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ABSTRACT 

Introduction: Full quantification of positron emission tomography (PET) data requires an input function. This generally 

means arterial blood sampling, which is invasive, labor-intensive and burdensome. There is no current, standardized 

method to fully quantify PET radiotracers with irreversible kinetics in the absence of blood data. Here, we present Source-

to-Target Automatic Rotating Estimation (STARE), a novel, data-driven approach to quantify the net influx rate (Ki) of 

irreversible PET radiotracers, that requires only individual-level PET data and no blood data. We validate STARE with 

[18F]FDG PET and assess its performance using simulations. 

Methods: STARE builds upon a source-to-target tissue model, where the tracer time activity curves (TACs) in multiple 

“target” regions are expressed at once as a function of a “source” region, based on the two-tissue irreversible compartment 

model, and separates target region Ki from source Ki by fitting the source-to-target model across all target regions 

simultaneously. To ensure identifiability, data-driven, subject-specific anchoring is used in the STARE minimization, 

which takes advantage of the PET signal in a vasculature cluster in the FOV that is automatically extracted and partial 

volume-corrected. To avoid the need for any a priori determination of a single source region, each of the considered 

regions acts in turn as the source, and a final Ki is estimated in each region by averaging the estimates obtained in each 

source rotation. 

Results: In a large dataset of [18F]FDG human scans (N=69), STARE Ki estimates were in good agreement with 

corresponding arterial blood-based estimates (regression slope=0.88, r=0.80), and were precisely estimated, as assessed by 

comparing STARE Ki estimates across several runs of the algorithm (coefficient of variation across runs=6.74 ± 2.48%). 

In simulations, STARE Ki estimates were largely robust to factors that influence the individualized anchoring used within 

its algorithm. 

Conclusion: Through simulations and application to [18F]FDG PET data, feasibility is demonstrated for STARE blood-

free, data-driven quantification of Ki. Future work will include applying STARE to PET data obtained with a portable 

PET camera and to other irreversible radiotracers. 
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** Nonstandard abbreviations: STARE – Source-to-Target Automatic Rotating Estimation 
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1 INTRODUCTION 

Positron emission tomography (PET) allows for in vivo quantification of brain metabolism of different molecules 

and other neurotransmitter system components such as receptors, enzymes and ion channels. Full quantification of 

dynamically-acquired PET data can provide estimates of the amount of radiotracer that is specifically bound to a target of 

interest in the brain via binding potential options such as BPF and BPP
1 in the case of radiotracers with reversible kinetics 

(e.g., [11C]UCB-J and [11C]PBR28). We can quantify the total radiotracer uptake and metabolism via estimation of Ki, the 

net influx rate of radiotracer into tissue from the vascular compartment, in the case of radiotracers with irreversible 

kinetics (e.g., [18F]FDG and [18F]FDOPA)1. Essential to obtaining these quantitative estimates, whether through kinetic 

compartment modeling or graphical approaches (e.g., Patlak plot2), is knowing the input function. This is the 

concentration of radiotracer and its radiometabolites in the blood compartment throughout the scan, which is used to 

inform the modeling1. The best validated and most widely used source of an input function is arterial blood. While arterial 

blood sampling via arterial catheterization has been safely applied in numerous research studies, it adds patient burden, 

cost and is labor intensive when employed in PET protocols. Therefore, efforts to develop, validate, and disseminate 

alternative, less-invasive quantification techniques for PET imaging would, if successful, enhance use of fully quantitative 

PET in both research and clinical settings. Here, we present Source-to-Target Automatic Rotating Estimation (STARE), a 

novel approach that performs full PET quantification of Ki for a PET radiotracer with irreversible kinetics, using only the 

individual-level PET brain data in a completely data-driven manner, without requiring collection of blood. We introduce 

here the theory behind this approach, and report its initial implementation and validation in 69 previously acquired 

[18F]FDG scans in humans3,4 and in [18F]FDG-based simulations.  

[18F]FDG, a glucose analog, is the most ubiquitously used radiotracer in PET imaging and yields information on 

glucose metabolism, which in the brain is considered a marker for neural activity5. Due to the requirements for full 

quantification of [18F]FDG data to estimate Ki and the corresponding metabolic rate of glucose (CMRglu)6,7, semi-

quantitative metrics, such as the standardized uptake value (SUV), have been frequently employed instead8. However, 

without strict standardization of SUVs9-11, quantification based on estimating Ki and CMRglu is preferable, especially 

where highly sensitive PET metrics are required to detect subtle biological differences. Therefore, there has been much 

work to develop methods that can estimate Ki and CMRglu without relying on an arterial input function (AIF). Common 

classes of less invasive or non-invasive quantification techniques include reference region approaches, image-derived 

input functions (IDIFs), population-based input functions (PBIFs), and simultaneous estimation (SIME) of the input 

function12-21. 

 Reference region approaches quantify PET outcome measures with respect to the tracer time activity curve (TAC) 

in a region assumed to be devoid of the target of interest for reversible or irreversible tracers20. However, for many tracers, 

including [18F]FDG, there is no such target-free brain region. For example, glucose is taken up by all living tissues, and 

this precludes application of reference region approaches.  

 Other proposed less-invasive methods, IDIFs, PBIFs and SIME, generally seek to recover a proxy for the AIF, 

where the AIF proxy is typically “anchored” or scaled for the individual in question, commonly by using one or more 

blood samples. Obviously, such an approach does not entirely eliminate the need for blood sampling during scanning. 
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IDIFs rely on extracting the radioactivity within vasculature within the PET field of view (FOV) and PBIFs rely on blood 

data previously acquired with the same tracer in other subjects, but both still currently require individual blood-based 

anchoring for practical application. SIME of the input function achieves less-invasive quantification by fitting the proper 

tissue compartment model to multiple brain regions’ TACs simultaneously. This allows the free parameters of the model, 

that is the parameters requiring estimation, to be estimated simultaneously, under the usual assumption that the AIF is the 

input function common to all regions12-14,16,17,22-26. In the case of SIME of the input function, the free parameters are those 

describing the kinetics of the tracer in the tissue regions (e.g., in the case of an irreversible tracer, the micro-parameters 

K1, k2, and k3 for each region) and those describing the AIF curve (e.g., the parameters in the model used to describe the 

arterial plasma curve, which is often described as the sum of three decreasing exponentials). However, to ensure 

identifiability of all free parameters at the individual level, SIME of the input function also requires “anchoring” the 

solution using at least one blood sample acquired during scanning16. 

 Although theoretically, one single arterial sample for IDIFs, PBIFs, or SIME could be acquired using an arterial 

puncture, the procedure can generate a sudden reaction in the subject under scanning, causing head motion and alterations 

in blood pressure and cerebral blood flow that may impact tracer delivery to and washout from the brain. Thus, it is 

preferable to avoid collecting even a single arterial sample. For [18F]FDG, where the radioactivity in venous blood 

approximates closely the radioactivity in arterial blood beyond 40 minutes post-injection27,28, SIME, IDIFs, and PBIFs 

have been applied using one or more venous plasma samples acquired late in the scan for anchoring12,14,15,29-34. This 

approach still requires placement of a second intravenous catheter, in addition to the line used for radiotracer injection, 

and then counting of venous blood activity in a well counter, adding complexity to PET acquisition. 

