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ABSTRACT 

Deep neural networks implementing generative models for dimensionality reduction have been 

extensively used for the visualization and analysis of genomic data. One of their key limitations is 

lack of interpretability: it is challenging to quantitatively identify which input features are used to 

construct the embedding dimensions, thus preventing insight into why cells are organized in a 

particular data visualization, for example. Here we present a scalable, interpretable variational 

autoencoder (siVAE) that is interpretable by design: it learns feature embeddings that guide the 

interpretation of the cell embeddings in a manner analogous to factor loadings of factor analysis. 

siVAE is as powerful and nearly as fast to train as the standard VAE but achieves full 

interpretability of the embedding dimensions. We exploit a number of connections between 

dimensionality reduction and gene network inference to identify gene neighborhoods and gene 

hubs, without the explicit need for gene network inference. Finally, we observe a systematic 

difference in the gene neighborhoods identified by dimensionality reduction methods and gene 

network inference algorithms in general, suggesting they provide complementary information 

about the underlying structure of the gene co-expression network. 

INTRODUCTION  

Single cell genomic assays such as scRNA-seq and scATAC-seq measure the activity level of 

tens to hundreds of thousands of genomic features (genes or genomic regions), yielding high 

dimensional measurements of cells. Features tend to be inter-correlated: gene members of the 

same pathway, complex or module exhibit correlated expression patterns across cells1, and 

proximal genomic regions covering the same regulatory elements or expressed genes are 

correlated in their accessibility patterns2. Key analysis tasks such as visualization3, clustering4, 

trajectory inference5,6, and rare cell type identification7,8 typically do not directly compute on the 

original features. Instead, they first perform dimensionality reduction (DR) to project cells from 

their high dimensional feature space to a lower dimensional “cell embedding space” consisting of 

a smaller set of embedding dimensions. Individual embedding dimensions capture distinct groups 

of correlated input features, and are often also correlated with biological factors such as case-

control status9, gender10, and others11. Downstream tasks are then carried out on these 

embedding dimensions.  

Given the central role of embedding dimensions in single cell analysis tasks, it is useful to be able 

to characterize which of the original input features contributed to the construction of each 

embedding dimension; that is, it is useful to “interpret” the embedding dimensions with respect to 

the input features. For example, in a visualization of a 2D cell embedding space based on scRNA-

seq data, interpretation of the embedding dimensions would identify genes that may be 

responsible for variation in the transcriptome along different axes of the visualization (Fig. 1). Our 

ability to interpret embedding dimensions rests directly on the dimensionality reduction technique 

used to compute them. DR approaches can be categorized based on whether they use a linear 
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or non-linear reduction framework. Linear DR frameworks are considered less powerful because 

they can typically be viewed as a specific, restricted implementation of a non-linear framework12. 

The advantage of linear methods such as Principal Components Analysis (PCA) is that they 

provide a quantitative estimate of the contribution of individual features towards each embedding 

dimension. In contrast, while non-linear methods such as UMAP, t-SNE and variational 

autoencoders (VAEs) produce better visualizations in which cells of the same type cluster 

together more closely (Supplementary Fig. S1), they are not interpretable. That is, they do not 

estimate the contributions of features to individual embedding dimensions, and therefore require 

more ad hoc, downstream analysis to gain intuition about the arrangement of cells in the 

visualization (e.g. understand why specific cells cluster). Beyond visualization, interpretability is 

an important property for other tasks in single cell analysis, such as the detection of genes and 

pathways driving variation in expression within or across cell types13, and for identification of 

genes associated with cellular trajectories directly from visualization14.  

Here we propose a scalable, interpretable variational autoencoder (siVAE) that combines the non-

linear DR framework of variational autoencoders (VAEs) with the interpretability of linear PCA. 

VAEs are non-linear DR methods that uses neural networks to infer a cell embedding space.  

siVAE is a variant of VAEs that additionally infers a feature embedding space for the genomic 

features (genes or genomic regions) that is used to interpret the cell embedding space, while 

being comparable in training time and power to a standard VAE. Compared to other approaches 

to achieving interpretable, non-linear DR, siVAE is either faster, generates better low dimensional 

representations of cells, or more accurately interprets the non-linear DR. We found that the 

feature embeddings that siVAE learns are useful for characterizing aspects of gene regulatory 

networks (GRN) while avoiding the challenging process of gene network inference15. More 

specifically, we show that the feature embeddings can be used to identify communities of co-

regulated genes. siVAE can also find groups of co-regulated genes that are not readily identified 

by GRN methods, suggesting the two approaches to identifying co-regulated gene sets are 

complementary in their findings. Finally, we demonstrate siVAE identifies genes with high degree 

centrality more accurately than ranking genes by explicit node degree in a gene network, 

suggesting siVAE can be used to find central genes in the genome. Our framework for making 

VAEs interpretable is generalizable to other VAE-based frameworks. Given that VAEs have been 

applied to a wide range of genomics data modalities (epigenomics16–18 and miRNA19) and analysis 

(visualization20,21, trajectory inference22, data imputation23, and perturbation response 

prediction24–26), our work can therefore enable interpretability in a wide range of downstream 

applications of VAEs. 

 

RESULTS 
 
siVAE is a deep neural network consisting of two pairs of encoder-decoder structures, one for 

cells and the other for features (Fig. 1a). The cell-wise encoder-decoder learns to compress per-

cell measurements 𝑋𝑐,:  (where 𝑋  is a matrix of dimension 𝐶 ×  𝑃 ) into a low dimensional 

embedding (𝑧𝑐) of length 𝐾 for visualization and analysis, similar to traditional VAEs implemented 

in single cell genomic applications and others21,27,28. We call the 𝐶 ×  𝐾 matrix of embeddings 𝑍𝑐,𝑘 

the siVAE score matrix, where the scores of cell 𝑐 (𝑍𝑐,:) represent its position in the cell embedding 

space.  
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To facilitate interpretation of the cell state space, siVAE additionally implements a separate 

feature-wise encoder-decoder network (Fig. 1a) that learns to compress per-genomic features 

across the cells (𝑋:,𝑓) into a low dimensional embedding (𝑣𝑓) of length 𝐾, analogous to the cell-

wise encoder-decoder. We call the 𝐹 ×  𝐾 matrix of feature embeddings 𝑉𝑓,𝑘 the siVAE loading 

matrix, where the loadings of feature 𝑓 (𝑉𝑓,:) represent its position in the feature embedding space. 

The cell- and feature-wise decoders together are used to generate the observed measurement 

𝑋𝑐,𝑓.  

The strategy siVAE uses to achieve interpretation is best understood by briefly reviewing why 

probabilistic PCA (PPCA) and factor analysis are interpretable29,30. The underlying generative 

model behind PPCA can be thought of as similar to a VAE with a linear decoder, and the output 

of PPCA includes both a factor loading matrix 𝑉𝑓,𝑘 and score matrix 𝑍𝑐,𝑘. In probabilistic PCA, the 

predicted expression of feature 𝑓 in cell 𝑐 (𝑋𝑐,𝑓) is assumed to be 𝑉𝑓,:
𝑇 𝑍𝑐,:, the dot product of the 

loadings for feature 𝑓 and the scores of cell 𝑐. PPCA is therefore interpretable, because the larger 

the contribution of a feature 𝑓 to a particular dimension 𝑘 (indicated the magnitude of 𝑉𝑓,𝑘), the 

more the measurement of feature 𝑓 (𝑋𝑐,𝑓) is influenced by a cell’s corresponding score in that 

dimension (𝑍𝑐,𝑘). Conversely, when the magnitude of 𝑉𝑓,𝑘 is small (or even 0), then the cell’s 

corresponding score in that dimension (𝑍𝑐,𝑘) does not influence 𝑋𝑐,𝑓 , the measurement of feature 

𝑓 in cell 𝑐. In this regard, we say that the PPCA model enforces correspondence between 𝑍𝑐,𝑘 

and 𝑉𝑓,𝑘, the cell and feature embedding at dimension 𝑘. 

siVAE achieves interpretability of the siVAE scores 𝑍𝑐,𝑘  by adding a small interpretability 

regularization term to its objective function (see Methods). More specifically, this regularization 

term penalizes deviation between the observed measurement 𝑋𝑐,𝑓, and the dot product of the 

corresponding siVAE scores and loadings (𝑉𝑓,:
𝑇 𝑍𝑐,:). This small regularization term helps enforce 

some soft correspondence between dimension 𝑘  of the cell scores, and dimension 𝑘  of the 

feature loadings. 

RESULTS – siVAE accurately generates low dimensional embeddings of cells  
 
We first evaluated siVAE in the context of cell embedding space inference, where the goal is to 
generate low dimensional representations of cells in which cells of the same cell type cluster 
together. We benchmarked siVAE against other interpretable and non-interpretable 
dimensionality reduction approaches using a fetal liver cell atlas31 consisting of 177,376 cells 
covering 41 cell types. We measured the accuracy of each approach in a 5-fold stratified cross 
validation framework by first using the training folds to learn a cell embedding space, followed by 
training of a 𝑘-NN (𝑘 = 80) classifier using the known cell type labels and cell coordinates within 
the embedding space. We then classified the held-out cells. We associate higher 𝑘-NN accuracy 
with a more accurate cell embedding space in which cells of the same type cluster together. 
 
We compared siVAE against a classic VAE as well as LDVAE29, where all three VAE frameworks 
used cell-wise encoder-decoders of the same size, and the VAE and siVAE use the same 
activation functions. Overall, we found siVAE’s cell embedding space to be comparable in 
accuracy to classic VAEs, suggesting that the introduction of the siVAE feature-wise encoder-
decoder does not affect siVAE performance in terms of its cell embedding space. 2D visualization 
of siVAE’s cell embedding space reveals strikingly similarity to the cell embedding space of the 
classic VAE in that cells of the same type cluster together (Fig. 2a). Furthermore, siVAE is 
competitive in classification accuracy with a classic VAE on the fetal liver cell atlas (Fig. 2b). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460498


siVAE therefore is competitive with VAEs in terms of generating cell embedding spaces, but has 
the additional benefit of interpretability, which we will explore below. In comparison, the LDVAE 
approach, which is interpretable like siVAE but performs linear DR, yields significantly lower 
classification accuracy (Fig. 2b) and generates visualizations in which different cell types mix 
together more prominently (Fig. 2a). LDVAE therefore gains interpretability at a cost to the 
accuracy of the cell embedding space.  
 
