 sand).  

93

94 2.2. Measured variables:

95 Seedlings' height was measured and new leaves were counted weekly. After four weeks the 

96 plants were harvested, length of the tap root was measured and dry weight of the leaves, stems 

97 and roots was weighed for each plan separately. Seedling's C% and N%  were determined using 

98 CHNS-O Analyzer and applying Standard Test Method (ASTM International, model D 5291-02. 

99 2002, USA) for instrumental determination of carbon and nitrogen of plant.

100 Soil C%  measurement is based on the oxidation of organic C with dichromate in acid medium 

101 [21] and soil N% was measured by using Bremner's method [22].

102

103 2.3. Data analysis:

104 The Analysis of Variance (ANOVA) procedures and Duncan's Multiple Range Test to separate 

105 means of the same factor at significance were carried out using SAS. The model is Split-split 

106 plot with three blocks, CO2 (main plot), watering interval and soil type within the watering 

107 interval. The model used in the experiment was:

108 Y (dependent variable) = B (block effect) + C (CO2 concentration) + B*C + W (irrigation 

109 interval) + B*C*W + S (soil type) + C*S + W*S + C*W*S.  

110

111

112

113
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114 3. RESULTS

115 3.1. Effects of eCO2 concentration on seedlings' growth parameters:

116 The eCO2 concentration had no effect on seedling's height, number of leaves per seedling after 1 

117 week, 2 weeks, 3 weeks and 4 weeks from the start of the experiment. In addition to leaves, 

118 stem, root, total  dry weight,  C% and N% were not affected (Table 1). Similarly, eCO2 had not 

119 significantly affected soil media C%, N% and C/N. While tap root length was significantly 

120 affected by CO2 elevation (P=0.002) as eCO2 had decreased  tap root length by 16% (P≤ 0.05; 

121 Table 1).

122 3.2. Effects of irrigation interval  on seedlings' growth parameters:

123 Irrigation interval had significant effect on seedling's height, leaf number and tap root length at 

124 the end of the first, second, third and fourth week (p≤ 0.050 -< 0.0001; Table 2).  Irrigation every 

125 day had resulted in increase in seedling's height by 42%, 36%, 37% and 46% by the end of first, 

126 second, third and fourth weeks, respectively. Also, It increased number of leaves per seedling at 

127 the end of each week (45, 40, 37 and 61% respectively). Similarly irrigation every day had 

128 increased tap root length by 24% at the end of fourth week (p≤ 0.05; Table 2).

129 Irrigation interval had affected leaves, stem, root and seedling weights (P ≤ 0.035-0.0001). 

130 Irrigation every day, as compared to irrigation every two days, had increased weight of leaves by 

131 43%, stem by 15%, root by 21% and seedling by15% (p≤ 0.05; Table 2).

132 Irrigation interval had not affected seedling's C%, N% and its compartments, soil C%, N% and 

133 soil C/N. Except root N% was affected (P=0.040) as irrigation every day had decreased root N 

134 by 6%. However, the daily irrigation was numerically lower C/N than two days irrigation but 

135 not significant (p≤ 0.05; Table 2).

136
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137 3.3. Effects of soil type  on seedlings' growth parameters:

138 Soil type showed significant effects on seedling's height (first, third and fourth week) and leaf 

139 number (second, third and fourth week) but not length of tap root (P=0.027-<0.0001; Table 3). 

140 The silt soil had increased seedling's height by 66% for the first week, by 29% for the third and 

141 by 31% for the fourth week. Also, silt soil had enhanced leaf number by 22% for the second, by 

142 26% for the third and by 33% for the fourth week (P≤ 0.05; Table 3). Silt soil gave longer root 

143 (9%) but not significant. 