 There has been some success for completely noninvasive full quantification of PET data that obviates the need for 

any blood collection during the scan. These solutions often require combinations of multiple techniques to achieve 

acceptable performance. One solution anchors a PBIF with IDIF information derived with whole-body PET scanning35. 

Deep learning has also been leveraged to obtain blood-free quantification for [18F]FDG; however, to our knowledge this 

has yet to be validated with human scans36. Further, machine learning applied to precompiled electronic health record 

(EHR) data has been combined with SIME of the input function to quantify [18F]FDG without the use of any blood 

samples4. However, these solutions are situation specific i.e., with whole body scanning, with large sets of biological 

variables in the form of EHR data, or with large datasets acquired from many subjects with the same radiotracer for 

training and validation of the machine learning algorithm.  

We now propose STARE (Source-to-Target Automatic Rotating Estimation), a new, blood-free, data-driven 

approach to quantification of PET tracers with irreversible kinetics that relies only on individual-level dynamic PET data. 

STARE utilizes a source-to-target tissue model, where the tracer radioactivity curve in a “target” region is expressed as a 

function of a “source” region, to eliminate the dependency of compartmental modeling on arterial blood. This source-to-

target tissue model must be adapted to allow us to disentangle the parameters of interest for the target region from those of 

the source region. We do this by considering multiple target regions at once, as a function of the common source, and 

fitting the source-to-target model across all target regions and the source simultaneously. This approach allows STARE to 

separate Ki in target regions from Ki in the source region. Differently from SIME of the input function, STARE does not 
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use data from blood samples to “anchor” the solution to the given individual but instead, uses bootstrapped, PET image-

derived measures of concentration in the vasculature present in the FOV, as described below. We have validated STARE 

in a large set of human [18F]FDG scans in comparison to AIF-based estimation and using simulations.   

 

2 MATERIALS AND METHODS 

2.1 Theoretical framework 

STARE is based on a reformulation of the standard two-tissue irreversible compartment model (2TCirr). The 

standard 2TCirr model expresses the concentration of radiotracer in a target region of interest (𝐶!(𝑡)) as a function of the 

concentration of radiotracer in the arterial plasma (𝐶"(𝑡)) as follows: 

𝐶!(𝑡) = 𝐾#'𝐼𝑅𝐹⨂𝐶",(𝑡) = 𝐾#[(
$!

$!%$"
𝑒&($!%$")) + $"

$!%$"
)⨂𝐶"](𝑡)  (1) 

where 𝑡 is time, 𝐼𝑅𝐹 is the impulse response function for the target region, and 𝐾#, 𝑘*, 𝑘+ are the micro-parameters of the 

2TCirr model for the target region. If 𝐶"(𝑡) were available, fitting of the model in (1) to the TAC in a target region would 

result in estimates of the micro-parameters 𝐾#, 𝑘*, and 𝑘+, and thus, of 𝐾, as 𝐾, = 𝐾#𝑘+/(𝑘*	+	𝑘+). 

 Without acquisition of arterial plasma samples throughout the scan, an estimate of 𝐶"(𝑡) is not available. In the 

case of a PET tracer with irreversible kinetics, such as [18F]FDG, Equation (1) typically holds for TACs from any brain 

region. Therefore, it is possible to reformulate Equation (1) so that the 𝐶!(𝑡) in a target region is expressed as a function 

of the TAC in another region (𝐶-(𝑡)), which we denote here as “source”, thus obviating the need to know 𝐶"(𝑡). This is 

similar to the substitutions performed in the case of reference region approaches for tracers with reversible kinetics, where 

in those cases, theoretical assumptions are made about the reference region: that it is devoid of specific binding to the 

target of interest. Differently from reference region approaches, however, in STARE, the only required theoretical 

assumption for the source region TAC is that it follows the 2TCirr model, as shown in Equations 2 and 3 below, where the 

source and target region TACs are both assumed to follow a 2TCirr model. As described in detail below, differently from 

reference region approaches, STARE’s simultaneous estimation of the parameters for multiple target regions at once 

allows estimation of “absolute” Ki estimates, rather than the “relative” outcome measures (BPND) derived from reference 

region approaches. 

By applying to Equations 2, shown below, Laplace transformation, substitution, and subsequent transformation 

back into the time-domain, we express each of the target region TACs as a function of its own micro-parameters, the 

micro-parameters describing the source region, and the source region TAC itself, as shown in Equation 3. Specifically, the 

TACs in both the target and source regions can be expressed in terms of the standard 2TCirr model as: 

5
𝐶!(𝑡) = 𝐾#,!'𝐼𝑅𝐹!⨂𝐶",(𝑡) = 	𝐾#,![(

$!,$
$!,$%$",$

𝑒&/$!,$%$",$0) + $",$
$!,$%$",$

)⨂𝐶"](𝑡)	

𝐶-(𝑡) = 𝐾#,-'𝐼𝑅𝐹-⨂𝐶",(𝑡) = 𝐾#,-[(
$!,%

$!,%%$",%
𝑒&/$!,%%$",%0) + $",%

$!,%%$",%
)⨂𝐶"](𝑡)

   (2) 

By applying the Laplace transform in the system of equations in (2) (see Appendix for full derivation), 𝐶"(𝑡) can then be 

substituted out so that the target region TAC is modeled as: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.15.460504doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460504
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

𝑓!(𝑡, 𝜃!,-) = 	
1&,$
1&,%

𝐶-(𝑡) +
1&,$
1&,%

𝐶-(𝑡)⨂'𝐿!,-𝑒2$,%) +	𝑀!,-𝑒3$,%), (3) 

Which, we denote the source-to-target tissue model: where 𝑡 is time, ⨂ denotes convolution, and 𝜃!,- is the total set of 

free parameters to be estimated in STARE via optimization of the cost function in Equation 5. These free parameters are 

the 2TCirr micro-parameters (𝐾#, 𝑘*, and 𝑘+) for each of the target regions and for the source region. As shown in 

Equation 3, 𝜃!,- comprises the macro-parameters 𝐿!,-, 𝑀!,-, 𝑣!,-, and 𝜀!,-, which are combinations of the 2TCirr free 

micro-parameters (see Appendix for full derivation). 

However, applying the reformulation in Equation (3) for a single target and source region combination, only 

allows for quantification of PET outcome measures “relative” to the selected source region and thus, cannot yield absolute 

estimation of the target micro-parameters and of 𝐾,. This is analogous to reference region approaches estimating the 

relative outcome measure BPND in the case of radiotracers with reversible kinetics. In order to separate target 𝐾, from 

source 𝐾, to allow for absolute quantification, we follow a strategy analogous to simultaneous estimation (SIME) of the 

input function. In that context, the parameters describing the unknown AIF may be estimated together with the free 

parameters describing the tracer kinetics in the tissue by fitting all regions’ TACs at once, under the assumption that the 

AIF parameters are in common to all regions. Similarly, here we model multiple target regions at once, under the 

assumption that the source region parameters that they are expressed as a function of, are in common to all regions. The 

parameters for the target regions and the source region are then estimated at once with simultaneous estimation as follows. 