We next constructed a set of model variants of siVAE in order to identify which aspects of siVAE 
lead to its superior performance over LDVAE (Table 1). LDVAE is in principle similar to the classic 
VAE, with two key differences. First, the LDVAE decoder is restricted to use only linear activation 
functions in order to achieve interpretability; thus, LDVAE performs linear dimensionality 
reduction. scETM performs a similar dimensionality reduction, but further breaks down the loading 
matrix through tri-factorization32. Second, the LDVAE loss function uses a negative binomial or 
zero-inflated negative binomial distribution over the input features (genes), instead of the 
Gaussian distribution used in a classic VAE. In principle, the NB or ZINB observation model is a 
better fit for single cell transcriptomic data compared to a Gaussian distribution normally used on 
log transformed data 33,34. We therefore constructed two variants of siVAE, siVAE-NB and siVAE-
linear. siVAE-NB is identical to siVAE, except that it uses a negative binomial distribution for the 
observation layer while maintaining non-linear activation functions in its decoders to achieve non-
linear DR. siVAE-linear is identical to siVAE, except that it restricts both the feature-wise and cell-
wise decoder to use linear activation functions like LDVAE and does not implement the 
interpretability term. Fig. 2b and Supplementary Fig. S2 shows that siVAE-NB performs worse 
than the corresponding model with the Gaussian distribution (siVAE), suggesting that using a NB 
output layer does not lead to a more accurate cell embedding space. siVAE-linear is more 
accurate than LDVAE (Fig. 2b), indicating that the feature-wise encoder-decoder of siVAE is 
overall beneficial to dimensionality reduction. However, siVAE-linear performs more poorly than 
siVAE, verifying the non-linear activation functions are beneficial to dimensionality reduction.  
 
We also hypothesized that the interpretability term used in siVAE’s loss function would degrade 
the quality of dimensionality reduction to an extent, as siVAE uses the regularization term to 
enforce correspondence between the individual dimensions of the feature and cell embedding 
spaces to achieve interpretability. We therefore constructed siVAE (𝛾=0), representing a siVAE 
model in which we turn off the regularization term by setting its weight 𝛾 to 0 and therefore disable 
interpretation, but keep the feature embedding space. From Figure 2b, we can see the small gap 
in classification performance between siVAE and VAE closes with siVAE (𝛾=0), showing that the 
intepretability of siVAE comes at a small cost in classification performance, though not nearly as 
large a cost as using linear dimensionality reduction, as evidenced by the poorer performance of 
siVAE-linear and LDVAE. 
 
Finally, we repeated our classification experiments on three other image-based datasets (MNIST, 
Fashion-MNIST and CIFAR-10) to demonstrate our results in the fetal liver atlas generalize to 
data from different data modalities. We chose imaging datasets specifically to help validate our 
interpretation of the embedding spaces in the next section. Across these three image-based 
datasets, siVAE classification performance is within 1.6% of the VAE classification performance 
on average, again suggesting that interpretability comes at low cost to model performance. 
Interestingly, siVAE (𝛾=0) classification performance is actually slightly higher (1.4%) than the 
VAE on average (Fig. 2c), suggesting the feature-wise encoder-decoder improves performance.  
 
RESULTS – siVAE interprets cell embedding spaces faster and more accurately than 
existing feature attribution approaches 
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Having shown siVAE generates cell embedding spaces competitive with classic VAEs, we next 
verified that the interpretations of the embedding dimensions output by siVAE are accurate. Again, 
we define an interpretation of the cell embedding space as a matrix of feature loadings (or more 
generally, attributions) 𝑉𝑓,𝑘 of size 𝐹 ×  𝐾, where 𝐹 is the number of features (e.g. genes), 𝐾 is 

the number of cell dimensions, and the magnitude of 𝑉𝑓,𝑘 indicates the strength of association 

between cell state dimension 𝑘 and feature 𝑓 in the original data space.  
 
In contrast to methods such as siVAE and LDVAE that construct interpretable cell embedding 
spaces by design, there are two competing types of approaches to feature attribution in the 
literature that can help interpret cell embedding spaces post-inference. First, siVAE feature 
embeddings are analogous to general neural network feature attribution methods that quantify 
how each output node of a neural network depends on each input node (feature) of the network35, 
and include methods such as DeepLIFT36, saliency maps37, grad x input36, integrated gradients38, 
Shapley value39 and others35,40–44. One of the strengths of these approaches is they can be applied 
to any trained neural network in principle, making them highly generalizable.  Second, methods 
such as Gene Relevance45  have been developed specifically to interpret cell latent spaces for 
any DR method including those not based on neural networks, and can be applied after cell 
embedding spaces are learned. 
  
We first compared siVAE against Gene Relevance, using the neural network feature attribution 
methods as a gold standard as they have been extensively validated in other applications46.  
Figure 3a shows the mean pairwise correlation between the attributions of siVAE, Gene 
Relevance as well as three neural net feature attribution methods (saliency maps, grad x input, 
and DeepLIFT), where correlations have been averaged over each of the two feature  dimensions 
that siVAE used to infer the cell embedding space for the fetal liver dataset. We see siVAE 
loadings are highly correlated with the neural net feature attribution methods (median Spearman 
correlation of 0.73, p=1.1e-15) with siVAE in striking agreement with DeepLIFT in particular 
(median Spearman correlation of 0.98, p=2.2e-16). In contrast, while Gene Relevance produced 
feature attributions that were consistent across their parameter selections (median Spearman 
correlation of 0.84, p=3.10e-22), they were poorly correlated with both neural net feature 
attribution methods (median Spearman correlation of 0.11, p=2.1e-6) and siVAE (median 
Spearman correlation of 0.14, p=3.9e-6). These results suggest Gene Relevance is less 
competitive with siVAE at interpreting cell embedding spaces of VAE architectures. 
 
To provide a visual comparison of feature attributions, we trained siVAE to perform dimensionality 
reduction on a subset of the MNIST dataset consisting of black and white digits47. We focused on 
the digits 1 and 6 to ensure a human-visible separation of digits along individual embedding 
dimensions. Visualization of the cell embedding space confirms that images separate by digit as 
expected (Fig. 3b). We then ran all feature attribution methods to interpret each axis of Fig. 3b 
and found that again siVAE interpretations agreed more strongly with the neural net attribution 
methods (median Spearman correlation of 0.48, p=2.4e-27) compared to Gene Relevance 
(median Spearman correlation of 0.35, p=0.10). Visual inspection of the cell embedding space 
(Fig. 3b) suggest that the x-axis mainly captures variation within each of the 1 and 6 classes of 
digits, while the y-axis primarily distinguishes between the two digits, a finding consistent with the 
interpretations of the attribution methods (Fig. 3c). Additional experiments on the whole MNIST 
dataset with all digits also consistently show siVAE interpretations are in better agreement with 
feature attribution methods (median Spearman correlation of 0.89, p=1.07e-11) compared to 
Gene Relevance (median Spearman correlation of 0.12, p=0.14) (Supplementary Fig. S4).  
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For the above results, we applied the neural net attribution methods to the decoder of siVAE to 
generate the ground truth feature attributions. Previous work has suggested to apply attribution 
methods to the encoder to improve execution speed28,48. Here we found that running attribution 
methods on the siVAE encoder produce substantially different interpretations that are in strong 
disagreement with interpretations of the decoder (Supplementary Fig. S5) and inconsistent with 
the cell embedding space (Fig. 3b), suggesting interpretation of the encoder is not appropriate. 
These results make sense considering the primary role of the encoder is to compute an 
approximate posterior distribution of the latent embedding of each image (or cell), as opposed to 
the decoder, which is responsible for generating each image (or cell). Our results therefore 
suggest feature attributions should be applied to the decoder of VAEs instead of the encoder. 
 
During our experiments on interpreting cell embedding spaces, it became evident that a number 
of neural network feature attribution approaches were computationally expensive to execute. 
Because these feature attribution methods perform calculations separately for either each 
embedding dimension or each output node of the network, their run time scales linearly with the 
number of embedding dimensions or features when run on VAE decoders21. The number of 
embedding dimensions is expected to be larger as the number of cells in the dataset grows, to 
accommodate more heterogeneity in the dataset; also, the number of features would be expected 
to be large for assays such as scATAC-seq that profile hundreds of thousands of genomic regions 
or more. We conjecture this problem of long execution time has not been previously reported in 
the literature because feature attribution methods are typically run on supervised neural networks 
to interpret class label predictions, and so the number of output nodes is traditionally very small, 
unlike generative models in genomics applications.  
 
We therefore hypothesized that siVAE scales faster than the neural network attribution methods 
on larger single cell genomic datasets. To test this hypothesis, we assembled two datasets for 
execution time testing: the LargeBrainAtlas dataset published by 10x Genomics49 consisting of 
1.3 million brain cells and 27,998 genes measured with scRNA-seq, and the BrainCortex 

dataset50 consisting of 8k cells and 244,544 genomic regions measured with SNARE-seq. We 
first compared the execution time of training siVAE on the full LargeBrainAtlas dataset, against 
the run time of training a VAE and individually running each of five neural network attribution 
methods (saliency maps, grad*input, DeepLIFT, integrated gradients and Shapley values) to the 
trained VAE. We found that siVAE achieved an execution time of 2.5 days, less than half of the 
fastest neural network attribution method (forward mode of saliency maps) (Fig. 3d).  
 
