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Abstract  29 

1. Agent-based modeling (ABM) shows promise for animal movement studies. 30 

However, a robust, open-source, and spatially explicit ABM coding platform is 31 

currently lacking.  32 

2. We present abmR, an R package for conducting continental-scale ABM simulations 33 

across animal taxa. The package features two movement functions, each of which 34 

relies on the Ornstein-Uhlenbeck (OU) model. 35 

3. The theoretical background for abmR is discussed and the main functionalities are 36 

illustrated using two example populations. 37 

4. Potential future additions to this open-source package may include the ability to 38 

specify multiple environmental variables or to model interactions between agents. 39 

Additionally, updates may offer opportunities for disease ecology and integration with 40 

other R movement modeling packages. 41 
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1. INTRODUCTION  51 

Animal movement is a complex behavioral trait that affects the survival of populations and 52 

species across taxa (Berg, 1983; Dingle, 2014). Long- and short-distance movements can be 53 

predictable, allowing populations to take advantage of seasonal food resources (e.g., 54 

migration), or more opportunistic, such as in the case of dispersal behaviors aimed at 55 

avoiding predators or finding potential mates (Giuggioli & Bartumeus, 2010). Thus, wild 56 

animals make decisions often based on environmental cues that lead to movement patterns 57 

characteristic of different populations across the landscape (Nathan et al., 2008; Dodge et al., 58 

2014). However, obtaining a comprehensive understanding of large-scale animal movement 59 

behavior and population occurrence under climate change scenarios or habitat loss has proven 60 

to be a challenge (Araujo & Guisan, 2006). Moreover, while the research toolbox in 61 

movement ecology studies has seen a considerable expansion over the last two decades due to 62 

technological advancements of the tracking devices and molecular markers (Cushman and 63 

Lewis, 2010; Williams et al., 2020), the limitation of scaling up individual data to population-64 

level inferences is still a substantial obstacle (Hawkes, 2009; but see Holdo & Roach, 2013). 65 

A promising research approach that may overcome the limitations of wildlife movement 66 

studies hindered by small sample sizes is represented by computer simulations within an 67 

Agent-based Modeling (ABM) framework (Tang & Bennett, 2010; Bridge et al., 2017). 68 

The core principle of ABM is to simulate a set of entities, called agents, which are defined by 69 

intrinsic properties as well as behavioral rules governing their interactions with the 70 

environment (Grimm & Railsback, 2013). That is, agents are described by their inherent 71 

attributes while dynamically interacting with external conditions such as the co-occurrence of 72 

other agents and/or changing features of their environmental setting . Thus, ABM has found 73 

applications in many study areas including biology, disease risk, social sciences, and 74 
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economics (Polhill et al., 2008; Grimm & Railsback, 2013; Kilmek et al., 2015; Willem et al., 75 

2017) with the unifying goal of investigating and predicting the dynamics of complex 76 

systems (Grimm et al., 2005). In particular, wildlife studies have adopted the ABM approach 77 

to simulate population growth, reproduction, mortality rate, energy budget, and migration 78 

ecology, just to cite a few (Brown & Robinson, 2006; Lustig et al., 2019; Aurbach et al., 79 

2020; Goldstein et al., 2021). However, we currently lack a robust and spatially explicit ABM 80 

coding platform for the implementation of large-scale animal movement investigations (but 81 

see Thiele et al. (2012) or Chubaty and McIntire (2021)). Here we present a novel ABM 82 

framework in the R programming language for applications in animal behavior and 83 

movement ecology broadly defined.  84 

2. PACKAGE OVERVIEW  85 

abmR allows for both computation and visualization of agent movement trajectories through 86 

a set of behavioral rules based on environmental parameters. The two movement functions, 87 

moveSIM and energySIM, provide the central functionality of the package, allowing the 88 

user to run simulations using an Ornstein-Uhlenbeck movement model (Uhlenbeck & 89 