Once each target region is expressed as a function of the source region (according to Equation (3)), the weighted 

sum of squared residuals is used across N target regions, where the residuals are the distances between each measured 

target TAC (𝐶!(𝑡)) (with T = 1,…,N indicating the different target regions) and the corresponding modeled target TAC 

(𝑓!'𝑡, 𝜃!,-,) at each 𝑡4 time point (𝑚 = 1,… , 𝑛), as follows: 

  𝛷'𝑡4, 𝜃!,-, = ∑ (∑ 𝑤4 C𝐶!(𝑡4) − 𝑓!'𝑡4, 𝜃!,-,E
*
)5

46#
7
!6#  (4) 

𝑤 in Equation (4) indicates a set of known weights for the different PET frame durations (as is standard in PET imaging). 

 Similarly to the case of SIME of the input function, however, minimization of Equation (4) will not yield unique 

estimates of the free parameters for both the target regions and source region. This is due to the fact that there exist 

multiple combinations of such free parameters that yield equivalently good TAC fits. In the case of SIME of the input 

function, this identifiability problem is solved by “anchoring” the solution to a blood sample acquired from the subject 

during scanning13,16,37.   

 Analogously, in STARE we ensure identifiability by effectively “anchoring” the estimation process, not to data 

from blood samples, but to PET-derived measures of activity in the vasculature present in the FOV (as are common with 

IDIF methods), as described in detail in the Implementation section. To do this, an additional penalty term is added to the 

weighted sum of squared residuals in Equation (4):  

𝛷'𝑡4, 𝜃!,-, = ∑ (∑ 𝑤4 C𝐶!(𝑡4) − 𝑓!'𝑡4, 𝜃!,-,E
*
)5

46#
7
!6# + 𝜆∑ G𝐾,,! − 𝐾,,289:,!G7

!6#  (5) 
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This term enforces identifiability by constraining the solution, and 𝐾,,!, the 𝐾, in region 𝑇, to a subject-specific 

neighborhood around estimates derived from the signal in the vasculature within the PET FOV (the 𝐾,,289:,! values). As is 

described in 2.2.1 Implementation: STARE Anchoring, this is estimated in a data-driven manner based on the individual’s 

PET data. The PET signal is automatically extracted from vasculature within the PET FOV, as in IDIF techniques. 

However, the variability in kinetics across voxels within this vasculature region is then bootstrapped to generate a wide 

range of possible parameter estimates for each brain region for the given participant, from which the 𝐾,,289:,! values are 

derived. The parameter 𝜆 is introduced to balance the contribution of the fit term and the penalty term in Equation (5), 

which may be advantageous for application to specific radiotracers. In this implementation 𝜆 is set to 1, as described in 

2.2.2 Implementation. 

 Equation (5) requires designation of a “source” region. Although, any region whose TAC follows the 2TCirr 

model could be used as the source region, to ensure that final estimates do not rely on an arbitrary choice of source, we 

elected to allow each region to act in turn as the source region. Final 𝐾, estimates thus result from averaging the 𝐾, 

estimates obtained for each source “rotation”. The theoretical framework and implementation of STARE anchoring is 

described in Figure 1.  

 
Figure 1: Graphical representation showing the theoretical framework and implementation of STARE 
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2.2 Implementation 

STARE was applied to 69 [18F]FDG human brain scans3,4,29 and to simulated data considering TACs from six 

bilateral regions of interest (ROIs): cerebellum, cingulate cortex, hippocampus, parietal cortex, medial prefrontal cortex, 

and parahippocampal gyrus. STARE implementation is shown in Figure 1. Matlab 2016b (The MathWorks, Natick, MA) 

was used for implementation and all subsequent processing. 

2.2.1 STARE Anchoring 

STARE anchors the estimation process to a unique solution for each individual via the additional penalty term in 

(5). Furthermore, data-driven boundaries are also generated to constrain the search space for all free parameters in the 

model. Here we describe how this anchoring can be fully automated. 

We first use a two-step k-means clustering approach to automatically extract a vasculature cluster by parsing the 

dynamic PET data into characteristic regions, such as background, brain tissue with irreversible uptake, and vasculature, 

in a completely data-driven manner. This is followed by partial volume correction (PVC) of the final vasculature cluster 

(Figure 1). To anchor the STARE solution in the correct subject-specific “neighborhood” of the free parameters space, we 

capitalize on the variability of signal within the extracted vasculature cluster, rather than extracting a single summary 

metric, using bootstrapping of the voxel TACs within the vasculature cluster. More specifically: 

2.2.1.1 K-means Step 1 

To automatically select the optimal number of clusters to be extracted, based solely on an individual’s PET data, 

rather than a priori assuming that a pre-set number of clusters will optimally partition all scans, k-means clustering runs 

multiple times, each with a different number of extracted clusters. For [18F]FDG, we used a generous range from 6 to 40 

clusters. An optimal vasculature cluster is then automatically selected from each k-means runs by: (1) eliminating all 

clusters where the maximum value of the average TAC within the cluster corresponds to the end-point of the curve 

because that indicates an irreversible kinetic, which more likely represents tissue; (2) eliminating all clusters whose 

average TAC shows negative values because that most likely represents background voxels; and (3) selecting from the 

remaining clusters, the one whose average TAC shows the highest peak value at the earliest time of peak because that 

most likely represents PET signal arising from blood vasculature.  

 2.2.1.2 K-means Step 2 

K-means clustering then runs again only on those voxels within the cluster selected during Step 1, with the 

assumption that this cluster represents a gross estimate of the vasculature within the FOV, which might be corrupted by 

some spill-in from nearby tissue (especially late in the scan) and spill-out of vasculature signal (especially early in the 

scan). Because it might be that this initial gross estimate is comprised of signal from arteries, veins, sinuses, and tissue, in 

our implementation, we elected to extract 4 clusters during Step 2. Among the extracted clusters, similar to Step 1, the 

voxels belonging to clusters whose average TAC has the highest peak value are selected as the final vasculature cluster. 

Prior studies have shown that with [18F]FDG, as well as with a multitude of other radiotracers and drugs, the signal arising 

from the arterial vasculature early in the scan is higher than the signal arising from the venous vasculature, as well as any 
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other tissues29,37-39. Therefore, the k-means cluster with the highest early-scan peak is likely to be the closest 

approximation to the true activity in arterial blood. 

2.2.1.3 Partial Volume Correction 

PVC via Single Target Correction (STC) is then applied to voxels within the final vasculature cluster from Step 

240. STC was previously optimized and validated, where PVC is performed on a voxel-wise basis for a single region (i.e., 

the final vasculature cluster), accounting for the voxel-wise spill-in of radioactivity into the vasculature cluster and spill-

out of radioactivity from the vasculature cluster40. Given the reconstruction parameters of the [18F]FDG dataset considered 

here, a point-spread function of 5.9 mm full width at half maximum (FWHM) was used for PVC via STC3,40. This 

parameter should be selected and optimized based on the scanner resolution and reconstruction parameters (e.g., post-

reconstruction smoothing) for the dataset at hand. 