To identify the most time-consuming aspects of feature attribution calculations for each method, 
we selected a subset of the LargeBrainAtlas dataset for varying the number of embedding 
dimensions from 20 to 512 and a subset of BrainCortex dataset for varying the number of 
features from 28k to 240k, to identify the speed bottlenecks. siVAE averaged 0.0073 days per 
embedding dimension (Fig. 3e) and 0.0027 days per 10k features (Fig. 3f), indicating siVAE 
execution time was robust to both the number of cells and features. On the other hand, we 
found the neural network attribution methods scale well when either the number of embedding 
dimensions or the number of input features is large, but not when they are both large. For 
example, DeepLIFT, Grad*Input (reverse-mode) and Saliency maps executed at 0.014, 0.0053, 
and 0.0012 days per embedding dimension respectively (Fig. 3e), but scaled poorly with 
respect to number of input features and executed at 2.9, 0.95, and 0.94 days per 10k features 
respectively (Fig. 3f). Switching Grad*Input and Saliency Maps to forward-mode led to fast 
execution times with respect to the number of input features (5.3e-4 and 6.5e-4 days per 10k 
features respectively (Fig. 3f)) but led to poor scaling with respect to the number of embedding 
dimensions (0.18 and 0.17 days per embedding dimension, respectively (Fig. 3e)). Slower 
attribution methods such as Integrated Gradients and Shapley Value were excluded due to their 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460498


infeasible execution times. In summary, the neural network attribution methods scale poorly 
either with the number of embedding dimensions or the number of input features depending on 
whether forward- or reverse-mode is used. This therefore makes their execution time slow 
relative to siVAE if both the number of features and embedding dimensions is large. 
 
RESULTS – Co-expressed genes cluster in the feature embedding space 
 
Feature attributions, or factor loadings, of linear DR methods such as PCA have been exploited 
extensively in the literature to gain insight into the gene co-expression network (GCN); here we 
explore the extent to which the siVAE loading matrix can be leveraged to gain insight into GCN 
structure. GCNs are graphs in which nodes represent genes and edges represent co-expression 
of a pair of genes. A GCN captures co-variation in gene expression measurements between pairs 
(or more) of genes across a population of cells. GCNs are of interest because they can be used 
to identify (1) cell population-specific gene modules, representing groups of genes that are highly 
co-expressed and therefore are likely to function together in a cell type-specific manner, as well 
as (2) gene hubs, which are genes that are connected via an edge to many more genes than is 
typical in the network, and typically represent key functional genes in the cell51,52. While GCN 
inference is valuable for interrogating gene regulatory patterns in a cell, GCN inference is a 
notoriously difficult and error-prone task53,54 because inferring them involves estimating many 
more parameters than the amount of data typically used to infer them55. 
 
In our application of dimensionality reduction in which features are all centered and scaled 
uniformly, the goal of DR methods is to learn (linear or non-linear) patterns of co-expression 
amongst the input features, that allow accurate reconstruction of the input data from low 
dimensional representations. It is therefore natural to ask whether a trained siVAE model could 
yield insight into gene co-expression network structure of the training data, without the need for 
explicit gene network inference. More specifically, we view the siVAE loading matrix that siVAE 
infers as a non-linear analog of the PCA loading matrix. Indeed, one can view probabilistic PCA56 
as a restricted form of a VAE in which all of the activation functions in the decoder are linear, no 
regularization is applied to the decoder weights, and the output distribution is an isotropic 
Gaussian.  
 
Previous work has shown that eigengenes (genes captured by factor loadings of PCA) represent 
network modules in the gene co-expression network57,58. We hypothesized that siVAE genes 
captured by feature loadings of siVAE may also represent network modules, and that co-
expressed genes in the training data are also proximal in the siVAE feature embedding space. To 
explore how a group of co-expressed genes are organized in the feature embedding space, we 
constructed a synthetic gene regulatory network consisting of five communities of 50 tightly 
correlated genes each, as well as an additional group of 50 independent, isolated genes (Fig. 
4a). Each community follows a hub-and-spoke model in which a hub gene is connected to every 
other gene in the community, and each gene in the community is in turn only connected to the 
hub. No edges connect genes from different communities. Based on this gene network, we 
sampled a single cell gene expression dataset consisting of 5,000 cells and 300 genes (see 
Methods). The sampled expression matrix was used to train siVAE to embed genes in its feature 
embedding space.  
 
We found that genes belonging to the same community co-localized in the feature embedding 
space, but interestingly, the hub nodes are embedded in distinct locations their corresponding 
community (Fig. 4b). Our interpretation of this observation is that given the limited capacity of the 
cell embedding space, siVAE tends to keep information specifically about each hub because of 
their high degree centrality and uses each hub to reconstruct the remaining nodes of their 
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corresponding community. On the other hand, non-hub genes within the same community co-
localize in the feature embedding space because the limited capacity of the VAE forces non-hub 
genes to be predicted similarly, given the retained information about the hub. Interestingly, the 50 
independent, isolated genes in the network were clustered tightly but near the origin in the feature 
embedding space, whereas genes that are part of a community are clustered but located farther 
away from the origin. This is likely because of two reasons. First, the KL divergence term of the 
feature-wise encoder-decoder of siVAE will tend to draw genes towards the origin. Second, 
because isolated genes by definition do not co-vary with other genes, information about their 
expression pattern will tend to be lost during compression, leading the VAE to tend to predict the 
average expression level of that gene in the decoder (which will be 0, because of data centering). 
This in turn encourages the feature embedding to be at the origin because the interpretability term 
encourages the linear product of the feature embedding with the feature loadings to predict the 
gene’s expression pattern, so if a feature is located at the origin in the feature embedding space, 
it will cause the predicted expression to be 0. 
 
We also confirmed that co-expressed genes cluster in the feature embedding space using the 
fetal liver cell atlas data. Unlike the simulations above, for the fetal liver atlas there are no ground-
truth gene regulatory networks available to use to identify truly co-expressed genes that are part 
of the same underlying gene communities. We therefore trained siVAE on the entire fetal liver 
atlas with 40 cell types, and considered marker genes of the same cell type59 to be a ground truth 
set of co-expressed genes. We selected only the four cell types with available marker genes for 
visualization (Fig. 4c). In the resulting feature embedding space learned by siVAE, we see that 
markers of the same cell type tend to cluster in feature embedding space as expected (Fig. 4d). 
Our results overall suggest that co-expressed genes tend to co-localize in siVAE feature 
embedding space. 
 
RESULTS – Gene hubs can be identified without explicit gene network inference 
 
Our observation that hub genes in a community are treated differently by siVAE led us to 
hypothesize that we may be able to identify hub genes from a trained siVAE model without 
inferring a GRN. Hub genes are often identified after GRN inference because they play essential 
roles both in terms of the structure of the network and the genome itself, and are often targets of 
genetic variants associated with disease60,61. We reasoned that because hub genes are 
connected to so many other genes, siVAE is more likely to store the expression patterns of hub 
genes in the compressed representation (latent embedding) for use in reconstructing the rest of 
the gene expression patterns. We therefore hypothesized that we could identify hub genes as 
those genes that are well reconstructed by a trained siVAE model, because if siVAE captures 
variation in hub gene expression in the cell embedding space, it should also reconstruct the hub 
gene expression more accurately than other genes. We therefore used gene-specific 
reconstruction accuracy in the siVAE model as GRN-free measure of degree centrality. As a 
ground truth measure of gene centrality, we calculated each gene’s individual ability to predict the 
expression levels of every other gene in the genome (see Methods), reasoning that a ‘hub’ gene 
should be predictive of many other genes in the network. 
 
Figure 5a compares siVAE’s estimate of gene centrality with gene centrality calculated on GRNs 
inferred using a number of existing GRN inference algorithms (see Methods). Overall, siVAE has 
the highest correlation between its predicted gene centrality and the ground truth centrality 
(Spearman rho=0.90, p = 2.2e-16), significantly larger than other approaches (median Spearman 
rho=0.36, p = 9.1e-11). When identifying hub genes in a network, it is typical to focus on the genes 
with highest predicted centrality. We found that the top 20 genes with highest predicted degree 
centrality for siVAE has mean ground truth degree centrality of 0.092. This compares favorably to 
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the GRN inference methods, for whom the median of mean ground truth degree centrality is 0.074 
for the top 20 most central genes identified by the GRN inference methods.  Figure 5b illustrates 
the cumulative ground truth degree centrality of the top predicted hubs according to each method, 
and siVAE consistently selects genes with the largest cumulative degree centrality of all tested 
methods. These results in total suggest that using siVAE, we can identify high degree centrality 
genes more accurately than the more classic approach of first inferring a gene co-expression 
network before identifying high degree centrality genes.  
 
RESULTS – Systematic differences in gene neighbors identified by dimensionality 
reduction and network inference methods 
 
Finally, we explored the extent to which we could identify neighboring genes that share an edge 
in a GRN, without having to infer GRNs explicitly. Gene neighbors tend to share similar function62, 
interact with one another63 and/or belong to the same gene community64. Identification of gene 
neighbors therefore aids in identifying co-functional genes in the cell.  
 
Here we hypothesized that we could identify gene neighbors directly using a trained siVAE model, 
instead of having to first infer an explicit GRN. GRN inference methods typically output edge 
weights between pairs of nodes in the network, where larger weights correspond to a greater 
chance the two nodes share an edge in the underlying GRN. For siVAE, we generate edge 
weights in two ways: (1) siVAE-Euc, the Euclidean distance of the two genes in the feature 
embedding space, where smaller distances correspond to closer proximity, and (2) siVAE-GRN, 
where we first sample a new scRNA-seq dataset from siVAE that matches the size of the training 
data, then run a GRN inference method (ARACNE, MRNET, CLR, and GRNBOOST2) on the 
sampled scRNA-seq dataset to calculate edge weights between genes. To quantitatively evaluate 
the accuracy of neighbor identification using each method, we measured the percentage variance 
explained of a given query gene when predicted by the expression levels of the nearest 20 genes 
ranked by edge weight to the query gene (see Methods). In our evaluations, we only consider the 
152 query genes which were predicted to have high degree centrality across all tested methods 
(see Methods).  
 
