
“main” — 2021/9/15 — 16:22 — page 1 — #1

CRAM 3.1: Advances in the CRAM File Format
James K Bonfield 1,∗

1Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK

∗To whom correspondence should be addressed.

Abstract

Motivation: CRAM has established itself as a high compression alternative to the BAM file format for
DNA sequencing data. We describe updates to further improve this on modern sequencing instruments.
Results: With Illumina data CRAM 3.1 is 7 to 15% smaller than the equivalent CRAM 3.0 file,
and 50 to 70% smaller than the corresponding BAM file. Long-read technology shows more modest
compression due to the presence of high-entropy signals. Availability: The CRAM 3.0 specification
is freely available from https://samtools.github.io/hts-specs/CRAMv3.pdf. The CRAM 3.1 improvements
are available from https://github.com/samtools/hts-specs/pull/433, with OpenSource implementations in
HTSlib and HTScodecs. Contact: jkb@sanger.ac.uk
Supplementary information: Supplementary data are available online

1 Introduction
It has been well established that the growth in genomic sequencing data is
challenging (Stephens et al., 2015). The earlier file formats of SAM and
BAM (Li et al., 2009) were appropriate for the era, but better techniques
were soon required. The notion of reference-based compression, storing
only the differences between DNA sequence fragments and the reference
they have been aligned against, was proposed (Fritz et al., 2011). Fritz et al.
also proposed techniques for efficient encoding of unaligned data by the
use of sequence assembly to generate consensus sequences, which may
then be used as the reference sequence to compare against. This work lead
to the development of CRAM by the European Bioinformatics Institute
(Cochrane et al., 2013).

The primary goals of CRAM were a reduction in storage requirements,
while maintaining direct compatibility with BAM, permitting lossless
round trips. All data representable in BAM is also available in
CRAM. This includes the SAM header, which is the same format in
CRAM, and the optional auxiliary key-value "tags". These annotations
are defined by a shared SAMtags specification (samtools.github.io/hts-
specs/SAMtags.pdf).

Although reference compression is where the original work focused, it
is wrong to assume that this is the primary reason for CRAM’s reduced file
size. BAM serialises all data together (first name, chromosome, position,
sequence, quality and auxiliary fields, then second name, chromosome
and so on). This leads to poor compression ratios as names, sequences and
quality values all have very different characteristics. CRAM has a column-
oriented approach where a block of names are compressed together, or a
block of qualities. Each block can be compressed with an algorithm specific
to that data type. This leads to significantly reduced file sizes and is often
the biggest factor in file reduction.

The first tool implementing CRAM (then version 1.0) was CRAMtools
(Vadim Zalunin, 2011, unpublished), written in Java. The Scramble
tool (Bonfield, 2014) was the first C implementation and lead to a
specification tidy-up producing CRAM 2.0 in 2013. HTSlib (Bonfield
et al., 2021) gained CRAM support shortly after. CRAM 3.0 appeared a

year later in 2014, with some additional compression codecs including
the rANS entropy encoder (Duda, 2013) and LZMA (Lempel Ziv
Markov-chain Algorithm, Igor Pavlov, 1998, unpublished). More
implementations of CRAM have since appeared, written in JavaScript
(Buels et al., 2019) and Rust (https://github.com/zaeleus/noodles). Many
more programming languages support CRAM via bindings to one of these
existing implementations.

The CRAM specification is now maintained by the Global Alliance
for Genomics and Health (GA4GH: https://www.ga4gh.org/cram/). It ties
in with a number of other GA4GH standards and protocols which further
extend the features and capabilities. Reference sequences may be obtained
either via local files or using a refget server (Yates et al., 2021). CRAM
files can be streamed remotely using the htsget protocol (Kelleher et al.,
2019), and they may be encrypted using Crypt4GH (Senf et al., 2021).

Since 2014 CRAM has been very stable, but a lot has changed data-
wise. Illumina’s quality values have been successively quantised from
40 discrete values, to 8, and now with NovaSeq to 4 (Illumina, 2012).
We have also seen the rise of long-read technologies and more complex
auxiliary data types being embedded in the files. As the data changes,
so too should the encoding and compression methods available to the
format. Methods such as Run Length Encoding (RLE) were considered
and explicitly rejected as unhelpful in the original CRAM development, but
now these same techniques can be beneficial. CRAM 3.1 is the first major
update to CRAM since 2014. It keeps the underlying format unchanged,
but adds new compression codecs.