 2.2.1.4 Data-driven extraction of Equation (5) penalty term and parameter space bounds 

The partial volume corrected TACs from each voxel within the final vasculature cluster are used to derive an 

individualized, data-driven penalty term (see Equation (5)), and to derive bounds for the model free parameters. As 

described in detail below, we leveraged the variability of the TACs within the partial volume-corrected final vasculature 

cluster to extract 𝐾,,289: values for each target region 𝑇. Our new approach for estimating 𝐾,,289:,! extends beyond 

standard IDIF approaches that often simply use the average TAC in a vasculature cluster, because these standard 

approaches typically require blood-based scaling41. 

 First, we simulate many instances of “IDIF” curves (𝐶;<;=,>(𝑡), with 𝑏 = 1,… , 𝐵 and 𝐵 = 1000 in our 

implementation), by starting from the average TAC in the vasculature cluster, and bootstrapping curves that fall between 

one standard deviation below and one above the average TAC, according to the following formula: 

𝐶;<;=,>(𝑡) = 𝜇289:(𝑡) ± 𝜎289:(𝑡)𝑋>(𝑡),				𝑏 ∈ {1,… , 𝐵}   (6) 

where 𝑡 is time, 𝜇289:(𝑡) is the average TAC across the voxels in the vasculature cluster, 𝜎289:(𝑡) is the standard 

deviation across the voxel TACs in the vasculature cluster, and 𝑋> is a uniformly distributed random number in 

the interval [0,1] at each time 𝑡 for each bootstrapping iteration 𝑏. Each of the generated “IDIF” curves is then 

fitted with a 3-decreasing exponential model (𝐹;<;=,>(𝑡)), commonly adopted in PET to describe the post-peak 

blood input function, and held at 𝜇289:(𝑡) from time zero to the time of peak, to avoid any non-physiological 

uptake patterns at the very beginning of the scan (see Figure 1 for an example of the generated bootstrapped 

curves). 

 Each 𝐹;<;=,>(𝑡) curve then serves as a proxy for the input function, allowing each of the regions’ TACs 

to be fit with the 2TCirr model. This approach yields 𝐵 sets of estimated 2TCirr micro-parameters per region, 

from whose kernel, density estimate can be obtained via nonparametric estimation of the probability density 

function (Matlab function “ksdensity”). See Figure 1 for an example of the 𝑘*	density estimate in hippocampus. 

For each micro-parameter (𝐾#, 𝑘*, and 𝑘+) in each region, the bounds constraining the search space during 

optimization of Equation (5) ([𝐿𝐵, 𝑈𝐵]) are then automatically set using the FWHM of the estimated probability 

density estimate (𝑃𝑟$), such that in each region: 
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U
𝑃𝑟$(𝐿𝐵$) =

#
*
𝑚𝑎𝑥(𝑃𝑟$)

𝑃𝑟$(𝑈𝐵$) =
#
*
𝑚𝑎𝑥(𝑃𝑟$)

𝐿𝐵$ < 𝑈𝐵$

Y ,			𝑘 ∈ [𝐾#, 𝑘*, 𝑘+]			     (7) 

See Figure 1 for an example of [𝐿𝐵, 𝑈𝐵] for hippocampal 𝑘* values.  

 The B sets of estimated 2TCirr micro-parameters are then also used to compute B corresponding 𝐾, values, from 

whose distribution, probability density function is also derived. The 𝐾,,289: value used to penalize Equation (5), is then 

derived for each region as 𝐾,,289: = 𝐿𝐵1' +
?@('&A@('

*
.  

2.2.2 STARE Cost Function Minimization 

For each source rotation, Equation (5) is minimized in parallel via simulated annealing42. Simulated annealing was 

implemented using the Matlab function “simulannealbnd” with default options for initial temperature (100), reannealing 

interval (100), function tolerance (1e-6), and maximum iterations (Inf). The simulated annealing initial guesses were set 

randomly in the range [𝐿𝐵, 𝑈𝐵] for each parameter, and the search space confined to [𝐿𝐵, 𝑈𝐵] for each parameter.  

In our [18F]FDG data, we find that the magnitude of the distance between measured and modeled TACs (fit term) 

in Equation (5) is comparable to the magnitude of the difference between 𝐾, estimates (penalty term) and thus, in this 

implementation, we set 𝜆 to 1. 

2.2.3 Vascular Correction 

The source-to-target tissue model in Equation (3) assumes that the TACs of target and source regions are 

corrected for vascular contribution. However, in the absence of measurements of the radiotracer activity in whole blood or 

plasma, such vascular correction is not easily achieved. We, therefore, implemented an optional vascular correction 

procedure within STARE. The partial volume corrected average TAC in the vasculature cluster (𝜇289:(𝑡)) can be used to 

perform vascular correction of the TACs in all regions according to the following:  

𝐶)BCD(𝑡) = (𝐶4D89(𝑡) − 𝜇289:(𝑡) ∗ 𝑉@)/(1 − 𝑉@)	     (8) 

where 𝑡 is time, 𝐶4D89(𝑡) is the measured tissue radioactivity curve from the PET camera, 𝐶)BCD(𝑡) is the tissue 

radioactivity corrected for vascular contribution, and 𝑉@ is a user-modifiable vascular volume fraction. We investigated 

the effect of neglecting vascular correction (𝑉@  = 0.00), and including STARE’s implementation of vascular correction 

(𝑉@  = 0.0543), according to Equation (8), on STARE performance in quantifying 𝐾,.  

2.3 AIF-based quantification of the available [18F]FDG dataset 

An available set of 69 previously acquired and published [18F]FDG scans3,4,29 was considered, which included 

participants with mild cognitive impairment, mild Alzheimer’s disease and healthy controls. Per the data sharing 

agreement, data could be made available by request to Drs. J John Mann/Davangere P Devanand. As previously 

described, written informed consent was obtained from all participants3,4,29 and the study was approved by the Institutional 

Review Board of the New York State Psychiatric Institute and Columbia University. Acquisition details are previously 

described3. Arterial plasma was sampled throughout the scan via arterial catheterization as previously described44. To 

generate a “gold-standard” AIF, the measured values of tracer total radioactivity in arterial plasma were interpolated from 
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time 0 to the time of the plasma peak. After the peak, a sum of three decreasing exponentials was used to fit the 

radioactivity data via non-linear least squares. The AIF then was used as the input function to the 2TCirr compartmental 

model to fit each considered TAC, estimate the model micro-parameters, and calculate corresponding 𝐾, estimates. These 

blood-based 2TCirr 𝐾, 	estimates were considered to be the “gold-standard” comparison for STARE-based estimates of 𝐾,, 

although we acknowledge that AIF data, and thus AIF-based 𝐾, estimates, may be prone to noise and error45. For 

comparison with STARE, AIF-based 2TCirr was run either while neglecting vascular correction (𝑉@ = 0.00) or with 

standard vascular correction, using the plasma AIF (because the radioactivity curve in whole blood was not measured in 

this previously acquired dataset) with 𝑉@ = 0.0543, according to Equation (8). 