Overall, most methods identified neighbors that were equally predictive of the 152 query genes’ 
expression levels (Fig. 5c). Excluding LDVAE and ARACNE, the median % variance explained 

for each method was 79.9%  0.84 s.d. Supplementary Fig. S10 illustrates that excluding LDVAE 
and ARACNE, the pairwise difference in % variance explained between methods is only 0.013% 
on average. Notably, we observed lower % variance explained for LDVAE and ARACNE (on 
average, 77.2% variance explained, and 78.3% variance explained, respectively). The poorer 
results of LDVAE are consistent with our classification performance results above. 
 
When considering the overlap in neighbors selected by different methods, it is striking how the 
dimensionality reduction methods cluster strongly (scVI, siVAE, LDVAE) and the GRN inference-
based methods cluster strongly as well, with markedly less overlap between these two groups 
(Fig. 5d). This is surprising in part because the neighborhood sets are all approximately of the 
same predictive performance (Fig. 5c), suggesting the DR methods are systematically identifying 
different neighbors that are as equally co-expressed as the set identified by the GRN methods. In 
particular, consider that siVAE-GRN involves identifying gene neighbors using the GRN inference 
methodology, but just applied to a siVAE-generated dataset (instead of the original training 
dataset). Figure 5c illustrates that under the siVAE-GRN neighborhood identification framework, 
the neighborhood genes are still much more similar to siVAE than to the GRN inference methods, 
suggesting the unique neighborhood identified by the DR methods is a property of the co-
expression patterns that DR methods learn, and not due to the way in which neighborhood genes 
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are identified. The poor overlap between the DR and GRN methods also holds true if we consider 
the average pairwise correlation in expression between neighbor sets, instead of considering 
overlap of genes (Fig. 5e). More specifically, the GRN-defined neighbor sets had higher average 
Pearson correlation amongst themselves (average Pearson correlation = 0.67, excluding 
ARACNE) compared to the average Pearson correlation coefficient among the neural net-based 
neighbor sets (average Pearson correlation = 0.46). There was also low average correlation 
between DR and GRN neighbor sets (average Pearson correlation = 0.39). Our results therefore 
suggest that since GRN- and dimensionality reduction-identified neighbor sets are systematically 
different but approximately equally predictive of neighboring genes, then both approaches should 
be used to find co-expressed genes in a network. 
 
Discussion 
 
Through the development of siVAE, we have mitigated one of the primary limitations of the 
interpretation of VAEs: the slow execution time of neural network feature attribution methods 
when the number of input features and embedding dimensions of the cell embedding space are 
both large. Single cell atlases are ever-increasing in size due to the dropping cost of single cell 
sequencing65. Also, there is rapidly increasing interest and development of multi-modal single cell 
assays such as SNARE-Seq66, ECCITE-Seq67, and SHARE-Seq68 that measure multiple data 
modalities (RNA, ATAC) simultaneously and are yielding single cell measurements with up to 
hundreds of thousands of input features, which will then demand large cell embedding spaces to 
accurately capture covariation in input features. As such, we expect the importance of scalable, 
interpretable VAEs will continue to grow.  
 
Our analysis has also demonstrated how interpretation of cell embedding spaces can lead to 
insight into the gene regulatory networks underlying the cell population siVAE is trained on. In 
addition to showing how co-expressed groups of genes can be identified, we also showed how 
we can identify hub genes, without inferring an explicit GCN. This is useful because GCN 
inference continues to be a highly challenging task, even in the era of large numbers of cells 
sequenced from single cell assays15. By comparing VAEs trained on different cell populations, it 
is likely possible to identify differential co-expression patterns between cell populations, also 
without explicit GCN inference. 
 
A surprising observation we made was that the set of neighbors of a given gene with respect to 
the underlying GCN is systematically different between explicit GCN inference methods and the 
dimensionality reduction methods. This even holds true when a trained siVAE model was used to 
sample expression data that was then sent as input into a classic GCN inference method; in this 
scenario, the resulting GCN yielded neighbors that were similar to those identified directly from 
the DR methods. Our experiments further showed that both neighborhood sets are equally co-
expressed with the query gene, suggesting at the least that accurate GCN construction should 
leverage both of these types of approaches to identifying gene neighbors. One possible 
explanation is that DR methods can learn to combine many genes into a single embedding 
dimension, whereas explicit GCN inference methods ultimately represent co-expression patterns 
as individual edges between only pairs of genes, and therefore are more limited in their capacity 
to represent higher order co-expression patterns. 
 
While we have chosen the classic VAE framework upon which to build siVAE, our approach to 
introducing a feature-wise decoder and interpretability term is generalizable and can be applied 
to other general extensions of VAE, such as VAE-GANs, 𝛽-VAE among others 69,70. With respect 
to genomic data modalities such as epigenomics, miRNA and scRNA-seq, methods such as RE-
VAE16, methCancer-gen17, VAEMDA19, scMVAE18, scVI21, Dr.VAE25, scGen26, and Dhaka22 could 
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also benefit from similar interpretability terms such as that used for siVAE. As such, our work on 
making VAEs interpretable can be applied across the diverse domains 21,27,71 that VAEs have and 
will be applied to in the future.  
 
A related set of approaches to increasing interpretability of generative models focuses on 
disentanglement learning. In particular, methods such as InfoGAN72, FactorVAE48, DirVAE73 and 
others70,74,75 modify generative models such as the VAE to achieve disentangled representation 
by encouraging the individual cell dimensions to be statistically independent. They show that 
independence between cell dimensions oftentimes leads to more correspondence between 
individual cell dimensions and tangible factors such as width and rotation of digits for MNIST. 
However, we do not consider these model variants here because they do not provide contributions 
of individual features to cell dimensions. These approaches still require users to manually draw 
samples of points from the cell embedding space, reconstruct the input features from the cell 
dimensions, then use human intervention to manually inspect how variation across specific 
dimensions might correspond to human-interpretable factors of variation. However, the 
regularization terms that encourages disentanglement between the cell dimensions may be 
applied to siVAE. This would help remove the entanglement between cell dimensions such as the 
overlapping outlines of digits in siVAE loadings for the MNIST dataset.   
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METHODS 
 
Model notation. We denote vectors as lower case, bold letters (e.g. 𝒛). Matrices are upper case 
letters with two subscript indices (e.g. 𝑋𝑐,𝑓). Constants are upper case letters with no subscripts 

(e.g. 𝐿).  
 
Generative process of VAEs. siVAE is an extension of a classic variational autoencoder. Here 
we briefly review the generative process assumed by a standard VAE with 𝐿 hidden layers in the 
decoder, and in which the hidden units of the last layer of the decoder are linearly transformed 
into the predicted mean of the Gaussian distribution over the observed data:  
 𝒛𝑐,1~𝑁(0, 𝐼𝐾) 1 

 𝒛𝑐,ℓ = 𝜇ℓ(𝒛𝑐,ℓ−1), ℓ = 2, … , 𝐿 2 

 𝑋𝑐,𝑓~𝑁(𝒗𝑓
𝑇𝒛𝑐,𝐿 , 𝜎𝑑(𝒛𝑐,𝐿)) 3 

 
𝑋𝑐,𝑓 is the input observed value for feature (e.g. gene) 𝑓 and cell 𝑐 (centered and scaled across 

all cells), where we assume there are 𝐹  features and 𝐶  cells in the training data.  𝒛𝑐,1 is the 

embedding of cell 𝑐 in the (latent) cell embedding space of the VAE, while 𝒛𝑐,ℓ for ℓ > 1 represent 

the activations of the hidden layer ℓ of the decoder for cell 𝑐. 𝒗𝑓 is the vector of incoming weights 

to the predicted mean of the output node 𝑓 of the VAE, while 𝜎𝑑(⋅) is a one-layer function that 
predicts a non-negative scalar value representing variance. 𝐼𝐾 is the identity matrix of rank 𝐾.  

𝜇1(⋅), … , 𝜇𝐿(⋅) represent the parameterized activation functions of hidden layers 1, … , 𝐿 of the cell-
wise decoder, respectively. 
 
Generative process of siVAE. The key idea behind siVAE is that we jointly infer cell-wise and 
feature-wise state spaces, and through regularization, loosely enforce correspondence between 
the cell and feature dimensions. Here, correspondence means variation in dimension 𝑘 in the cell 
embedding space corresponds to observed variation in each feature 𝑓 that is proportional to 

feature 𝑓 ’s embedding coordinate in dimension 𝑘 . Through correspondence, the feature 
embedding coordinates (`siVAE loadings') become analogous to factor loadings, and the cell 
embedding coordinates (`siVAE scores') become analogous to the factor scores of PCA. In siVAE, 
the feature and cell embeddings are sampled from different latent spaces and projected to higher 
dimensions through separate decoders, before combining to produce the means of the Gaussians 
(Figure 1a). The generative process assumed by siVAE is shown below: 
 
 𝒛𝑐,1~𝑁(0, 𝐼𝐾) 4 

 𝒛𝑐,ℓ = 𝜇ℓ(𝒛𝑐,ℓ−1), ℓ = 2, … , 𝐿 5 

 𝒗𝑓,1~𝑁(0, 𝐼𝐾) 6 

 𝒗𝑓,ℓ = 𝜔ℓ(𝒗𝑓,ℓ−1), ℓ = 2, … , 𝐿 7 

 𝑋𝑐,𝑓~𝑁(𝒗𝑓,𝐿
𝑇 𝒛𝑐,𝐿 , 𝜎𝑑(𝒛𝑐,𝐿)) 8 
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Here 𝒛𝑐,𝐿, 𝜇ℓ(⋅), 𝐼𝐾 and 𝜎(⋅) are defined as above for VAEs. 𝒗𝑓,1 is the latent embedding of feature 

𝑓  in the feature embedding space of siVAE, while 𝒗𝑔,ℓ  for ℓ > 1 represent the activations of 

hidden layer ℓ of the feature-wise decoder for feature 𝑓.  𝜔1(⋅), … , 𝜔𝐿(⋅) represent the activation 
functions of hidden layers 1, … , 𝐿 of the feature-wise decoder, respectively. 
 