Ornstein, 1930; hereafter OU). Additional functions provide a suite of visualization and data 90 

summarization tools intended to reduce the effort needed to go from results to presentation-91 

ready figures and tables (Table 1). The package is currently available as a Github repository 92 

(https://github.com/bgoch5/abmR), but has been submitted to the Comprehensive R Archive 93 

Network (CRAN) to facilitate broader access and usage. 94 

 95 
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 96 

Table 1. Functions contained in the abmR package (v. 1.0.1). For more complete function 97 

descriptions, consult the abmR manual. 98 

Both movement functions used by abmR rely on the same OU model approach summarized 99 

below. Given current agent location (xt , yt), agent location at the subsequent timestep (xt+1, 100 

yt+1) is modeled according to the following equations: 101 

𝑥𝑡+1  =  𝑥𝑡 + 𝜎 ∗ 𝑍 + ɸ
𝑥

∗ (⍵𝑥 − 𝑥𝑡)   (1) 102 

𝑦𝑡+1 =  𝑦𝑡 + 𝜎 ∗ 𝑍 + ɸ
𝑦

∗ (⍵𝑦 − 𝑦𝑡)   (2)  103 

Here, 𝜎 is the randomness parameter from the Brownian motion process that serves as a 104 

multiplier on the error term Z, a single random number drawn from the Normal(0,1) 105 

distribution. In addition, ɸ
𝑥
and ɸ

𝑦
are movement motivation or attraction strength for the OU 106 

process in the longitude and latitude coordinates, respectively, while ⍵𝑥and ⍵𝑦are optimal x 107 

(longitude) and y (latitude) coordinates, respectively. It is assumed that the origin point (x1 , 108 

y1) is known. The OU model given in (1) and (2) performs similarly to a spring-coil. Greater 109 

distance from optimal coordinates ⍵𝑥and ⍵𝑦 acts like a compressed spring to propel distant 110 

agents towards ⍵𝑥and ⍵𝑦. On the other hand, agents closer to ⍵𝑥and ⍵𝑦 will travel a shorter 111 

distance on that timestep. However, the amount of movement also depends on ɸ
𝑥
and ɸ

𝑦
, 112 

because these motivations serve as a multiplier on (⍵𝑥 − 𝑥𝑡) and (⍵𝑦 − 𝑦𝑡), respectively 113 

(Eqns. 1 and 2). 114 
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 115 

Figure 1. The OU model given in (1) and (2) performs like a spring-coil: agents further from their 116 

target location experience higher attraction (and travel further), while agents closer to their destination 117 

experience lesser attraction (and travel less far). 118 

Both movement functions allow the user to optionally specify two morphological parameters. 119 

These morphological parameters are used to compute adjusted agent motivations ɸ
𝑥
and 120 

ɸ
𝑦
from user-specified motivations  ɸ

𝑥0
and ɸ

𝑦0
. 121 

ɸ
𝑥

 =  ɸ
𝑥0

 +  (±0.1 ∗ ((𝑎 − 𝜇𝑎)/𝑆𝑎  ))  + (±0.1 ∗ ((𝑏 − 𝜇𝑏)/𝑆𝑏)) (3) 122 

ɸ
𝑦

 =  ɸ
𝑦0

 +  (±0.1 ∗ ((𝑎 − 𝜇𝑎)/𝑆𝑎 ))  + (±0.1 ∗ ((𝑏 − 𝜇𝑏  )/𝑆𝑏)) (4) 123 

Here, 𝑎, 𝜇𝑎, and 𝑆𝑎 represent the observed value, population mean, and population standard 124 

deviation for the first morphological parameter, respectively, while 𝑏, 𝜇𝑏 , and 𝑆𝑏 represent 125 

analogous quantities for the second morphological parameter. The sign on the numerical 126 

constant 0.1 depends upon the hypothesized effect of each morphological parameter on agent 127 

movement. If increasing values of the parameter lead to increasing motivation, a positive sign 128 
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should be used, and if increasing values of the parameter lead to decreasing motivation, a 129 

negative sign should be used. For example, if one hypothesizes that increasing mass leads to 130 

less movement motivation, a negative sign should be used for this parameter. The biological 131 

basis for including morphological parameters as a multiplier on motivation relies on previous 132 

research showing that individual and population intrinsic morphological characteristics affect 133 

migration speed, distance, and timing in many species (Alerstam, 1993; Hedenström, 2008). 134 