2.4 Assessing STARE performance relative to AIF-based quantification 

2.4.1 STARE Accuracy 

Agreement between STARE 𝐾, and AIF-based 2TCirr 𝐾, estimates was assessed using linear regression and 

Pearson correlation. Regressions and correlations were computed for: (1) all regions and scans together, (2) scan by scan, 

across all regions, and (3) region by region, across all scans. Signed percent difference was also computed as: (STARE 𝐾, 

– 2TCirr 𝐾,)/2TCirr 𝐾,*100. To assess the possibility of regional dependence in STARE performance, a linear mixed 

effects model was fit with outcome = the natural logarithm of 𝐾, and fixed effects = region and quantification method 

(STARE vs. AIF-based 2TCirr). Participant was modeled as a random effect. 

 2.4.2 STARE Precision 

Because STARE contains non-deterministic algorithms (i.e., k-means clustering and simulated annealing), the 

stability in estimating 𝐾, was tested. STARE was run 10 times per scan for a random subset of the N=69 [18F]FDG scans. 

Stability of STARE across runs and regions was assessed with the coefficient of variation of 𝐾, estimates (COV = 

standard deviation / mean). All statistics were performed in R version 4.0.346,47. 

2.4.3 STARE Performance Across Diagnostic Groups 
Given that the [18F]FDG dataset includes a transdiagnostic sample, we assessed whether STARE’s performance 

varies with disease states (participants with mild cognitive impairment (MCI), mild Alzheimer’s disease (AD) and healthy 

controls (HC)). A linear mixed model was fit as in 2.4.1, but with diagnostic group added as a fixed factor (in addition to 

region and quantification method). The two-way interaction of diagnosis by method to test if Ki varied by quantification 

method on a diagnosis-specific basis was examined. 

2.5 Simulations 

A set of simulation studies was designed to examine the sensitivity of STARE to variations in the procedure used 

to determine 𝐾,,289:,! and the upper and lower bounds ([𝐿𝐵, 𝑈𝐵]) for the model free parameters. One set of simulations 

(A) investigated the effect of variations in 𝜇289:(𝑡) (the average TAC across the voxels in the final vasculature cluster) by 

manipulating its area under the curve (AUC), the curvature of its tail, and its overall shape (in this last case, while holding 

the AUC constant). Another set of simulations (B) investigated the effect of variations in 𝜎289:(𝑡) (the time-wise standard 

deviation of voxel activities within the final vasculature cluster). Across all simulations, the same representative [18F]FDG 

scan was used as a starting point. To quantify how much each simulation altered 𝜇289:(𝑡) or 𝜎289:(𝑡) relative to the 
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original curves, a difference score was computed as the absolute summed difference across time-points between the 

original 𝜇289:(𝑡) or 𝜎289:(𝑡) and the manipulated 𝜇289:(𝑡) or 𝜎289:(𝑡) curves. This was compared to the percent 

difference in 𝐾, between the original STARE run and the STARE run following the given manipulation. 

2.5.1 Effects of 𝜇289:(𝑡) on STARE performance:  

2.5.1.1: The AUC of 𝜇289:(𝑡) was manipulated, while maintaining the shape of the curve, by solving for 𝑎𝑑𝑑28B 

in the following equation: 

𝐹4CE) ∫ 𝜇289:(𝜏)𝑑𝜏
)
F =	∫ (𝜇289:(𝜏) +

)
F 𝑎𝑑𝑑28B)𝑑𝜏,						𝐹4CE) ∈ [0.1,3] (9)  

where 𝑡 is time and 𝐹4CE) is the scaling factor that alters the AUC (with 𝐹4CE) in the range [0.1, 3]). 𝑎𝑑𝑑28B was 

estimated at each 𝐹4CE) instance, and then added to the representative scan’s 𝜇289:(𝑡).  

 2.5.1.2: The curvature in the tail of 𝜇289:(𝑡) was manipulated by altering the exponential decay of the tail. To do 

this, the extracted 𝜇289:(𝑡) was fitted to the usual 3 decreasing exponential model, and the exponential term with the 

smallest decay constant, which models the late-scan kinetics of 𝜇289:(𝑡), was modulated using a multiplicative scaling 

factor to increase or decrease the rate of decay. The same 𝐹4CE) values as in A.1 were used. The corresponding AUC of 

the simulated curve was allowed to change with the different 𝐹4CE) values. 

2.5.1.3: The shape of the 𝜇289:(𝑡) curve was then manipulated, while holding the AUC constant, by using the 

same 𝜇289:(𝑡) fit as in A.2. Sets of three decay constants, one per each decreasing exponential, were randomly generated 

in each simulation and combined with the original corresponding initial magnitude values from A.2. This new simulated 

curve was then divided by a factor, 𝑑𝑖𝑣28B, that was estimated in each iteration using a similar procedure to Equation (9), 

in order to hold the final simulated curve’s AUC constant at the representative scan’s original value. 

2.5.2 Effects of 𝜎289:(𝑡) on STARE performance:  

The standard deviation of the tracer radioactivity in the voxels within the final vasculature cluster, 𝜎289:(𝑡), was 

then manipulated via additive scaling using the same approach as in A.1 (Equation (9)). In this case, however, 𝜎289:(𝑡) 

substituted for 𝜇289:(𝑡) in Equation (9) and the estimated 𝑎𝑑𝑑28B at each 𝐹4CE) was added to the representative scan’s 

𝜎289:(𝑡). 

3 RESULTS 

3.1 STARE Accuracy 

Blood-free STARE 𝐾, estimates were highly correlated with AIF-based 𝐾, estimates (regression slope (b)=0.88, 

y-intercept=0.004, Pearson’s r=0.80, p<0.001, Figure 2(A), Table 1)). Although the regression slope was less than one, 

the intercept was greater than zero and STARE KG estimates were on average modestly overestimated relative to AIF-

based estimates (signed percent difference: 5.07% ± 18.14%; Table 1). STARE Ki estimates were 0.00091 ± 0.0041 

greater than AIF Ki (Figure 2(B)). 

Within individual scans, across the six regions considered, the agreement between STARE and AIF-based 𝐾, 

estimates was assessed via regression, and slopes ranged from b=0.59 to 1.58, while correlation coefficients ranged from 
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r=0.95 to 1.00 (all p<0.005). Although the Pearson’s r values ranged from 0.66 to 0.72 and the slopes ranged from 0.71 to 

0.85 for the comparison of individual regions’ STARE Ki estimates vs. AIF-based Ki estimates region-by-region, across 

all subjects (Table 1), there was no significant statistical evidence for a regional dependence in STARE’s estimation of Ki 

relative to AIF-based Ki estimates (p=0.999).  