Comparing Equations 3 to Equations 6-8 illustrate that siVAE turns the last layer of weights leading 

to the Gaussian mean of the VAE into a non-linear transformation of the latent variables 𝒗𝑓,1. 

siVAE can therefore be viewed as putting a prior over a single (last) layer of weights in the VAE. 

The matrix 𝑉 = [𝒗1,1, ⋯ , 𝒗𝐹,1]
𝑇
 encodes the siVAE loadings, while the matrix 𝑍 = [𝒛1,1, ⋯ , 𝒛𝐶,1] 

encodes the siVAE scores. Note that we can compute siVAE loadings and scores of other hidden 
layers ℓ as well, but in this paper, we focus on the latent space (ℓ = 1). 
 
 
Inference and training. We employ variational inference via a pair of encoder networks, 𝜓(𝑋:,𝑓) 

for features and 𝜙(𝑋𝑐,:) for cells, in a manner analogous to variational inference applied to VAEs. 

Note the input for the two encoders is different: 𝑋:,𝑓 is a vector of observations for a single feature 

𝑓 across all training cells, whereas 𝑋𝑐,: is a vector of observations for a single cell 𝑐 across all 

features. Our approximate posterior 𝑞 ({𝒗𝑓,1}
𝑓=1

𝐹
, {𝒛𝑐,1}

𝑐=1

𝐶
) factors as follows: 

 
𝑞 ({𝒗𝑓,1}

𝑓=1

𝐹
, {𝒛𝑐,1}

𝑐=1

𝐶
) = ∏ 𝑞(𝒗𝑓,1)

𝐹

𝑓=1

∏ 𝑞(𝒛𝑐,1)

𝐶

𝑐=1

 
9 

  𝑞(𝒗𝑓,1) = 𝑁(𝒗𝑓,1; 𝑊𝜓
𝑇𝜓(𝑋:,𝑓), 𝜎𝑒,𝜓(𝜓(𝑋:,𝑓))) 10 

 𝑞(𝒛𝑐,1) = 𝑁(𝒛𝑐,1; 𝑊𝜙
𝑇𝜙(𝑋𝑐,:), 𝜎𝑒,𝜙(𝜙(𝑋𝑐,:))) 11 

 
We perform variational inference and learning by maximizing the expected lower bound function 

ℓSIVAE, where ℓKL = KL (𝑞 ({𝒗𝑓,1}
𝑓=1

𝐹
, {𝒛𝑐,1}

𝑐=1

𝐶
) ∥ 𝑝 ({𝒗𝑓,1}

𝑓=1

𝐹
, {𝒛𝑐,1}

𝑐=1

𝐶
)). 

 
 
 

ℓSIVAE = ℓKL + 𝔼𝑞(𝒛𝑐,1,𝒗𝑓,1) [∑ ∑ log 𝑁(𝑋𝑐,𝑓; 𝒗𝑓,𝐿
𝑇 𝒛𝑐,𝐿, 𝜎𝑑(𝒛𝑐,𝐿))

𝑓𝑐

] 

12 

 
 
Interpretability term. The right-hand side of Equation 12 is analogous to the KL divergence and 

reconstruction loss terms of the original VAE lower bound function. The term in Equation 13, which 

we call the interpretability term, encourages the individual embedding dimensions of 𝒗𝑓,1 and 𝒛𝑐,1 

to correspond to each other, by encouraging the linear products between 𝒗𝑓,1  and 𝒛𝑐,1  to 

approximate 𝑋𝑐,𝑓. In our experiments, we set the penalty term 𝛾 = 0.05 to make the effect of the 

interpretability term small on the overall loss function. 
 
Reducing dimensionality of input for feature-wise encoder-decoder. The size of input 𝑋:,𝑓 for 

feature-wise encoder-decoder increases with 𝐶 , number of cells. To avoid the computational 

 

−𝛾𝔼𝑞(𝒛𝑐,1,𝒗𝑓,1) [∑ ∑ log 𝑁(𝑋𝑐,𝑓; 𝒗𝑓,1
𝑇 𝒛𝑐,1, 1)

𝑓𝑐

] 

13 
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expenses of models with potentially millions of input nodes, we reduce the dimensionality of the 
input from 𝐶 to 𝐶𝑟𝑒𝑑 through either downsampling or PCA. For downsampled input, we randomly 

sample 𝐶𝑟𝑒𝑑  cells while maintaining the ratio between the cell types which accounts for 
redundancy of information between cell types with similar gene expression patterns. For PCA 

input, we performed  PCA without whitening on 𝑋𝑇, 𝐺 𝑥 𝐶 matrix and retained first 𝐶𝑟𝑒𝑑 principal 

components resulting in 𝑋′𝑇 , 𝐺 𝑥 𝐶𝑟𝑒𝑑 score matrix. The preservation of linear covariation with 
PCA is analogous to common usage of PCA before t-SNE or UMAP. In Supplementary Fig. 
SXX, we show training the feature-wise encoder-decoder with downsampled and PCA inputs both 
results in loss and clustering accuracy score comparable to that of model trained with the full data. 
 
Training procedure for siVAE. We use a three-step training procedure to improve inference and 
learning, described in more detail in the Supplementary Materials: 

• Pre-train cell-wise encoder and decoder. We first train the cell-wise encoder and decoder, 
similar to how a classic VAE is trained, by optimizing the Equation 12 component of ℓSIVAE with 

respect to {𝜇ℓ, 𝜎𝑑 , 𝜙, 𝜎𝑒,𝜙, 𝑊𝜙}, and by treating the variables 𝒗𝑓,𝐿 as parameters to optimize to 

estimate �̃�𝑔,𝐿. The input to the cell-wise decoder are the cell-wise data points 𝑋𝑐,:, and the 

output are the same data points 𝑋𝑐,:. 

• Pre-train feature-wise encoder and decoder. We next train the parameters associated with 
the feature-wise encoder and decoder, namely {𝜔ℓ, 𝜓, 𝜎𝑒,𝜓, 𝑊𝜓},  by training a VAE whose 

inputs are the data features 𝑋:,𝑓, outputs are �̃�𝑓,𝐿 learned from the previous step, and whose 

encoder is defined by {𝜓, 𝜎𝑒,𝜓, 𝑊𝜓}, and decoder parameterized by 𝜔ℓ, for ℓ = 1, … , 𝐿 − 1. 

• Train siVAE. We finally train all model parameters {𝜇ℓ, 𝜎𝑑, 𝜙, 𝜎𝑒,𝜙, 𝑊𝜙, 𝜔ℓ, 𝜓, 𝜎𝑒,𝜓, 𝑊𝜓} jointly 

by optimizing the full ℓSIVAE from Equation 12,13. 

 
siVAE and VAE network design. For our experiments, identical neural net designs were used 
across the feature-wise and cell-wise encoders and decoders in siVAE. The architecture of the 
VAEs we compared against were matched to the architecture of the cell-wise encoder/decoders 
of siVAE. For MNIST and Fashion-MNIST, we set the architecture of the encoder to two hidden 
layers of sizes 512 and 128, and the decoder to two hidden layers of sizes 128 and 512. For all 
other datasets except the LargeBrainAtlas dataset, we set the architecture of the encoder to three 
hidden layers of sizes 1024, 512 and 128, and the decoder to three hidden layers of sizes 128, 
512 and 1024. LargeBrainDataset, we trained an encoder with three hidden layers of sizes 2048, 
1024, and 512, and the decoder with three hidden layers of sizes 512, 1024, and 2048. We used 
a latent embedding layer with size varying between 2, 5, 10 and 20 nodes for all imaging datasets. 
For the fetal liver atlas, we set the latent embedding layer size to be 2 for visualization and 64 for 
all other cases. In the timing experiment, we varied the latent embedding layer size between 20, 
128 and 512 for the LargeBrainAtlas dataset, while setting the latent embedding layer size at 2 
for the scATAC-Seq dataset. Additional implementation details as well as a table containing the 
above information on network design can be found in the Supplementary Materials 
(Supplementary Table 1). 
 
siVAE and VAE model selection. We set model hyperparameters and optimization parameters 
by performing a hyperparameter search for the model with lowest total loss on the held-out data. 
For each model, we used the Adam optimizer for training, with a learning rate of either 0.0001, 
0.001, or 0.01. We considered L2 regularization with scale factor 𝜆 of either 0.001 or 0.01. For 
imaging datasets, we set the number of embedding dimensions to 20. For genomic datasets, we 
used two embedding dimensions for models that were used for visualization, and otherwise 
considered sizes of 16, 32 and 64 for all other analyses. 
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siVAE model variants. To explore the role of different design choices of siVAE, we created 
several variants of the siVAE model described above. siVAE (𝛾 = 0) removes the interpretability 

term in Equation 13 (by default, 𝛾 = 0.05).  For comparison against LDVAE, whose decoder 
network ultimately predicts the parameters for negative binomial distributions instead of the 
parameters of a Gaussian distribution as implemented in siVAE and VAE, we also implemented 
both siVAE (NB) that predicts the parameters of a negative binomial distribution and VAE (linear) 
that is an identical implementation of LDVAE. siVAE (NB) is formulated as follows, where 𝑙𝜇 , 𝑙𝜎 

parametrize the prior for scaling factor and are set to empirical mean and variance of the observed 
data: 
 
 𝑙𝑐~ log normal(𝑙𝜇 , 𝑙𝜎

2) 14 

                 𝜌𝑐,𝑓 = softmax(𝒗𝑓,𝐿
𝑇 𝒛𝑐,𝐿) 15 

                 𝑚𝑐,𝑓~Gamma(𝜌𝑐,𝑓 , 𝜎𝑑(𝒛𝑐,𝐿)) 16 

 𝑋𝑐,𝑓~Poisson(𝑙𝑐𝑚𝑐,𝑓) 17 

   
 

ℓ𝑆𝐼𝑉𝐴𝐸𝑁𝐵
= ℓKL + 𝔼𝑞(𝒛𝑐,1,𝒗𝑓,1) [∑ ∑ log Poisson(𝑋𝑐,𝑓; 𝑙𝑐𝑚𝑐,𝑓)

𝑓𝑐

] 

18 

 
 

VAE (linear) is identical to siVAE (NB) except 𝒗𝑓,𝐿
𝑇  is replaced by 𝜙𝑓, an estimated parameter that 

matches the length of 𝒛𝑐,𝐿, thereby removing thefeature-wise encoder-decoder from the model. 