While the two movement functions are distinct (see below), each follows the same basic two 135 

steps. The first, large-scale searching, is illustrated in Fig. 2. This step finds the ‘optimum’ 136 

location for each agent (⍵𝑥and ⍵𝑦coordinates from Eqns. (1) and (2)), that is, the geographic 137 

point with the optimal environmental raster value in a semicircular search region depending 138 

on movement orientation. For moveSIM,this optimal raster value is supplied directly, while 139 

for energySIM it is the average of the lower and upper bounds of a user-specified optimum 140 

range. The optimum value or range of values specified depends on the modeling scenario and 141 

the type of environmental raster that is used (e.g., vegetation, temperature, etc.).  142 

Agents will move toward the selected optimum location. However, if the attraction strength 143 

(ɸ
𝑥
and ɸ

𝑦
in Eqns. (1) and (2)) is less than 1, agents will have a ‘target’ location short of the 144 

optimal location. Agents will move towards this target location with some error, which is 145 

generated by sampling from the normal distribution and multiplying by 𝜎,  as specified by the 146 

user (In Fig. 2, 𝜎 is 1). Because the support of the normal distribution consists of all real 147 

numbers, large deviations from the ‘target’ point are possible. However, because the normal 148 

distribution has low density at the extreme tails, outcomes are most likely to fall within a 149 

certain rectangle of the target, as illustrated in Fig. 2. This first step corresponds to the OU 150 

model of Eqns. (1) and (2). 151 
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 152 

Figure 2. Illustration of large-scale searching specified by the OU model of Eqns. (1) and (2). Agents 153 

find an ‘optimum’ location within the semi-circular search region and then a ‘target’ location that lies 154 

on the line between the ‘current location’ and the ‘optimum’ location. If there is a tie between 155 

multiple potential ‘optimum’ cells, one is randomly selected from the list of tied cells to serve as the 156 

optimum. Random error is added by sampling from a Z ~ N(0, 1) distribution. Here, 𝜎 = 1 and ɸx = 157 

ɸy  < 1, where 𝜎 is the multiplier on the random error and ɸx  and ɸy are the motivations in the x and y 158 

directions, respectively. Bounding box represents the most probable samples from the N(0,1) 159 

distribution. 160 

The second step is small-scale searching. Here, agents select the ‘best’ of the 8 neighboring 161 

cells (queen’s case or Moore neighborhood) after performing step 1, discussed above and in 162 

Fig 2. Again, ‘best’ here means the cell with environmental raster value closest to the agent’s 163 

user-defined optimum range. These two steps are then repeated for each timestep until the 164 

agent dies or proceeds through all timesteps. For the moveSIM function, agent death occurs 165 

when agents fail to achieve suitable environmental raster values for more than a user-166 

specified number of consecutive timesteps. Here, what constitutes a ‘suitable’ cell is 167 

determined by the optimum value and an allowable deviation proportion, both also specified 168 
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by the user. For the energySIM function, agent death occurs when energy reaches zero. For 169 

both functions, users may choose to disable agent mortality. In the following subsections, we 170 

present the differences between moveSIM and energySIM functions and their underlying 171 

algorithms. 172 

2.1. Simulation function: moveSIM 173 

The function moveSIM runs an OU movement simulation based on environmental conditions 174 

provided by the user (e.g., raster), optionally including agent mortality and adjusted 175 

motivation according to user-specified morphological parameters. The function operates 176 

according to the following algorithm. Here, terms in italics are moveSIM function arguments 177 