Table 1: STARE Ki Performance Compared to 2TCirr 𝑲𝒊 
 Regression Slope (b) Intercept Pearson’s r Percent Difference 

(STARE Ki – 2TCirr 
Ki) / 2TCirr Ki * 100 
(mean ± standard 
deviation) 

Across all regions 
(Figure 2(A)) 0.88 0.00 0.80 5.07 ±18.14 

Cerebellum 0.71 0.01 0.66 4.83 ± 18.3% 
Cingulate cortex 0.80 0.01 0.68 4.83 ± 18.0% 
Hippocampus 0.83 0.00 0.71 5.97 ± 18.7% 
Parietal cortex 0.82 0.01 0.72 4.63 ± 17.83% 
Medial prefrontal 
cortex 0.85 0.00 0.72 4.82 ± 18.18% 

Parahippocampal 
gyrus 0.72 0.01 0.66 5.36 ± 18.44% 

 

Figure 2: Blood-free STARE Ki vs. Ki obtained via arterial blood-based two-tissue irreversible (2TCirr) compartmental 
modeling in 69 [18F]FDG scans. In both (A) & (B): Each color corresponds to a single scan, where Ki is quantified for 6 
regions (cerebellum, cingulate cortex, hippocampus, parahippocampal gyrus, parietal cortex, and prefrontal cortex). (A) 
Scatter plot, with linear regression slope, intercept, and Pearson’s correlation coefficient reported across all subjects and 
regions. (B) Bland-Altman plot with mean Ki difference (i.e., overall bias) shown in blue and the 95% confidence interval 
for the mean difference estimate shown in light grey; limits of agreement (95% confidence intervals of mean difference) 
are shown in orange.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.15.460504doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460504
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 
3.2 STARE Precision 

Although STARE includes non-deterministic algorithms, STARE stably estimated 𝐾, across runs (COV = 6.74 ± 

2.48%).  

3.3 STARE Performance Across Diagnostic Groups 

We tested whether STARE’s estimation of Ki was consistent across diagnostic groups (AD, MCI, and HC). The 

interaction between diagnosis (AD vs MCI vs HC) and quantification method (STARE vs AIF-based) was non-significant 

(p=0.17), indicating that the difference in Ki values estimated with the two methods did not significantly vary across 

diagnoses. 

3.4 STARE Vascular Correction  

While the level of correlation between STARE KG and corresponding AIF-based estimates is not affected by 

whether the vascular correction strategy is considered (r=0.78) or not within STARE (r=0.79), their agreement slightly 

varies. More specifically, when comparing STARE KG estimates obtained without the vascular correction strategy to AIF-

based KG estimates obtained with VI = 5%, the slope of the regression line is b=0.83, (Figure 3(A)). When the proposed 

vascular correction strategy is used within STARE and the same comparison is made, the slope of the regression line is 

b=0.87 (Figure 3(B)), suggesting that considering the vascular correction strategy is favorable, at least in this [18F]FDG 

dataset. 

Figure 3: Effect of Vascular Correction on STARE estimates of Ki. In both (A) & (B): Each color corresponds to a single 
scan, where Ki is quantified for six regions (cerebellum, cingulate cortex, hippocampus, parahippocampal gyrus, parietal 
cortex, and prefrontal cortex). Linear regression results and Pearson’s correlation coefficients are shown. (A) STARE Ki 
estimates with VB = 0% (no vascular correction, y-axis) relative to AIF-based 2TCirr Ki estimates with VB = 5% (x-axis) 
and (B) STARE Ki estimates with VB = 5% (within STARE vascular correction, y-axis) relative to AIF-based 2TCirr Ki 
estimates with VB = 5% (x-axis).  
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3.4 STARE Simulations 

Simulation showed that altering the overall amplitude of signal within the vasculature cluster used to generate the 

STARE anchors (i.e. altering the AUC of 𝜇289:(𝑡) via additive scaling) had the most substantial impact on STARE 𝐾, 

estimation (Simulation A.1; Figure 4.A.1). To compare with human data, in the 69 [18F]FDG scans, the mean percent 

difference in AUC between STARE 𝜇289:(𝑡) and the AIF was -6.10 ± 15.69%. According to our simulations, when the 

simulated difference in the AUC of 𝜇289:(𝑡) was 10%, it yielded a -9.97% change in 𝐾, estimates. 

STARE was relatively robust to alterations in the kinetics of signal arising from the vasculature cluster 

(Simulation A.2 and A.3; Figure 4.A.2 and 4.A.3) and the level of voxel-wise variance in the vasculature cluster used to 

generate the STARE anchors (Simulation B; Figure 4.B). 

More specifically across all simulations, 𝐾, only changed by greater than 50% with respect to the original, non-

simulated STARE 𝐾, values in Simulation A.1: 𝜇289:(𝑡) AUC under the following simulated conditions: (1) 𝜇289:(𝑡) 

AUC was increased by at least 200% (corresponding to a y-axis difference score of at least 5.40 in Figure 4.A.1) or (2) 

𝜇289:(𝑡) AUC was reduced by at least 40% (corresponding to a y-axis difference score of at least 2.16 in Figure 4.A.1). 

From Figure 4.A.1, we can observe that: (1) altering 𝜇289:(𝑡) AUC yielded the expected inverse effects on STARE 𝐾,  

estimates, such that, for example, increasing the AUC yielded negative biases in STARE 𝐾, (Figure 4.A.1); and (2) 

reducing 𝜇289:(𝑡) AUC had a greater impact on STARE 𝐾, than increasing 𝜇289:(𝑡) AUC, presumably due to instabilities 

in the 2TCirr modeling in the free parameter bound generation because the input function tail approached 0 microCi/cc in 

activity and at times became negative.  

In Simulation A.2, which manipulated the kinetics of the amplitude of signal arising from the vasculature cluster 

(allowing the AUC to change with change in shape), the simulated 𝐾, estimates changed by less than 50%, even when the 

rate of IDIF tail decay was increased by 300% or decreased by 90% (Figure 4.A.2). In Simulation A.3, where the AUC of 

𝜇289:(𝑡) was held constant, while the shape was varied, a much smaller impact on STARE 𝐾, was observed, with all 

percent differences less than 15% (Figure 4.A.3). Similarly, altering the level of voxel-wise variance within the 

vasculature cluster (Simulation B), had little impact on STARE 𝐾, (Figure 4.B).  
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Figure 4: Simulation results for STARE. The data from a single, representative scan were used to build all simulations in 
(A) and (B). Simulations A.1 through A.3 alter scaling and shape characteristics of the signal in the vasculature cluster 
(i.e. the mean of voxel radioactivities in the vasculature cluster, 𝜇289:(𝑡)), whereas Simulation B alters the standard 
deviation of the radioactivity of voxels within the vasculature cluster (𝜎289:(𝑡)). These properties are used in the 
generation of the STARE anchors. The left columns of (A) and (B) use the same metric on the y-axes to assess the 
difference between the original and simulated 𝜇289:(𝑡) or 𝜎289:(𝑡) curves, which sums the difference between the curves 
across all time-points. The x-axes of the left columns of (A) and (B) are the percent difference in STARE-estimated Ki 
between that simulation iteration and the original result. If necessary, a center column is shown as a zoomed-in inset of 
the left column. The right columns of (A) and (B) show the simulated curves (with the original curves shown in black)). 
Within each simulation (across rows), the colors (on a yellow-to-blue scale) are consistent from left to right. 
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4 DISCUSSION 