144 Soil type had significant effects of leaves' dry weight (P <0.0001), stem (P=0.016) and seedling 

145 (P=0.0019) but it had slightly insignificant effects on root's dry weight (P=0.061). Consequently, 

146 silt soil had higher dry weights in leaves by 30%, stem by 15% and seeding by 24% (P≤ 0.05; 

147 Table 3).

148 Soil type had no effects on seedling's, leaves', stem's and root's C and N content. Similarly, soil 

149 N% and C/N were not affected by soil type, but soil C% was affected by soil type (P=0.003). 

150 However, the N% and C/N of silt were numerically higher than sand soil.

151

152 4. DISCUSSION

153 4.1. Effects of eCO2 concentration on  growth parameters:

154 The insignificancy of eCO2 on growth parameters (height, leaf number, root length, seedling dry 

155 weight and seedling C%, N%) is in line with many other literatures [23-25]. On the other hand, 

156 eCO2 is known to increase plant growth productivity and consequently has stimulated overall 

157 forests biomass growth [26-29]. Such discrepancy might be due to differences in genetic 

158 characteristics of the studied species, duration of studies, CO2 elevation (exposure) techniques, 

159 and sites microclimates. Our results can be explained as, less photosynthetic machinery that 
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160 made by N deficiency or other nutrients causing lower rates of photosynthesis resulted in no 

161 increasing in net primary productivity (NPP). 

162 4.2. Effects of eCO2 concentration on soil carbon and nitrogen content: 

163 The irresponsive of soil C%, N% and C/N to eCO2 is in agreement with various studies [30,31]. 

164 On the other hand, the results contrast the findings of  [32,33]. The difference of these results can 

165 be attributed to the adverse response through down regulation of photosynthesis when plants 

166 exposed to higher CO2 concentrations beyond the certain thresholds, or the rapid rate of CO2 

167 assimilation requires correspondingly other nutrients specially foliar N which is experienced to 

168 be declined under elevation CO2.

169

170 5. CONCLUSION: 

171 The irresponsive of most measured variables of A. senegal to eCO2 concentration and the high 

172 significant effects of water and soil factors can be attributed to the long time adaptation of the 

173 species in drylands of Sudan to water and to some extent soil type. Generally, the growth 

174 parameters of the A. senegal seedlings were more responsive to the environmentally limiting 

175 factors in its natural habitat, such as soil moisture content and soil chemical and physical 

176 properties. 

177 Nevertheless, our study was limited in a number of aspects including sample size, duration & 

178 design of the experiment. Further studies on incorporating some or all of these factors will give a 

179 better picture about responses of acacias to eCO2 in dryland settings.  

180 According to the results and general trends of this study, it is recommended that:

181 1- Water availability is the most important factor of eCO2 for seedling growth and hence water 

182 harvesting and management will play a key role in the context of elevation of CO2.
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183 3- In drylands where it characterized by low level of precipitation, planting seedling in silt soil is 

184 recommended for greatest growth and productivity.

185 4- More long-term experiments on A. senegal  are recommended to evaluate the effects of eCO2 

186 for long term periods as some measured variables seems to be affected by time (e.g. biomass).

187 5- Other interacted factors with CO2 like thermal stress and nutrient limitation should be 

188 investigated for better understanding of Acacias' response to CO2.

189 6- The responses of the most important C3 tree species in drylands Sudan like Acacia nilotica, 

190 Acacia seyal, ..etc to CO2 elevation need to be evaluated for long and short terms. 

191 7- FACE systems (are being constructed in the USA, and now widely used in other places in the 

192 world) can be used sufficiently to study effects of CO2 elevation on other trees and crops under 

193 natural conditions in Africa.

194 8- With regard to the net photosynthesis and stomatal responses it would be advantageous to 

195 monitor them under CO2 elevation to understand up-regulation or down-regulation of 

196 photosynthesis and to show A. senegal stomatal response to eCO2 and under what conditions this 

197 occurs. The responses of stomatal conductance and canopy leaf area to eCO2 are important 

198 specially in drylands to determine both the short and long-term risk of exposure to drought.  

199   
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321 TABLES

322 Table 1: Effects of CO2 concentration on seedling's height, number of leaves, root length, 

323 seedling's biomass weight and seedling and soil carbon & nitrogen contents after 4 weeks.