(see Table 2). 178 

 179 
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 180 

Table 2. List of arguments used in moveSIM (M), energySIM (E), or as.species (S). T: True, 181 

F: False, SD: standard deviation. In text, these arguments are presented in italics. For a more complete 182 

list of argument descriptions, see the abmR documentation. 183 

The following algorithm applies when the argument direction is ‘N’, ‘S’, ‘E’, or ‘W’. For 184 

random movement (direction = ‘R’) agents simply select a random point from a circle of 185 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460374doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460374


11 
 

radius search_radius for each timestep (Step 4). Here, let env_rast(𝑥𝑡+1,𝑦𝑡+1) be the value of 186 

env_rast at the point(𝑥𝑡+1,𝑦𝑡+1). The core algorithm shown here assumes that env_rast 187 

contains no undefined (N/A) grid cells.  188 

1. If morphological parameters are specified, compute adjusted motivations 189 

ɸ
𝑥
and ɸ

𝑦
 according to (3) and (4), respectively. If not, set ɸ

𝑥
= ɸ

𝑥0
and ɸ

𝑦
=ɸ

𝑦0
, 190 

where ɸ
𝑥0

and ɸ
𝑦0

are mot_x and mot_y, respectively. 191 

2. Specify (x1, y1) using x and y contained in modeled_species. 192 

3. Set failures = 0 193 

4. For day t in 1:(days-1)  194 

a. Create a search area defined as a semicircle of radius search_radius 195 

facing direction and centered at (𝑥𝑡, 𝑦𝑡) 196 

b. Determine (⍵𝑥,⍵𝑦)as location within the search area with env_rast 197 

cell value closest to optimum. Draw a random sample (n = 1) in case of 198 

ties. 199 

i. If (dest_x, dest_x) in search area, set (⍵𝑥,⍵𝑦) = (dest_x, dest_y) 200 

c. Large scale searching: determine (𝑥𝑡+1,𝑦𝑡+1)0 according to (1) and (2).  201 

d. Small scale searching: determine (𝑥𝑡+1,𝑦𝑡+1) by selecting location 202 

within eight neighboring cells (queen’s case) of (𝑥𝑡+1,𝑦𝑡+1)0 with the 203 

cell value closest to optimum. Draw a random sample (n = 1) in case of 204 

ties. 205 

       Perform (e)-(f) if mortality = True. 206 

e. If observed env_rast(𝑥𝑡+1,𝑦𝑡+1) - optimum > optimum*fail_thresh, set 207 

failures = failures + 1. If not, set failures = 0. 208 
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f. If failures > n_failures, the agent dies. Set (𝑥𝑡+1,𝑦𝑡+1) through 209 

(𝑥𝑑𝑎𝑦𝑠,𝑦𝑑𝑎𝑦𝑠) as N/A and end loop. 210 

5. Return dataframe with days rows and 2 columns movement track data. 211 

6. Repeat (3)-(5) replicates times. 212 

2.2. Simulation function: energySIM 213 

The function energySIM builds on moveSIM by allowing for dynamic agent energy levels 214 

that are affected by the quality of environmental values achieved. These initial user-defined 215 

energy levels then serve as a driver of mortality and movement distance per timestep. It 216 

operates according to the following algorithm. Here, terms in italics are energySIM 217 

function arguments (see Table 2) or calculated variables (e.g., optimum, energy). 218 