In this study, we present the theory and an initial validation with human [18F]FDG scans, for a novel, publicly 

available PET quantification approach – STARE – that quantifies the net influx rate (Ki) of radiotracers with irreversible 

kinetics (STARE will be available on GITHUB and link will be provided here pending paper acceptance). This method, in 

theory, allows for noninvasive PET quantification that does not rely on blood sampling during the course of a PET scan 

and operates in an automatic, data-driven, individual-subject manner. To summarize our findings, in a large dataset of 

[18F]FDG scans in humans3: (1) Ki values obtained via STARE showed, on average, modest overestimation and were 

strongly correlated with “gold-standard”, AIF-based Ki estimates, and (2) Ki values obtained via STARE were stably and 

thus, precisely estimated. In simulations, Ki was largely robust to deviations in STARE anchoring. 

The goal of STARE is to provide blood-free full quantification of data acquired with PET radiotracers with 

irreversible kinetics. While validated here using [18F]FDG, STARE’s theoretical framework is based on a manipulation of 

the general 2TCirr model. Therefore, theoretically, STARE can potentially be applied to any radiotracer whose kinetics 

can be fitted with an irreversible compartment model. Key considerations when validating STARE for another tracer 

include the heterogeneity of the PET signal across the brain and the level of noise present in the image according to the 

PET camera used to acquire the data. This validation, in comparison to AIF-based quantification, can be achieved with a 

modest sample size.  

This highlights one of the advantages of STARE, which is that the approach does not depend on machine 

learning, for which large sample sizes are often required for adequate training of the algorithm. In fields like dynamic PET 

imaging, where data sharing initiatives are still in their infancy, and PET acquisition with arterial blood sampling is costly 

and complicated, large datasets meeting the appropriate requirements for machine learning are rare, especially for novel 

radiotracers. One such machine learning method, noninvasive SIME (nSIME), which was previously validated with the 

same [18F]FDG dataset considered here, trained a model with 83 different predictors extracted from precompiled EHR 

data to estimate [18F]FDG Ki in conjunction with simultaneous estimation4. nSIME performed comparably well with 

blood-free STARE (r=0.80 STARE, r=0.83 nSIME4; Bland-Altman plots appear qualitatively comparable across methods, 

but nSIME appears to exhibit more bias), highlighting STARE performance even though it only requires an individual 

participant’s dynamic PET data without model training that is based on other participants’ data.  

STARE performance was comparable across brain regions for both accuracy and precision. This finding 

highlights another key feature of STARE – the source rotation. Unlike reference region methods, where a priori 

knowledge is required to determine one appropriate region assumed to be devoid of radiotracer specifically bound to the 

target, STARE’s source rotation step does not require any a priori determination of a source region. Our findings show 

that STARE estimates Ki with equivalent accuracy when we compute final Ki estimates as averages across all rotations. 

We also provide preliminary evidence that STARE is robust to disease-specific uptake patterns, where we found that 

STARE performance did not significantly vary across HC, AD, and MCI groups, providing initial validation of the 

assumption that STARE can operate on any TACs/brain regions with irreversible kinetics. 

STARE also includes an option for vascular correction, where, at the user’s discretion, the source and target 

TACs can be corrected for any desired level of blood volume fraction. While the level of correlation between STARE Ki 
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and corresponding AIF-based estimates is not affected by whether the vascular correction strategy is considered or not 

within STARE, their agreement slightly varies, and our results suggest that considering the vascular correction strategy 

within STARE is favorable, at least in this [18F]FDG dataset. The suitability of STARE vascular correction strategy 

should be examined for each tracer and in additional datasets/scanners/populations, and future work could explore 

optimization of the proposed strategy or implementation of alternative strategies, as well as development of a version of 

STARE that includes an estimable VB for each brain region. 

This is the first presentation of STARE’s theoretical framework and application to PET data; therefore, there are 

limitations to the conclusions we can draw, as well as many potential future directions of this work. In the current 

implementation, defining ROIs requires a T1-weighted magnetic resonance imaging (MRI) scan. However, future work 

with STARE can examine the use of clustering techniques to identify ROIs based only on the PET data. Further, in this 

first implementation we did not partial volume correct the source and target regions. Future work should explore the effect 

of partial volume effects on STARE performance, especially in the context of neurodegenerative disorders.  

STARE was applied here with six ROIs; however, any region can potentially be included within STARE, with the 

caveat that, as the number of considered ROIs increase, the free parameter space dimensionality increases (three free 

parameters per ROI). Further, in our assessment, our proposed strategy of having the source region rotate among the ROI 

set is favorable with [18F]FDG in brain tissue as applied to psychiatric or neurodegenerative disorders, where each region 

of the brain shows relatively similar kinetics and no source region seems to outperform the other. For other tracers or in 

other conditions (e.g., [18F]FDG uptake in tumor), one region may outperform other regions as a source, or there may be a 

priori reasons for selecting a specific region as the source, in which case, the rotation step can be avoided. Additionally, a 

weighting scheme could be optimized that weights Ki estimates from particular source rotations more heavily, if there is a 

specific rationale for it, rather than using the unweighted average approach proposed here.  Simulated annealing was 

selected here as the optimizer of choice for STARE. However, simulated annealing is time consuming, taking ~20 minutes 

for optimization across the six parallelized source rotations used here. Future work might investigate the performance of 

other optimizers, which may decrease the processing time per scan. A more computationally efficient implementation may 

also allow STARE to be extended to voxel-level estimation, and involves developing adaptations that are robust in the 

face of the higher noise level present at the voxel-level. This extension of STARE’s application is part of our future 

planned work.  

In this initial validation, all scans were obtained on the same PET scanner. Validation will be required to assess 

STARE’s generalizability, as we have implemented it here, to other types of PET scanners and other radiotracers, an 

important future direction for this work. As shown in the simulations, STARE anchoring is robust to deviations in the 

signal within the vasculature cluster up to a certain point, but can be hindered by large inaccuracies in the mean signal 

within the vasculature cluster. For this reason, the two-stage k-means extraction process is critical, because it allows the 

number of clusters to be automatically selected from the data based on the kinetics and noise within that particular scan, in 

order to avoid such inaccuracies in the extracted vasculature cluster. However, in the PVC step, the user must supply the 

FWHM of the point spread function for the specific scanner and reconstruction approach. It is essential that this value is 
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selected appropriately, as grossly altering the AUC of the mean signal in the vasculature cluster, could begin to effect 

STARE performance.  