With large data volumes comes large processing requirements. By
default CRAM optimises for a balance between CPU cost, file size and
granularity of random access. However the option of higher memory and
CPU requirements for long-term archival is still worthy of consideration
so CRAM 3.1 also improves support for archival modes.

At the time of writing CRAM 3.1 is in draft. Implementations of the
new codecs exist in C (HTSlib, SAMtools and Scramble) with a JavaScript
proof of concept.
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2 Methods
The basic structure of CRAM can be seen in Figure 1. It starts with a
header matching the SAM specification, although it mandates the use of
MD5sums on reference sequence lines for data provenance and to ensure
correct decoding.

CRAM’s records are broken down into data series, loosely fitting the
columns in a SAM file, such as alignment position, quality values or
CIGAR string components. Each auxiliary tag also gets its own data series.

The CRAM header is then followed by a series of containers, which in
turn hold slices and data blocks within them. The container header consists
of meta-data describing how and where each data series is encoded. The
slices are collections of alignment records, applying the encoding rules
described by the container to the records and storing the result in the
requested blocks. The blocks are then compressed using their own selected
compression algorithms. It is these algorithms which have been added to
in CRAM 3.1. Slices may be of any size, but the HTSlib implementation
defaults to 10,000 records, or fewer if long reads are present.

Data
Series

Read
Names
(tok.)

Data
Series

Quality
Scores
(rANS)

Data
Series

Aux.
field
(bzip2)

Container: Header Slice: Header Block Block ... Block

Container: Header Slice: Header Block Block ... Block
. . . . . . . . .

Container: Header Slice: Header Block Block ... Block

Fig. 1. Logical layout of a CRAM file, showing containers and slices as rows, and data-
series as columns. Random access is possible on rows, with rapid filtering (discarding) of
columns.

This offers great flexibility to the encoder, meaning that over time
encoder improvements may yield smaller files. For example the first 10
million reads of a NovaSeq alignment in CRAM 3.0 format produced by
HTSlib 1.2 takes up 199.6MB. The latest HTSlib 1.13 encodes the same
file in 195.2MB and Picard 2.25.7 with default options uses 254.1MB. All
of these files are compatible and have the same choice of codecs available.

As it is possible to store each data series in its own block, this
permits selective decoding where only specific types of data need to be
decoded. This can be of great benefit to certain algorithms. For example
the "samtools flagstat" command gives a summary of SAM FLAG bit
frequencies (Danecek et al., 2021). Although it does not need to know
about sequences, quality values or read identifiers, with a BAM file it is still
required to decompress this data due to the serial nature of the format. With
CRAM it only decompresses the data series required. Consequentially
"samtools flagstat" on the NA12878 Platinum Genomes file takes 7m35s
on the CRAM file and 22m52s on the BAM file (with neither file in disk
cache).

The NM and MD SAM auxiliary tags have special handling within
CRAM. As they describe the difference between an aligned sequence and
the reference and we are typically doing reference based compression, they
may be omitted and generated on-the-fly during decode. If these values are
found to be in error then they can either be corrected, or if we wish to have
bug-compatible data then the (incorrect) values may be stored verbatim in
the CRAM file.

Each slice can optionally also contain a copy of the reference used
for that genomic region. This permits CRAM to do reference-based
compression while removing the dependency on external data files.
For deeply covered regions this does not have a significant impact on
compression ratios. This embedded reference could be a consensus rather
than the official external reference, offering the potential for improved
compression via fewer sequence differences. However doing so means
storing NM and MD verbatim in regions where consensus and reference
differ, negating most of the gains. Note this problem is resolved in Deez
(Hach et al., 2014) by using a two-level delta (sequence to consensus and
consensus to reference), and may be considered for a future CRAM update.

The compression codecs permitted in CRAM 3.0 are three external
general compression tools - deflate (Deutsch and Gailly, 1996), bzip2 and
lzma - and the rANS entropy encoder. The entropy encoder uses static
frequencies, written at the start of the block, which can be either Order-0
or Order-1 metrics. An example of Order-0 frequencies is the observation
that the letter "u" accounts for 3% of the total letter usage in English,
while an Order-1 observation is that "u" occurs nearly 100% of the time
following the letter "q".