The following algorithm applies when the argument direction is ‘N’, ‘S’, ‘E’, or ‘W’. For 219 

random movement (direction = ‘R’) agents simply select a random point from a circle of 220 

radius search_radius for each timestep (Step 5). Here, let env_rast(𝑥𝑡+1,𝑦𝑡+1) be the value of 221 

env_rast at the point(𝑥𝑡+1,𝑦𝑡+1). The core algorithm shown here assumes that env_rast 222 

contains no undefined (N/A) grid cells. 223 

1. If morphological parameters are specified, compute adjusted motivations 224 

ɸ
𝑥
and ɸ

𝑦
 according to (3) and (4), respectively. If not, set ɸ

𝑥
= ɸ

𝑥0
and ɸ

𝑦
= 225 

ɸ
𝑦0

, where ɸ
𝑥0

and ɸ
𝑦0

are mot_x and mot_y, respectively. 226 

2. Compute optimum as (optimum_hi - optimum_lo)/2. 227 

3. Specify (x1,y1) using x and y contained in modeled_species. 228 

4. Set energy = init_energy 229 

5. For day t in 1:(days-1)  230 
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a. If mortality = True, update search_radius as search_radius = 231 

search_radius * (energy/init_energy). 232 

b. Create a search area defined as a semicircle of radius search_radius 233 

facing direction and centered at (𝑥𝑡, 𝑦𝑡).  234 

c. Determine (⍵𝑥,⍵𝑦)as location within the search area with env_rast 235 

cell value closest to optimum. Draw a random sample (n = 1) in case of 236 

ties. 237 

i. If (dest_x, dest_x) in search area, set (⍵𝑥,⍵𝑦) = (dest_x, 238 

dest_y) 239 

d. Large scale searching: determine (𝑥𝑡+1,𝑦𝑡+1)0 according to (1) and (2).  240 

e. Small scale searching: determine (𝑥𝑡+1,𝑦𝑡+1) by selecting location 241 

within eight neighboring cells (queen’s case) of (𝑥𝑡+1,𝑦𝑡+1)0  with the 242 

cell value closest to optimum. Draw a random sample (n = 1) in case of 243 

ties. 244 

f. If  optimum_lo<env_rast(𝑥𝑡+1,𝑦𝑡+1)<optimum_hi update energy = 245 

energy+energy_adj[1]. 246 

g. Else, compute 𝛥 = env_rast(𝑥𝑡+1,𝑦𝑡+1) - optimum. And update energy 247 

in the following way: 248 

     If 𝛥< 0.1 * optimum, then energy = energy+energy_adj[2] 249 

If  0.1 * optimum< 𝛥< 0.2 * optimum, then energy = 250 

energy+energy_adj[3] 251 

If  0.2 * optimum< 𝛥< 0.3 * optimum, then energy = 252 

energy+energy_adj[4] 253 
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If  0.3 * optimum< 𝛥< 0.4 * optimum, then energy = 254 

energy+energy_adj[5] 255 

If  0.4 * optimum< 𝛥< 0.5 * optimum, then energy = 256 

energy+energy_adj[6] 257 

If  0.5 * optimum< 𝛥< 0.6 * optimum, then energy = 258 

energy+energy_adj[7] 259 

If  0.6 * optimum< 𝛥< 0.7 * optimum, then energy = 260 

energy+energy_adj[8] 261 

If  0.7 * optimum< 𝛥< 0.8 * optimum, then energy = 262 

energy+energy_adj[9] 263 

If  0.8 * optimum< 𝛥< 0.9 * optimum, then energy = 264 

energy+energy_adj[10] 265 

If 𝛥> 0.9 * optimum, then energy = energy+energy_adj[11] 266 

h. If mortality = True and energy = 0, the agent dies. Set (𝑥𝑡+1,𝑦𝑡+1) 267 

through (𝑥𝑑𝑎𝑦𝑠,𝑦𝑑𝑎𝑦𝑠 ) as N/A and end loop. 268 

6. Return dataframe with days rows and 2 columns movement track data. 269 

7. Repeat (3)-(6) replicates times. 270 

3. EXAMPLE APPLICATIONS  271 

abmR can be used to construct ABM simulations for any desired agent across the globe. In 272 

the following example, we demonstrate how energySIM can be used to compare the 273 

movement and the differential energy allocation of two populations of 250 agents each. 274 

While we focus on energySIM in this example, a similar workflow applies for moveSIM.  275 
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3.1. Comparisons between populations 276 