Finally, we implemented siVAE (linear), where the mean of the distribution over 𝑋𝑐,𝑓 is directly 

predicted from linear multiplication of cell and feature embeddings. The reconstruction loss term 
corresponds to interpretability term, eliminating need for the latter.  
 
 𝑋𝑐,𝑓~𝑁(𝒗𝑓,1

𝑇 𝒛𝑐,1, 𝜎𝑑(𝒛𝑐,1)) 19 

 

ℓSIVAELINEAR
= ℓKL + 𝔼𝑞(𝒛𝑐,1,𝒗𝑓,1) [∑ ∑ log 𝑁(𝑋𝑐,𝑓; 𝒗𝑓,1

𝑇 𝒛𝑐,1, 𝜎𝑑(𝒛𝑐,1))

𝑓𝑐

] 

20 

 
 
siVAE model availability. siVAE is implemented as a Python package and is available from PyPi 
(https://pypi.org/project/siVAE/). 
 
LDVAE and scVI. We used LDVAE29 and scVI21 implemented in SCANPY76 package available 
from PyPi. The architecture of the model was set to match that of the cell-wise encoder-decoder 
of siVAE, including the number of dimensions of the cell embedding space and the number of 
hidden layers, as well as the number of hidden nodes. Model optimization was performed by 
varying learning rate between 1e-2, 1e-3, and 1e-4 while the rest of the parameters were set to 
default. 
 
Feature attribution methods. Two separate Python packages were used to compute neural 
network feature attributions in our experiments. We used the DeepExplain Python package that 
implemented all feature attribution methods (Saliency Maps, Grad*Int, DeepLIFT, IntGrad, 
Shapley Value) included in our experiments in reverse-mode77. We used the tensorflow-forward-
ad Python package for computing Saliency Maps and Grad*Int in forward-mode78. In both cases, 
the package applies feature attribution between the target nodes and input nodes. For application 
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of feature attributions on the decoder, the target nodes and input nodes were set to be the nodes 
of the output layer and latent embedding layer, respectively, for the cell-wise decoder. For 
application of feature attributions on the encoder, the target nodes and input nodes were set to 
be the nodes of the latent embedding layer and input layer, respectively, for the cell-wise encoder. 
By default, the DeepExplain package summarizes the attribution across all target nodes, so binary 
masks corresponding to a single target node were used per target node. Similarly, the tensorflow-
forward-ad package summarizes attribution across all input nodes, so binary masks 
corresponding to a single input node were used per input node. Integrated Gradients and 
DeepLIFT require an additional parameter of input baseline, which represents a default null value 
that input values can be referenced against. We set this value to 0 equaling the mean value of 
gene expression after preprocessing.   
 
For Gene Relevance, we used the published R package45. The method required the latent 
embeddings learned from siVAE as well as the raw count data corresponding to the embeddings. 
We also varied the number of neighborhoods (10, 100, 1000, and default).  
 
 
Feature embeddings for feature attribution methods and Gene Relevance. All feature 
attribution methods tested here can output feature importance scores 𝒔𝑓,𝑐 that represents a vector 

of contributions of feature 𝑓 to all cell dimension 𝑑 for cell 𝑐. The Gene Relevance method45 
outputs partial derivatives in the same format. In contrast, siVAE loadings 𝒗𝑓,1 represents a vector 

of contributions of feature 𝑓 to all cell dimensions, summarized over all cells. To compare feature 
attribution methods to siVAE, we therefore need a procedure for converting the per-cell 
attributions 𝒔𝑓,𝑐 into a set of overall feature attributions 𝒖𝑓 for each feature f with respect to all cell 

dimensions and that summarize across all cells, analogous to siVAE’s loadings 𝒗𝑓,1. To do so, we 

first construct a matrix 𝑆𝑑,𝑓,𝑐, containing all feature attributions for cell dimension 𝑑, cell 𝑐 and 

feature 𝑓. For each cell dimension 𝑑, we apply PCA to the 2D matrix 𝑆𝑑,:,: to extract the first 

principal component's loadings 𝒖:,𝑑, a vector of length 𝐹 that contains the contribution of each 

input feature 𝑓  to cell dimension 𝑑 . Repeating this process for each cell dimensions then 
concatenate the resulting vector results in matrix 𝑼𝑓,𝑑, whose rows 𝑼𝑓,: are analogous to siVAE's 

𝒗𝑓,1 . Finally, we calculated Spearman correlation with two-sided test between the feature 

embeddings inferred through different approaches per dimension and reported the median 
values. 
 
Datasets. A table summarizing the following datasets can be found in Supplementary Table 2. 
 
Fetal liver atlas dataset processing. We obtained the fetal liver atlas31 from ArrayExpress with 
accession code E-MTAB-7407 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7407/) 
on 2020/06/10, in processed form. We normalized the count matrix to TP10K, then performed 
feature selection by retaining the top 2,000 highly variable genes, yielding 177,376 cells and 2,000 
genes. We then downsampled the number of cells to 100,000 cells, while preserving the 
proportion of cells from each cell type. Genes were individually centered and scaled to unit 
variance. For visualization of the feature embeddings for the liver fetal atlas in Figure 3b, we 
obtained marker genes for four cell types (hepatocytes, Kupffer cells, NK/NKT cells, and MHC II 
positive B cells) that were available in the MSigDB database79 (downloaded from http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp#C8 on 2020/02/08). To account for the multiple subtype 
labels in the fetal liver dataset matching to a single cell type in marker gene set, we allowed many-
to-one mapping by grouping multiple cell type labels in the dataset that corresponded to one of 
the cell types in marker gene database. The exact groupings are shown in Supplementary Table 
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3. We only visualized the cells with known marker genes, and genes that belonged to more than 
one marker gene set (shared across cell types as a marker) were discarded.  
 
MNIST and Fashion-MNIST dataset processing. We obtained both datasets from the 
TensorFlow datasets web page on 2020/02/20. Images were flattened and centered and scaled 
to unit variance per feature across all images before input into the models. 
 
CIFAR-10 dataset processing. We obtained CIFAR-10 from the TensorFlow datasets web page 
on 2020/02/20. We then subsampled the image classes to only the airplane and ship classes 
because other image classes require convolutional layers to achieve good classification 
performance, but here our goal was to benchmark VAEs. Images were flattened and centered 
and scaled to unit variance per feature across all images before input into the models. Color 
channels were concatenated and flattened. 
 
LargeBrainAtlas dataset processing. We obtained the 1.3 Million Brain Cells dataset referred 
to as “LargeBrainAtlas” from the 10x Genomics website (https://support.10xgenomics.com/single-
cell-gene-expression/ software/pipelines/latest/advanced/h5_matrices) on 2020/04/28. We 
normalized the count matrix to TP10K, then retained all genes. After, genes were individually 
centered and scaled to unit variance.  
 
BrainCortex dataset processing. We obtained the BrainCortex dataset (GSE126074) from 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074) on 2020/12/01. We 
performed quality control based on TSS enrichment and nucleosome signal which filtered the 
dataset down to 244,544 features.  
 
Generation of simulated scRNA-seq datasets from a gene network. To explore the 
organization of genes in siVAE feature embedding space, we simulated scRNA-seq data where 
the correlations between genes is consistent with a specified gene co-expression network. We 
designed a gene co-expression network that consisted of five communities of 50 genes each, as 
well as an additional set of 50 isolated genes that are independently varying. Each community 
included a single hub gene that was connected to the other 49 genes in the community, in a hub-
and-spoke model. No other genes in the community were connected to any other gene. All edge 
weights representing pairwise correlations between genes in the same community were set to 
0.6. The adjacency matrix capturing the co-expression patterns between the 300 genes were 
converted to covariance matrix via the qpgraph R package80, using the function qpG2Sigma with 
parameters rho=0.6.  Afterwards, we used the resulting covariance matrix as input to a 
multivariate Gaussian distribution and sampled 5,000 cells for training with siVAE.  
 
Cell type classification. The five-fold nested cross validation experiments reported in Figure 1c 
compares the performance of siVAE, VAE, and LDVAE on the fetal liver atlas dataset when 
matching their cell-wise encoder and decoder network designs. The number of embedding 
dimensions was fixed to be 2. After training using the training fold, the encoders were used to 
compute embeddings for the training and test datasets. We then used a 𝑘-NN (𝑘 = 80) classifier 
to predict labels of test cells based on the embeddings of the training and testing datasets. Similar 
five-fold nested cross validation experiments were performed on the imaging datasets (MNIST, 
Fashion MNIST, CIFAR-10). However, we allowed the model to individually select the number of 
embedding dimensions 𝐾 from the set {2,5,10,20} using the training fold. In addition, the number 
of clusters, 𝑘, was set to 15 as imaging datasets have far fewer classes than the fetal liver atlas 
dataset. 
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Execution time comparison experiments. We performed a series of experiments to compare 
siVAE training execution time against the combined execution time of VAE training and executing 
feature attribution methods. For Saliency Maps and Grad * Int, both forward and reverse modes 
were used. The majority of the feature attribution methods rely on taking the gradient of a single 
output nodes with respect to all input nodes using automatic differentiation in reverse-mode. For 
models with high number of output nodes, the operation becomes computationally infeasible. 
Using automatic differentiation in forward-mode allows gradient calculation of all output nodes 
with respect to a single input node but faces the same computational issue for models with high 
number of input nodes. 
 