The current official CRAM format is 3.0, but CRAM 3.1 has been a
draft standard since 2019. The layout of the CRAM format is unchanged,
but new custom compression codecs have been added. These include:

Improved rANS with data transformations: The reduction in the count
of discrete quality values in Illumina data from 40 (HiSeq) to 4
(NovaSeq) has meant that some simple data transformations can reduce
both data size and time to encode. The newer rANS codec has bit-
packing, for example mapping 4 distinct quality values to 2 bits each and
storing 4 per byte, and run-length encoding. Additionally the 4 rANS
states used in CRAM 3.0 can now be expanded to 32 states permitting
the use of SIMD instructions for accelerated encoding and decoding.
Table 1 shows entropy encoder speeds for the first 1 million records
from NovaSeq data. Speeds on HiSeq 2000 qualities are listed in the
Supplementary Material. Also shown are other static frequency entropy
encoders including Zlib’s Huffman encoder and the Finite State Entropy
(FSE) implementation used in Zstd (Collet, 2021). These only support
Order-0 encoding and Huffman is unable to encode the skewed 4-quality
NovaSeq data efficiently.

Adaptive arithmetic coder: This is a byte wise arithmetic coder with
adaptively updated frequencies. This helps for data types with non-
stationary probability distributions, but it has a higher CPU overhead.
It also includes the data transformations used in the updated rANS
codec. This coder is internally used by the FQZComp quality coder and
optionally by the name tokeniser. It has order-0 and order-1 models, but
it could trivially be extended to support higher order models if deemed
necessary in the future.
Performance of the adaptive coder is also shown in Table 1 along with
the Genomic Adaptive Binary Arithmetic Coder (GABAC) (Voges et al.,
2020) used in the OpenSource Genie (Bliss et al., 2018) reference
implementation of MPEG-G (Voges et al., 2021). This latter provides
a reasonable ratio for the low-entropy NovaSeq data set, but is two
orders of magnitude slower than the faster methods. Note this may not
be indicative of a well optimised GABAC implementation.

FQZComp quality encoder: This is a generalised version of the quality
model used in the FQZComp tool (Bonfield and Mahoney, 2013). It
is limited to a maximum of 16 bits of context in order to permit rapid
model tuning and to make it appropriate for a more random-access
oriented file format. The context is applied to an adaptive arithmetic
encoder. This makes it slower than rANS and more suitable to data
archival. The construction of this context is flexible and described within
the file format, offering great opportunity for learning and tuning to a
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Fig. 2. An example FQZComp configuration describing how previous quality values, the
position in the sequence, a running sum of the delta between qualities and a generic model
selector can be combined with lookup tables to generate a context model.

specific data set. Data available for model context generation include
the previous quality values, the position along the current read, a
cumulative delta of successive quality values since the start of each read,
bits indicating reverse complement or duplicate, and a general context
selector copying from bits stored in the file (which may be used to split
by average quality value or x/y location extracted from the read name for
example). Values may also be transformed through lookup tables prior
to context generation. An example FQZComp configuration is shown
in Figure 2.
Table 2 shows the performance of two predefined FQZComp
configurations on high-entropy HiSeq 2000 quality values and low-
entropy NovaSeq quality values, compared against libbsc. It can be seen
that the choice of model configuration can be critical. This particular set
of HiSeq 2000 data has some highly erroneous cycles, so using more
bits to track position within the read is very productive. Additionally this
model utilises the embedded selector bits to separate data by READ1
and READ2 flags, slightly improving the compression of the NovaSeq
data too.

Read name tokeniser: The read identifiers are often highly structured,
such as "HSQ1004:134:C0D8DACXX:4:2107:20375:180666". Much
like how CRAM separates the primary SAM fields into columns, the
name tokeniser separates the components of a read names and compares
against a component in a previous name. Each component column is
then serialised with optional string or numeric deltas and compressed
using either the static rANS or adaptive arithmetic encoders.
Table 3 shows the performance of the name tokeniser on 10 blocks each
containing 100,000 NovaSeq read names. The tokeniser is considerably
smaller than general purpose tools on the more predictable name-sorted
data. With chromosome and position sorted data, which scrambles the
name ordering, the tokeniser is only beaten by the much slower “mcm”
tool.