In this example, both populations are characterized by the same number of replicates, 277 

movement timesteps (‘days’), the same 𝜎, and the same environmental data provided by a 278 

Normalized Difference Vegetation Index (NDVI) raster stack containing 14 days of data 279 

between September 01-14, 2019 (Vermote, 2019). Both populations had an unspecified 280 

destination (indicated with ‘999’). However, Population 1 (P1) agents started their 281 

movements from a different point (105.7° W; 48.2 ° N) situated about 2,800 km from the 282 

origin of Population 2 (P2) agents (142.7° W; 63.2 ° N). Additionally, P1 agents had a 283 

smaller search radius (150 km) but higher motivation than P2 agents (P1 motivation = 0.95). 284 

P1 agents also had different optimum ranges (P1 0.2-0.5; P2 0.6-0.8), and different initial 285 

energy units (P1 100; P2 70). These differences in simulation parameterization result in 286 

clearly dissimilar movement tracks (Fig. 3).  287 

 288 

Box 1. R code used for performing the simulations presented in Fig 3. First, as.species is called 289 

to initialize two populations with different origin locations (here omitting morphology). Then, 290 

energySIM is called to perform a movement simulation for each population; parameters that differ 291 
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between the two simulations are printed in red, functions in blue, and objects in bold. For argument 292 

descriptions, see Table 2 and the package manual. 293 

 294 
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Figure 3.  Movement tracks reveal that Population 1 tended to travel through the central United 295 

States, while Population 2 traveled mostly throughout western Canada, United States, and Mexico. 296 

Overall, Population 1 traveled more distance and exhibited more consistent paths near the origin than 297 

did Population 2. The movement tracks are natively produced by abmR. Inset world map provided for 298 

geographic reference. 299 

While we can compare the movement tracks visually, Table 3 provides a numerical 300 

description of results. In this simulation, P1 traveled a much smaller average distance (154.6 301 

km) than did P2 (625.5 km). However, P1 traveled more days on average (7.4 days) before 302 

stopping than P2 (3.8 days). Additionally, P2 had higher energy consumption than P1; its 303 

average remaining energy across all timesteps was 61.2 units compared to 99.7 units for P1. 304 

There are several possible reasons for this observed pattern. First, P2 began with a smaller 305 

initial energy (70 units) than P1 (100 units). Additionally, P2 had higher optimum NDVI 306 

values (0.6 - 0.8), which might have been less abundant and generally more difficult to reach 307 

than those of P1 (0.2 - 0.5). Finally, because they began in different places, P1 and P2 agents 308 

encountered different raster cells along their journey. 309 

 310 
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Table 3. A numerical comparison of Populations 1 and 2, created by using values across all timesteps 311 

for all agents. ‘Day’ summarizes the timestep variable of the movement tracks. ‘Longitude’ and 312 

‘latitude’ summarize the geographical position of agents, while ‘energy’ summarizes agents’ 313 

remaining energy. ‘Delta energy’ corresponds to the change (gain or loss) of energy between each 314 

timestep, while ‘distance’ refers to the distance traveled between each timestep. This table was 315 

produced outside of abmR using raw movement data returned by the package. 316 

Fig. 4 visually compares P1 and P2 movement outputs based on longitude and latitude. This 317 

is not a native abmR figure, but rather is produced using the raw data that abmR generates to 318 

show the flexible use of the package. In this figure, P1 movements tended to be to the east 319 

and south of P2. However, P2 trajectory shows a much wider distribution, with density points 320 

extending to the lower values of latitude.  321 
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 322 