For the first experiment, we benchmarked using the 10x Genomics dataset. In the case of the 
feature attribution execution times, we extrapolated the execution time on the LargeBrainAtlas 
dataset from the execution time on 100,000 cells, due to time constraints and the fact that runtime 
of these methods should scale linearly with the number of cells. In contrast, execution times of 
siVAE are those measured on the full dataset. For the second experiment, we tested the effect of 
varying the either the number of embedding dimensions or the number of features on the 
execution time. As the execution time for two feature attribution methods (Integrated Gradients 
and Shapley Values) exceeded a realistic run time of 100 days, only the faster three methods 
(Saliency Maps, Grad * Int, and DeepLIFT) were used for the second experiment. For the 10x 
Genomics dataset, the number of embedding dimensions were set to 20, 100 and 500. Similar to 
the first experiment, siVAE was run on the entire set of 1.3 million cells, and the VAE+feature 
attribution approaches were run on 100,000 cells and then linearly interpolated to the full dataset 
size. For the scATAC-seq execution times, we varied the number of features by selecting the top 
𝑛 highly variable genomic regions, where 𝑛 was set to either 28k, 120k or 240k. We used a single 
NVIDIA GeForce GTX1080 Ti GPU, Intel Core i5-6600K CPU, and 32 GB RAM for all 
experiments. 
 
Estimating gene centrality using siVAE. We reasoned that the expression patterns of genes 
with high degree centrality would be most likely to be retained by siVAE during dimensionality 
reduction, because those genes could be used to reconstruct the expression patterns of the many 
other genes connected to them. If so, then the hub genes would also be likely to be the genes 
whose expression patterns are reconstructed with the lowest error. We therefore define gene 
centrality for siVAE as the negative reconstruction error of siVAE on each individual gene during 
training.  
 
Estimating gene centrality using GCN inference methods. The GCN inference methods 
tested here all output pairwise weights between genes, where larger weights indicated higher 
confidence in a pairwise edge in the underlying GCN. We therefore measured each query gene’s 
degree centrality for GCN inference methods by averaging the weights between the query gene 
and every other gene in the network. 
 
Estimating the ground truth gene centrality. To compute the accuracy of siVAE-based gene 
centrality and GCN-based gene centrality, we generated ground truth gene centrality estimates 
as follows. We reasoned that a well-connected gene with high degree centrality would be highly 
co-expressed with many other genes in the genome, either in a linear or non-linear way. One way 
to quantitatively measure the degree of co-expression of a single query gene to all other genes is 
to measure how well the query gene can predict the expression level of all other genes in the 
genome. Therefore, our ground-truth gene centrality is defined as the percentage of variance 
explained by a query gene, with respect to all other genes in the genome. To measure percentage 
variance explained, for each gene in the genome, we trained a neural network consisting of a 
single input node (corresponding to the query gene expression), 3 hidden layers with 128, 512, 
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and 1024 nodes, and a final output layer of 2000 nodes for all remaining genes in the genome. 

The percentage variance explained per gene was measured as 1 − Var(𝑋:,𝑔 − �̂�:,𝑔)/Var(𝑋:,𝑔) 

where  �̂�:,𝑔  is a vector of expressions for 𝑋:,𝑔  predicted by siVAE. We then averaged the 

percentage variance explained over all predicted genes, for all cells in a dataset, and refer to this 
quantity as the ground truth gene centrality.  
 
Identifying gene co-expression network neighbors from siVAE models. GCN inference 
methods typically output a weighted adjacency matrix that indicates the strength of co-expression 
of every pair of genes, which in turn could be used to find the closest neighbors of every gene in 
the genome based on the largest values of the adjacency matrix. In our experiments in Figure 
5c, we used siVAE to also identify the closest co-expression neighbors of every gene in the 
genome, using two different approaches based on leveraging the feature embedding space. In 
our first approach (‘distance-based network neighbors’), we used Euclidean distance in the 
feature embedding space as a measure of distance between two genes in the network; the 𝑘 

nearest neighbors of a given query gene were defined as the 𝑘 genes with shortest distance to 
the query gene. Our second approach, termed the ‘GCN-based network neighbors’, involved 
passing a matrix of feature embeddings to a GCN inference method (CLR) as input in place of 
the typical gene expression matrix input, in order to infer a classic gene co-expression network. 
From this gene co-expression network, we extracted the nearest neighbors of every gene 
according to the strategy described below for GCN inference methods.  
 
Identifying gene co-expression network neighbors using GCN inference methods. For GCN 
inference methods, we used the output adjacency matrix to identify the closest 20 neighborhood 
genes per target gene based on largest pairwise weights for each gene. 
 
Benchmarking gene neighborhoods. We computed the accuracy of both siVAE to the GCN 
inference methods in terms of their ability to identify neighbor genes that are co-expressed. To do 
so, we applied each method to identify the 20 closest neighbor genes to the query gene. We then 
defined a prediction task in which the 20 neighbor genes were used as input to a neural network 
to predict the expression of the target query gene. We used a fully connected neural network 
consisting of 3 hidden layers each with 16, 8, and 4 nodes, in addition to the input layer (with 20 
nodes corresponding to the 20 closest neighbors), and the output layer consisting of a single node 
for the query gene. Accuracy was defined as the percentage variance explained with respect to 
the query gene. We compared siVAE to the GCN methods based on a set of 152 query genes, 
which were identified by taking the intersection of siVAE and each GCN inference method’s top 
500 highest centrality genes, to ensure that the query genes were of high degree centrality (and 
therefore should have many neighbor genes). 
 
Quantifying overlap in gene neighborhoods between siVAE and other methods. We also 

used two different strategies to gauge the overlap in the gene neighborhoods predicted by 

siVAE and each GCN inference method, defined as the 20 closest genes to every query gene. 

For percentage overlap, we measured the percentage of genes that overlapped between any 

two sets of neighborhood genes. For mean correlation, we measured the Pearson correlations 

with two-sided test of gene expression between every pair of genes between two neighborhood 

gene sets for the same query gene, then averaged the 20*20 = 400 correlation values together 

to compute mean correlation.  
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Model Interpretability Reg. Decoder Observation model 

siVAE Yes Non-Linear Gaussian 

siVAE (𝛾 = 0) No Non-linear Gaussian 

siVAE-linear No Linear Gaussian 

siVAE-NB Yes Non-linear Negative Binomial 

VAE NA Non-linear Gaussian 

scVI NA Non-linear Negative Binomial 

LDVAE NA Linear, single Negative Binomial 

VAE (linear) NA Linear, single Negative Binomial 

 
Table 1. List of model variations with corresponding features. Usage of the interpretability term 
only applies to siVAE and its variants. A linear decoder is composed of the same number of layers 
as the non-linear decoder unless specified as single, in which case the latent embedding layer is 
directly transformed to an output layer.  
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Figure 1: The siVAE model for inferring interpretable representations of single cell 

genomic data. (a) The input to siVAE is a cell by feature matrix; shown here is a synthetic gene 

expression matrix of eight genes, four of which are tightly regulated (genes 1,2,3, 4), and the 

other four of which vary independently (5,6,7, 8). siVAE is a neural network consisting of a pair 

of encoder-decoders, that jointly learn a cell embedding space and feature embedding space. 

The “cell-wise encoder-decoder” acts like a traditional VAE, where the input to the encoder is a 

single cell 𝑐’s measurement across all input features (𝑋𝑐,:). The cell-wise encoder uses the input 

cell measurements to compute an approximate posterior distribution over the location of the cell 

in the cell embedding space. The “feature-wise encoder-decoder” takes as input measurements 

for a single feature 𝑓 across all input training cells (𝑋:,𝑓). The feature-wise encoder uses the 

input feature measurements to compute an approximate posterior distribution over the location 

of the feature in the feature embedding space. The decoders of the cell-wise and feature-wise 

encoder-decoders combine to output the expression level of feature 𝑓 in cell 𝑐 (𝑋𝑐,𝑓). (b) 

Visualization of the cell and feature embedding space learned from the gene expression matrix 

in (a). Note the embeddings of genes 1, 2, 3 and 4 all have large magnitudes along dimension 1 

but not dimension 2, suggesting genes 1, 2, 3 and 4 explain variation in the cell embedding 

space along dimension 1. Genes 5, 6, 7, and 8 sit at the origin of the feature embedding space, 

suggesting they do not co-vary with other features. (c) The expression patterns of gene 1 are 

overlaid on the cells in the cell embedding space. Gene 1 clearly increases in expression when 

inspecting cells from left to right, consistent with the feature embedding space that shows Gene 

1 having large loadings on dimension 1. (d) In contrast, Gene 5’s expression does not have a 

clear pattern of variation with respect to position of the cell in cell embedding space, consistent 

with Gene 5’s location close to the origin in the feature embedding space. (e) A trained siVAE 

model can be used to identify hubs and gene neighbors in a gene co-expression network, 

without the need to explicitly infer a co-expression network.
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Figure 2: Accuracy evaluation of siVAE’s cell embedding spaces. (a) 2D visualization of the 
inferred cell embedding spaces of a classic VAE, siVAE, a variant of siVAE in which the 
interpretability regularization term is removed (𝛾 = 0) and LDVAE. Each point represents a cell 