Table 1. NovaSeq quality: entropy encoder speeds

Program Option Size(MB) Enc(MB/s) Dec(MB/s)

Zlib Huffman 21.48 151.3 365.4
FSE tANS 9.90 435.2 531.1
FSE Huffman 20.74 709.8 1302.9

rANS4x8 O0 9.91 391.4 531.1
rANS4x16 O0 9.90 446.5 823.7
rANS32x16-AVX2 O0 9.92 617.5 1609.3

rANS4x8 O1 9.14 271.2 406.8
rANS4x16 O1 9.14 285.4 551.7
rANS32x16-AVX2 O1 9.16 356.7 1091.7

rANS32x16-AVX512 O0,PACK+RLE 9.18 583.6 1378.3
rANS32x16-AVX512 O1,PACK+RLE 8.26 489.3 1123.1

arith O0 9.83 120.0 94.5
arith O0,PACK+RLE 9.16 220.0 188.3

arith O1 9.12 105.3 91.3
arith O1,PACK+RLE 8.12 156.5 115.1

GABAC-app -d15 -s1 8.40 5.0 8.0

Block size 1MB, except FSE Huffman which used 128KB.

Table 2. Quality value FQZComp performance

Program Option Size(MB) Enc(MB/s) Dec(MB/s)

NovaSeq qualities
bsc -m0e2tTp 7.72 19.40 35.48
FQZComp -s0 7.27 28.57 51.80
FQZComp -s1+read 1/2 7.21 21.43 26.74

HiSeq 2000 qualities
bsc -m0e2tTp 43.8 6.75 9.11
FQZComp -s0 42.5 15.84 17.82
FQZComp -s1+read 1/2 31.3 13.29 14.91

Compression of NovaSeq and HiSeq 2000 quality values using libbsc and CRAM
3.1’s FQZComp, in 10 blocks of 100,000 records.

Table 3. NovaSeq read name compression

Name sorted Position sorted
Program Size Enc(MB/s) Dec(MB/s) Size Enc(MB/s) Dec(MB/s)

bzip2 2.52 32.08 222.11 6.18 15.97 137.88
gzip -12 2.14 3.78 250.59 5.50 2.80 241.93
bsc -m5e1tT 1.68 27.61 23.07 3.99 22.59 19.53
xz -9 1.31 2.50 74.98 4.87 1.70 65.31
mcm -m7 1.22 3.07 3.21 3.43 2.69 2.78
tok3 -7 0.89 15.46 48.54 3.55 10.00 69.44
tok3 -19 0.88 8.82 41.59 3.48 4.84 39.13

Performance of the read name tokeniser on name sorted and chromosome / position
sorted NovaSeq reads. Size is shown in MB.

CRAM also permits some controlled data loss. Read names may be
discarded, with new names generated during decode. Read pairing within a
slice is encoded by explicit links between records, so the generated names
are still in pairs. Quality values may also be omitted, with only specific sites
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being stored. However this is not the recommended approach to quality
value reduction. It is possible to reduce the entropy of quality value either
by smoothing methods such as P-block (Cánovas et al., 2014) or site-
specific quality reassignment via CALQ (Voges et al., 2018) or Crumble
(Bonfield et al., 2019). These modified quality strings are then much more
compressible, particularly, when combined with the newer RLE rANS
methods. As such we view quality loss best dealt with as a topic external
to the file format.

The primary focus of CRAM is with sorted aligned data. However
SAM, BAM and CRAM all support unaligned data too and the addition
of both per-file and per-read meta-data arguably make these a superior
format to using FASTQ. There are many FASTQ compression tools which
offer superior ratios to unaligned CRAM, but our approach to FASTQ is
primarily as a transitional format between sequencing and either alignment
or assembly rather than as a suitable long-term archival format. That said,
combining an approximate rapid sequence aligner with CRAM can be used
to reduced data size. Examples of this using SNAP (Zaharia et al., 2011)
are in the Supplementary Material.

CRAM also permits aligned non-position-sorted data, such as by
read name order. This may use either reference-based or reference-less
encoding, with the latter sometimes being a more time and memory
performant option when dealing with very large genomes.

3 Results
This manuscript is on the CRAM format rather than a specific
implementation, however it is not possible to analyse the performance
of the format without evaluating an implementation. We use SAMtools
and HTSlib 1.13. Where possible, we also compare against Deez, MPEG-
G and Genozip (Lan et al., 2021). The GenomSys MPEG-G tool is not
freely available so figures reported are taken from their paper and its
references. Note their CRAM figures significantly differ to ours. We
requested clarification from the authors, but some of these differences
remain unexplained.