324

325 (1) Seedling growth/cm

eCO2 CO2 P value

1. Stem height: Week1 4.52 4.43 0.89

Week 2 5.89 5.25 0.25

Week 3 13.71 12.86 0.16

Week 4 16.52 15.86 0.30

2. Leaf number: Week1 6.65 7.74 0.23

Week 2 12.93 12.32 0.54

Week 3 19.38 18.57 0.59

Week 4 25.07 23.81 0.55

3. Root length 9.72a 11.62b 0.002

(2) Biomass weight/g 

1. Leaves dry weight 0.64 0.66 0.423

2. Stem dry weight 0.45 0.43 0.423

3. Root dry weight 9.00 8.65 0.607

4. Seedling dry weight 1.49 1.35 0.072

(3) C&N contents and ratio 

1. Seedlings C% 41 43 0.610
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326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

Leaves C% 33.6 42 0.346

Stem C% 44.5 45.9 0.816

Root C% 41.79 39.95 0.696

2. Seedlings N% 3.2 3.3 0.725

Leaves N% 4.57 4.47 0.056

Stem N% 2.4 2.3 0.378

Root N% 2.0 2.4 0.101

1. Soil C%. 0.48 0.58 0.255

2. Soil N% 0.14 0.16 0.457

3. Soil C/N 11.0 11.2 0.962
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370 Table 2: Effects of irrigation interval on seedling's height, number of leaves, root length, 

371 seedling's biomass weight and seedling & soil carbon and nitrogen contents after 4 weeks.

372

(1) Seedling growth/cm

1d irri. 2 d irri. P value

1. Stem height: Week1 5.24a 3.70b 0.050

Week 2 6.42a 4.72b 0.011

Week 3 15.34a 11.23b <0.0001

Week 4 19.20a 13.18b <0.0001

2. Leaf number: Week1 8.50a 5.88b 0.0157

Week 2 14.73a 10.52b 0.0022

Week 3 21.92a 16.04b 0.0042

Week 4 30.16a 18.72b 0.0005

3. Root length 11.83a 9.51b 0.0007

(2) Biomass weight/g 

1. Leaves dry weight 0.77a 0.54b <0.0001

2. Stem dry weight 0.47a 0.41b 0.029

3. Root dry weight 9.66a 7.99b 0.035

4. Seedling dry weight 0.47a 0.41b 0.029

(3) C&N contents and ratio 

1. Seedlings C% 43.2 41.6 0.466

Leaves C% 42 33 0.34
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373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

Stem C% 46.4 44 0.689

Root C% 39.13 42.61 0.466

2. Seedlings N% 3.4 3.2 0.461

Leaves N% 4.48 4.56 0.648

Stem N% 2.4 2.4 0.432

Root N% 2.0 a 2.12b 0.040

1. Soil C%. 0.56 0.50 0.483

2. Soil N% 0.18 0.12 0.112

3. Soil C/N 11.2 11.1 0.969
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418 Table 3: Effects of soil type on seedling's height, number of leaves, root length, seedling's 

419 biomass weight and seedling & soil carbon & nitrogen contents after 4 weeks.

420

(1) Seedling growth/cm

silt sand P value

1. Stem height: Week1 5.59a 3.36b 0.0113

Week 2 5.933 5.217 0.205

Week 3 14.95a 11.62b 0.0003

Week 4 18.35a 14.04b <0.0001

2. Leaf number: Week1 7.81 6.57 0.186

Week 2 13.90a 11.35b 0.027

Week 3 21.18a 16.77b 0.017

Week 4 27.90a 20.99b 0.009

3. Root length 11.14 10.20 0.06

(2) Biomass weight/g

1. Leaves dry weight 0.74a 0.57b <0.0001

2. Stem dry weight 0.47a 0.41b 0.016

3. Root dry weight 9.55 8.10 0.061

4. Seedling dry weight 1.57a 1.27b 0.0019

(3) C&N contents and ratio

1. Seedlings C% 42.8 42 0.722

Leaves C% 42 33.68 0.346
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421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

Stem C% 45.7 44.7 0.937

Root C% 40.31 41.43 0.813

2. Seedlings N% 3.4 3.2 0.505

Leaves N% 4.72a 4.32b 0.045

Stem N% 2.5 2.1 0.444

Root N% 2.5a 2.0b 0.0149

1. Soil C%. 0.69a 0.37b 0.003

2. Soil N% 0.17 0.13 0.217

3. Soil C/N 13.3 9.0 0.308
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