and is colored according to cell type. (b) Barplot indicating the accuracy of a 𝑘-NN (𝑘 = 80) 
classifier predicting the cell type labels of single cells based on their inferred position in the cell 
embedding space inferred by siVAE and other methods trained on the Fetal Liver Atlas dataset. 
(c) Same as (a), but classification was performed on three imaging datasets (MNIST, Fashion-
MNIST and CIFAR-10).  
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Figure 3: siVAE yields accurate and fast interpretations. (a) Heatmap indicating the mean 
pairwise correlation between the interpretations (loadings) of siVAE, Gene Relevance as well as 
three neural net feature attribution methods (saliency maps, grad*input, and DeepLIFT), where 
correlations have been averaged over each of the 2 embedding dimensions for the fetal liver atlas 
dataset. (b) Scatterplot of feature embeddings inferred by siVAE trained on the one and six digits 
from the MNIST dataset. (c) Visualization of interpretations learned for each of the two dimensions 
(axes) from (b), for siVAE, Gene Relevance, DeepLIFT and grad*input. (d) Barplot indicating the 
time required to train siVAE versus training a classic VAE and applying feature attribution methods 
on the LargeBrainAtlas dataset. (e) Line plot indicating the time required to train siVAE and feature 
attribution methods on the LargeBrainAtlas dataset when the number of embedding dimensions 
for siVAE is varied, and the number of features is fixed at 28k. (f) Line plot indicating the time 
required to train siVAE and feature attribution methods on the scATAC-Seq dataset when the 
number of features is being varied, while the number of embedding dimensions is fixed at 20. 
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Figure 4: Co-expressed genes tend to co-localize in the siVAE feature embedding space. 
(a) The gene co-expression network used to simulate single cell expression data. The network 
consists of five tightly correlated groups of 50 genes each, along with 50 isolated genes. (b) 
Scatterplot of the feature embeddings produced from siVAE trained on the dataset simulated from 
the network in (a). Each point represents a gene, colored and labeled by the community it belongs 
to in (a). (c) Scatterplot of the cell embedding space inferred by siVAE trained on the fetal liver 
atlas dataset. Each point represents a cell and is colored based on its pre-defined cell type. (d) 
Scatterplot of feature embeddings inferred by siVAE trained on fetal liver atlas dataset. Each point 
represents a marker gene and is colored based on its prior known association to a cell type. 
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Figure 5: siVAE can be used to gain insight into gene co-expression network structure 

without explicit network inference. (a) Scatterplot showing the correlation between ground truth 

degree centrality and predicted degree centrality, based on using siVAE training performance, or 

by computing node degree when a network is inferred using the MRNET or CLR algorithms. (b) 

Average true degree centrality of the top 50 genes predicted to have highest degree centrality 

across different methods. (c) Bar plot indicating the prediction accuracy (% variance explained) 

of the neighborhood gene sets when predicting each query gene, averaged over the top 152 

query genes with highest predicted degree centrality across all tested methods in the fetal liver 

atlas dataset. Blue bars denote methods based on dimensionality reduction, while orange bars 

indicate methods based on explicit gene regulatory network inference. (d) Heatmap indicating the 

pairwise Jaccard index (overlap) between neighborhood genes identified by pairs of methods. (e) 

Heatmap indicating the mean pairwise correlation in expression between pairs of methods with 

respect to their neighborhood genes. Each box indicates average of the pairwise correlation 

matrix where the columns and rows correspond to neighborhood genes identified by two methods. 
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Fig. S1: Non-linear dimensionality reduction methods generate cell embedding spaces in which cells of 

the same cell type cluster more tightly. Scatterplots shows embedding spaces learned using t-SNE, 

siVAE, and PCA trained on fetal liver atlas datasets. Cells are colored based on cell type. 
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Fig. S2: Negative log likelihoods achieved by different methods on the fetal liver atlas dataset.  Bar 

plot indicates the negative log likelihood (nll) for different models that use a negative binomial 

distribution as the output layer of the neural network. 
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Fig. S3: Classification experiments on three imaging datasets. Line plots indicate classification accuracy 

of methods while varying number of embedding dimensions trained on three imaging datasets. 

Classification was performed on the embeddings of each model using k-nearest neighbors in a 5-fold 

cross validation framework.  
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Fig. S4: Visualization of feature attributions across methods. Figure shows the visualization of feature 

attributions (embeddings for siVAE) for different methods when trained on the MNIST dataset with all 

digits. Individual image represents the feature attributions (or embeddings for siVAE) for one embedding 

dimension. Attribution score represents the contribution of individual feature (pixel) to each embedding 

dimension. Feature attribution methods and gene relevance scores were computed on the trained siVAE 

model to make them comparable.  
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Fig. S5: Organization of the siVAE feature embedding space when trained on a simulated dataset.  

Scatter plots show the feature embeddings of siVAE when trained on a dataset simulated from a 

hypothetical genome containing 300 genes, and in which the underlying gene network consists of five 

communities of co-regulated genes, and one group of disconnected nodes. (a) Nodes are colored based 

on which community they originate from. (b) Nodes are colored based on their reconstruction loss per 

gene after training. 
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Fig. S6: Organization of the siVAE feature embedding space when trained on a simulated dataset.  

Scatter plots show the feature embeddings of siVAE when trained on a dataset simulated from a 

hypothetical genome containing 300 genes, and in which the underlying gene network consists of five 

communities of co-regulated genes, and one group of disconnected nodes. Scatterplots show the 

feature embeddings of siVAE with (𝛾 = 0.05) and without (𝛾 = 0) the interpretability term. Top row: 

nodes are colored based on which community they belong to. Bottom: nodes are colored by 

reconstruction error after training. 
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Fig. S7: Prediction of degree centrality of features based on their siVAE reconstruction accuracy. 

Scatter plot shows feature embeddings of siVAE trained on fetal liver dataset where each point 

represens a single input feature. (a) Scatterplot is overlaid with ground truth degree centrality of each 

gene, where the ground truth is computed as the percent variance explained (PVE) when a query gene 

was used to predict the rest of genes in the transcriptome. (b) Features are colored based on how well 

reconstructed they were after training by siVAE. Note the close concordance with (a).   
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Fig. S8: High correlation between ground truth degree centrality (DC) and siVAE-estimated 

reconstruction accuracy. Scatter plot shows the correlation between predicted degree centrality 

(measured as reconstruction accuracy) and ground truth degree centrality for both siVAE model with 

and without interpretability term. Based on the strong correlation with ground truth degree centrality in 

both cases, we use reconstruction accuracy to predict degree centrality for siVAE. 
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Fig. S9: siVAE predicts genes with higher degree centrality compared to other methods. Line plot 

indicates the cumulative ground truth degree centrality of the top 20 (a) and 2000 (b) genes ranked in 

decreasing order of largest predicted degree centrality by each method.  
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Fig. S10: Overlap between neighborhood genes identified by different methods.  Heatmap indicates 

the Jaccard index quantifying the overlap between the neighbor genes detected by each method.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460498


 

Fig. S11: Both dimensionality reduction based approaches and explicit GCN inference based 

approaches predict neighborhood genes that equally explain the expression of query genes. Bar plot 

indicates the prediction accuracy (% variance explained) of the neighborhood gene sets when predicting 

each query gene, averaged over the top 152 query genes with highest predicted degree centrality across 

tested methods. Blue bars denote methods based on siVAE, and orange bars denote methods based on 

siVAE without interpretability term. Green bar denotes methods based on applying feature attribution 

to scVI. Red bars indicate GCN inference based methods. Purple and brown bars denote approaches 

where GRN inference was used on data that was passed through siVAE with and without interpretability 

term respectively. Finally, pink bar denotes method based on siVAE with varying numbers of embedding 

dimensions. 
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Fig. S12: Training with reducing dimensionality of input for feature-wise encoder-decoder yields 

comparable clustering accuracy. Bar plots indicate classification accuracy of methods while training with 

different processing of the input for feature-wise encoder decoder on the Fetal Liver Atlas dataset. 

Classification was performed on both cell and gene embeddings of each model using k-nearest 

neighbors in a 5-fold cross validation framework. Blue bars indicate accuracy from using PCA to reduce 

number of input features whereas orange bars indicate accuracy from using downsampling to reduce 

number of input features.   
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Dataset name Encoder architecture # of latent dimension Decoder architecture 

MNIST 512-128 {2,5,10,20} 128-512 

Fashion-MNIST 512-128 {2,5,10,20} 128-512 

CIFAR-10 1024-512-128 {2,5,10,20} 128-512-1024 

Tabula Muris 1024-512-128 {2} 128-512-1024 

Fetal liver atlas 1024-512-128 {2,64} 128-512-1024 

1.3 Million Brain Cells 2048-1024-512 {20,128,512} 2048-1024-512 

scATAC-Seq 1024-512-128 {20} 1024-512-128 

 
Supplementary Table 1. List of models trained on different datasets. For encoder and decoder 

architectures, each number separated by dash indicates the number of nodes for a single layer. 
# of latent dimensions indicates set of all numbers of latent dimensions that were used throughout 
the experiments. 
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Dataset name # Class # Sample # Feature 

MNIST 10 60,000 784 

Fashion-MNIST 10 60,000 784 

CIFAR-10 2 10,000 3,072 

Tabula Muris 3 1,766 2,660 

Fetal liver atlas 40 100,000 2,000 

1.3 Million Brain Cells NA 1,308,421 27,998 

scATAC-Seq NA 8,000 244,544 

 
Supplementary Table 2: List of datasets that were used in our experiments. 
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Cell type category Cell type Gene sets 

Hepatocytes Hepatocytes Aizarani_Liver_C11_Hepatocytes_1 
Aizarani_Liver_C30_Hepatocytes_4 
Aizarani_Liver_C17_Hepatocytes_3 
Aizarani_Liver_C14_Hepatocytes_2 

Kupffer cells Kupffer cells Aizarani_Liver_C6_Kupffer_Cells_2 
Aizarani_Liver_C2_Kupffer_Cells_1 
Aizarani_Liver_C31_Kupffer_Cells_5 
Aizarani_Liver_C25_Kupffer_Cells_4 
Aizarani_Liver_C23_Kupffer_Cells_3 

B cells (MHC II 
Positive) 

Pro B cell 
Pre B cell 
Pre pro B cell 

Aizarani_Liver_C34_MHC_II_pos_B_cells 
Aizarani_Liver_C38_Resident_B_cells_3 
Aizarani_Liver_C8_Resident_B_cells_1 
Aizarani_Liver_C22_Resident_B_cells_2 

NK/NKT cells NK 
Mono-NK 
Mac NK 

Aizarani_Liver_C28_NK_NKT_cells_6 
Aizarani_Liver_C1_NK_NKT_cells_1                              
Aizarani_Liver_C12_NK_NKT_cells_4                             
Aizarani_Liver_C5_NK_NKT_cells_3                              
Aizarani_Liver_C3_NK_NKT_cells_2                              
Aizarani_Liver_C18_NK_NKT_cells_5                             

Supplementary Table 3. Mapping of gene sets and cell type labels in fetal liver datasets to cell type 

category. 
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