Figure 4. Graphical comparisons of Population 1 and Population 2 movements. Panels A and B show 323 

density plots used to individually compare longitude (Panel A) and latitude (Panel B) coordinates 324 

attained by agents from each population. Panel C compares the distance traveled between each 325 

timestep, while Panel D shows geographical position for all agents in each population across all 326 

timesteps. 327 
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Finally, Fig. 5 provides a density surface plot for P2 describing agent energy gains (blue) and 328 

losses (red) across the landscape. This surface was created using the inverse distance 329 

weighted interpolation (IDW) function from the R package ‘gstat’ (Pebesma, 2004). IDW 330 

interpolates grid cell values across a surface using a linear combination of observed (sample) 331 

points. When interpolating a cell value, the value of the sample points closer to that cell carry 332 

a higher weight, while sample points further from that cell carry smaller weight. IDW is 333 

discussed in more detail in Wong (2017). The results from Fig. 5 match well with what we 334 

observe in Fig. 3. Movement tracks for P2 tend to follow the blue (energy gain) regions. 335 

 336 

Figure 5. Energy gradient plot of Population 2 by timestep. Areas in red reflect energy loss (less 337 

suitable environmental values) while areas in blue reflect energy gain (better environmental values). 338 

This plot is produced directly by energyVIZ. Inset world map added for geographic reference. 339 

 340 
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4. CONCLUSIONS AND FUTURE WORK  341 

abmR provides a novel and efficient programming platform for simulating large-scale 342 

movements of species across taxa. We ran most of the initial test simulations on a local 343 

machine equipped with an Intel® Core™ i7-5500U CPU – 2.40GHz and 8 GB of RAM and 344 

obtained results for 100-1000 agents within minutes. The novelty of the software includes the 345 

capability of concurrently modeling agent movement trajectories and energy budget. This 346 

feature enables a broader exploration of the ecological constraints that shape animal dispersal 347 

and/or migration. Moreover, abmR built-in arguments, such as fail_tresh, n_failures, and 348 

energy_adj, provide additional flexibility when evaluating mortality scenarios that depend on 349 

baseline environmental conditions and energy requirement during prolonged movement bouts 350 

(see Table 2 for a full list of arguments affecting mortality). 351 

Over the last decades, spatially explicit simulations and agent-based models have become 352 

more popular in ecological and evolutionary studies (Railsback et al., 2006; DeAngelis & 353 

Grimm, 2014). Analytical platforms, such as InSTREAM, a simulation model approach 354 

designed to understand how stream and river salmonid populations respond to habitat 355 

alteration (Railsback et al., 2009), or ALMaSS, a predictive modeling tool for answering 356 

environmental policy questions regarding the effect of changing landscape structure on 357 

threatened animal species (Topping et al., 2003), allow investigation of specific ecological 358 

systems using ABM. On the other hand, many programming languages such as Netlogo, R, or 359 

Python are widely used to develop custom and more flexible models that can be adapted to 360 

address complex ecological or evolutionary research scenarios (Lustig et al., 2019; Chubaty 361 

& McIntire, 2021). However, the use of a programming language to develop a flexible ABM 362 

from scratch has two important drawbacks. First, it requires advanced programming skills. 363 

Second, its reproducibility can be compromised by the idiosyncrasies of the simulation 364 
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algorithm written by the user. These idiosyncrasies, especially if not well documented, can 365 

make it difficult or even impossible for other researchers to replicate findings or adapt code 366 

to suit their modeling scenarios. abmR provides a novel framework to perform complex 367 

movement simulations through standardized functions and arguments that facilitate model 368 

annotation and reproducibility while providing publication-ready visualizations at the end of 369 

each run.  370 

While we developed and tested abmR as a movement and energy budget simulation tool, its 371 

core software functionalities can be adapted to explore other processes such as disease 372 

outbreak scenarios (Dougherty et al., 2018). As an example, pathogen vector movement can 373 

be easily simulated within abmR, allowing the study of areas of confluence where disease 374 

transmission is more probable (Manore et al., 2015). Moreover, potential future updates 375 

include the ability to specify multiple raster stacks of different movement predictors and 376 

different species traits affecting the movement patterns in the function as.species. 377 

Additionally, other code expansions might be useful to study plant seed dispersal, interactions 378 

of agents (density-dependent scenarios), and altitudinal movements. 379 
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