Given that CRAM performance is not a single metric, permitting user-
adjustable trade-offs between speed, size and granularity of random access,
multiple points have been plotted for each CRAM version. These CRAM
benchmarks are from the released version of SAMtools 1.13. Note this
does not yet include the SIMD-vectorised rANS entropy encoder and is
using the 4-way Scalar implementation. Results using a vectorised build
of SAMtools is presented in the Supplementary Material.

All decode timings are a read and complete decode of the files, with data
discarded where possible. Encode timings are conversion from compressed
BAM to a new file format. Full benchmarks and details are available in the
supplementary material. The encoder and decoder were given 12 threads,
running on an Intel Xeon CPU E5-2660 running at 2.20GHz. The quoted
MPEG-G timings used 12 threads on an Intel Xeon E5-2670 at 2.6GHz.

Figure 3 shows the results for the Illumina HiSeq 2000
(ERR194147), Illumina NovaSeq (ERR3239334) and PacBio CLR
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209
_na12878_pacbio/si/NA12878.pacbio.bwa-sw.20140202.bam). All three
are Whole Genome Shotgun (WGS) libraries of NA12878.

Figure 3 part A shows the encode and decode speeds against file size
for the Illumina HiSeq 2000 data (ERR194147). This is also MPEG-G
data-set 02. Some formats have multiple points, linked together by a line.
This represents different compression profiles. BAM shows the default size
and at the maximum compression level (equivalent to “bgzf -9”). CRAM
3.1’s plots represent “normal”, “small”, “archive” (at compression level 9)
profiles. It can be seen that CRAM 3.1 offers a similar leap over CRAM
3.0 compression ratios that it did in turn over CRAM 2.1. CRAM 3.1 is
between 7 and 16% smaller than CRAM 3.0 at the equivalent profile, while
being similar on speed except for “small” and “archive” decoding times.

All CRAMs encode faster than BAM while saving up to 56% storage,
although BAM is quicker to decode. This is compatible with our design
goal of being similar speed to BAM.

It is unclear whether the published MPEG-G benchmarks include
auxiliary tags, but these only account for under 1% of this file. CRAM
3.1’s compression profiles straddle the MPEG-G file size, with the smaller
CRAM profiles still being over 4 times faster than MPEG-G. However
note the MPEG-G benchmarks were not performed by us, so there may be
differences in measuring techniques.

Deez compression ratios are between CRAM 3.0 and CRAM 3.1 and
a little behind MPEG-G. It is the slowest tool, although it should be noted
that despite being given 12 threads it typically only utilised 2. Total CPU
usage was less than MPEG-G. Genozip was also much slower than CRAM
3.1 while being larger, similar in size to CRAM 3.0 archive mode.

Figure 3 part B shows the same NA12878 sample sequenced using
an Illumina NovaSeq instrument (ERR3239334). The improvements of
CRAM over BAM here are more marked, due to the higher compressibility
of the quantised quality values. The gains from CRAM 3.0 to CRAM 3.1
are also greater, with the “normal” profile being 16% smaller. The CRAM
3.1 files are between 3.1 and 3.5 times smaller than BAM.

As before, Deez is slow and with this file does not match CRAM
3.0 for file size. No MPEG-G results are available for this data set,
but the published results for the NovaSeq MPEG-G data set 37 implies
good compression performance with a size similar to CRAM 3.1 archive
mode. Genozip performed poorly, with file sizes larger than CRAM and
considerably slower.

Figure 3 part C shows an aligned PacBio CLR file, also for NA12878.
This is the MPEG-G data set 03. Published results are available for MPEG-
G on this data, but we were only able to get our CRAM files to match
their earlier published results (MPEG document M56361) by removing
secondary alignments and discarding auxiliary tags. Hence for comparison
purposes we applied these transformations to the downloaded BAM before
performing this benchmark. We have been unable to verify if this is the
correct procedure used in the MPEG-G publication, so it is listed here as
“MPEG-G (est.)”.

This data set shows a very minimal change between CRAM versions
and compression profiles. The file is dominated by the quality values,
which are largely uncompressible due to having a big range of discrete
values (0 to 93) with very little correlation between successive values.
Nevertheless it is evident that CRAM saves a significant portion over BAM
and CRAM 3.0/3.1 is a big improvement on the historic CRAM 2.1. The
assumed MPEG-G size and Deez are both larger than CRAM 3.0 while
being significantly slower. Genozip performed pooly on this data set.

4 Discussion
CRAM has achieved the goals of providing a space-efficient alternative to
BAM, while not suffering a significant time penalty. CRAM files in the
European Nucleotide Archive significantly outnumber BAMs (personal
communication) and it has seen wide adoption at many other sites. The
format has continued to evolve and improve since development and we
present the next set of improvements via the addition of new compression
methods in the CRAM 3.1 draft. For modern short read data, these new
methods can provide as big an improvement over CRAM 3.0 as that did
previously over CRAM 2.1. We also expect CRAM 3.1 to continue to
improve, in particular the selection of the optimal FQZComp models.

However there are still further format adjustments that could be made
over and above adding new compression codecs, which will likely be
addressed in CRAM 4.0. While an early draft of this already exists, it is
likely to undergo further revisions. Improvements include migration of
the rANS PACK and RLE filters to the CRAM slice encoding methods

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.15.460485doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460485
http://creativecommons.org/licenses/by/4.0/


“main” — 2021/9/15 — 16:22 — page 5 — #5

CRAM 3.1: Advances in the CRAM File Format 5

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

 0  50  100  150  200  250  300

A

S
iz

e
 (

G
B

)

Time (min)

Illumina HiSeq 2000: Encode

BAM
MPEG-G

Deez
Genozip

CRAM 2.1
CRAM 3.0
CRAM 3.1

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

 0  20  40  60  80  100  120  140  160  180

S
iz

e
 (

G
B

)

Time (min)

Illumina HiSeq 2000: Decode

BAM
MPEG-G

Deez
Genozip

CRAM 2.1
CRAM 3.0
CRAM 3.1

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 0  20  40  60  80  100  120  140  160  180

B

S
iz

e
 (

G
B

)

Time (min)

Illumina NovaSeq: Encode

BAM
Deez

Genozip
CRAM 2.1
CRAM 3.0
CRAM 3.1

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 0  10  20  30  40  50  60  70

S
iz

e
 (

G
B

)

Time (min)

Illumina NovaSeq: Decode

BAM
Deez

Genozip
CRAM 2.1
CRAM 3.0
CRAM 3.1

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

 0  10  20  30  40  50  60  70

C

S
iz

e
 (

G
B

)

Time (min)

PacBio: Encode

BAM
MPEG-G (est.)

Deez
Genozip

CRAM 2.1
CRAM 3.0
CRAM 3.1

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

 0  5  10  15  20  25  30  35  40  45

S
iz

e
 (

G
B

)

Time (min)

PacBio: Decode

BAM
MPEG-G (est.)

Deez
Genozip

CRAM 2.1
CRAM 3.0
CRAM 3.1

Fig. 3. Benchmarks of aligned data formats. MPEG-G figures are taken from the Voges et.al paper, with “MPEG-G (est.)” assumed to be working on the same data file as our CRAM
measurements, but this is not certain. (See text.)

with additional transformations such as integer delta encoding (useful for
Oxford Nanopore Technology signal data) and an LZP step to help reduce
repetitive auxiliary tags and to remove duplication in quality values due
to secondary alignments. Potentially further custom codecs may also need
to be developed for the most expensive auxiliary tags, such as breaking
down comma-separated tag formats (e.g. SA:Z) into components similar
to the read name tokeniser. The general purpose compression interfaces
used may also be reconsidered, such as replacing Deflate with Zstd and
Bzip2 with Libbsc (Grebnov, 2011). There is scope for moving some
compression meta-data, such as the order-1 frequency tables in rANS, out
of the data block produced by compression codecs and into the container

header. This could permit finer grain random access with many slices per
container. Finally improvements can be made to how embedded consensus
sequences are handled, perhaps using a two-step delta as implemented in
Deez.

It is evident however that some data does not gain compression with
CRAM 3.1 due to the inherent randomness of the data held within, and
no format improvement is likely to solve that. This is particularly true
for some long-read technologies. We question the requirement to have so
many distinct quality values in PacBio and ONT data and suggest lossy
compression may be suitable for these data sets. We feel that this is best
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researched and addressed by the sequencing manufacturers and urge them
to consider ways to reduce the data footprint of their output files.

An implementation of the CRAM 3.1 and 4.0 draft standards may
be found in HTSlib (https://github.com/samtools/htslib) and HTScodecs
(https://github.com/samtools/htscodecs).
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