Although it is not used for this purpose within STARE, this novel, freely available vasculature cluster extraction, 

can also be implemented independently to potentially generate an IDIF. This will require optimization and validation with 

external datasets, especially given that the robustness to alterations in the vasculature cluster signal, has been investigated 

here in the context of total STARE performance, and not in the context of direct effects to kinetic modeling when an IDIF 

that is subject to effects from scanner FOV and spatial resolution, smoothing during reconstruction, motion, PVC, etc. is 

used as input. The best future use of the vasculature extraction portion of STARE would likely be in combination with a 

validated scaling technique. We emphasize that this is an initial validation of STARE as a whole, including both the 

Source-to-Target tissue model and anchoring portions, and external validation under different scenarios is critical to test 

STARE’s robustness to other PET scanners, radiotracers, populations, and treatment conditions. 

5 CONCLUSIONS 

STARE - Source-to-Target Automatic Rotating Estimation – is a novel approach for automated, blood-free 

quantification of the net influx rate (Ki) of PET radiotracers with irreversible kinetics, that relies solely on the individual’s 

dynamic PET data. Letting each of the brain regions for which quantification is desired to act, in turn, as a common 

“source” brain region for all other “target” regions to be expressed as a function of, allows STARE to gain strength by 

exploiting the information in multiple regions at once with the goal of accurate and precise estimation of Ki. STARE is 

“anchored” for participant-specific identifiability using information derived from a novel vasculature cluster extraction 

and bootstrapping procedure. We validated STARE with a set of [18F]FDG scans, for which we showed that Ki can be 

estimated stably, in good agreement with “gold-standard” AIF-based estimates, and with similar performance across 

diagnostic groups. In simulations, Ki estimates were largely robust to characteristics of the vascular cluster of voxels used 

for STARE anchoring. With more validation, STARE can accelerate use of quantitative PET imaging in the clinic by 

simplifying acquisition, reducing cost, and affording individualized, non-invasive quantification. 
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Appendix – STARE Derivation 

The time activity curves (TACs) in any given source region’s S (𝐶-(𝑡)) and any given target region’s T (𝐶!(𝑡)) can be 

expressed as a function of the concentration of radiotracer in arterial plasma (𝐶"(𝑡)) according to the two tissue 

irreversible (2TCirr) compartment model: 

f
𝐶!(𝑡) = 𝐾#,!'𝐼𝑅𝐹!⨂𝐶",(𝑡) = 𝐾#,![(𝑃!𝑒&J$) + 𝑄!)⨂𝐶"](𝑡)
𝐶-(𝑡) = 𝐾#,-'𝐼𝑅𝐹-⨂𝐶",(𝑡) = 𝐾#,-[(𝑃-𝑒&J%) + 𝑄-)⨂𝐶"](𝑡)

   (A.1) 

where: 

⎩
⎪
⎨

⎪
⎧ 𝑃! =

$!,$
$!,$%$",$

𝑄! =
$",$

$!,$%$",$
𝑅! = 𝑘*,! + 𝑘+,! ⎩

⎪
⎨

⎪
⎧ 𝑃- =

$!,%
$!,%%$",%

𝑄- =
$",%

$!,%%$",%
𝑅- = 𝑘*,- + 𝑘+,-

   (A.2) 

and where 𝑡 is the vector of PET frame time-points, 𝐾#,-, 𝑘*,-, and 𝑘+,- are the 2TCirr micro-parameters for the source 

region 𝑆, 𝐾#,!, 𝑘*,!, and 𝑘+,! are the 2TCirr micro-parameters for the target region 𝑇, and 𝐼𝑅𝐹 is the impulse response 

function in each region. 

Transforming the system of equations in (1) into Laplace domain, we obtain: 

5
ℒ{𝐶!}(𝑠) = 𝐾#,!ℒ{𝐶"}(𝑠)ℒ{𝐼𝑅𝐹!}(𝑠) = 𝐾#,!ℒ{𝐶"}(𝑠)(

K$
9%J$

+ L$
9
)

ℒ{𝐶-}(𝑠) = 𝐾#,-ℒ{𝐶"}(𝑠)ℒ{𝐼𝑅𝐹-}(𝑠) = 𝐾#,-ℒ{𝐶"}(𝑠)(
K%
9%J%

+ L%
9
)

   (A.3) 

By solving for 𝐶"(𝑠) in the second equation in the system in (A.3) and substituting it into the Equation (A.1), we obtain: 

ℒ{𝐶!}(𝑠) =
1&,$
1&,%

ℒ{𝐶-}(𝑠)
ℒ{;J=$}(9)
ℒ{;J=%}(9)

   (A.4) 

ℒ{;J=$}(9)
ℒ{;J=%}(9)

 can be expressed as follows:  

ℒ{𝐼𝑅𝐹!}(𝑠)
ℒ{𝐼𝑅𝐹-}(𝑠)
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+ 𝑄!𝑠
𝑃-

𝑠 + 𝑅-
+ 𝑄-𝑠

=
𝑠𝑃! + 𝑠𝑄! + 𝑄!𝑅!

𝑠 + 𝑅!
𝑠 + 𝑅-

𝑠𝑃- + 𝑠𝑄- + 𝑄-𝑅-
=
𝑠(𝑃! + 𝑄!) + 𝑄!𝑅!

𝑠 + 𝑅!
𝑠 + 𝑅-

𝑠(𝑃- + 𝑄-) + 𝑄-𝑅-

=
𝑠*(𝑃! + 𝑄!) + 𝑠𝑄!𝑅! + 𝑠𝑅-(𝑃! + 𝑄!) + 𝑄!𝑅!𝑅-
𝑠*(𝑃- + 𝑄-) + 𝑠𝑄-𝑅- + 𝑠𝑅!(𝑃- + 𝑄-) + 𝑄-𝑅!𝑅-

 

    (A.5) 

where: 

𝑃! + 𝑄! =
$!,$

$!,$%$",$
+ $",$

$!,$%$",$
= 1      (A.6) 

and 

𝑃- + 𝑄- =
$!,%

$!,%%$",%
+ $",%

$!,%%$",%
= 1      (A.7) 

Therefore, simplifying further, this yields: 
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ℒ{;J=$}(9)
ℒ{;J=%}(9)

= K$%L$
K%%L%

9!%9 )$*$+$,)$
%9J%%

)$*$*%
+$,)$

9!%9 )%*%+%,)%
%9J$%

)%*$*%
+%,)%

= 9!%9L$J$%9J%%L$J$J%
9!%9L%J%%9J$%L%J$J%

  (A.8) 

By defining the following system of Equations: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝛼!,- =

L$J$
K$%L$
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   (A.9) 

Equation (A.8) can be expressed as: 

ℒ{;J=$}(9)
ℒ{;J=%}(9)

= 1 + 9N$,%%O$,%
9!%P$,%9%Q$,%

= 1 + 9N$,%%O$,%
(9&2$,%)(9&3$,%)

= 1 + A$,%
9&2$,%
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  (A.10) 

with: 

⎩
⎪
⎨

⎪
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𝑣!,- =

&P$,%%SP$,%!&TQ$,%

*

𝜀!,- =
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   (A.11) 

and: 

5
𝐿!,- = 𝛼!,- −

O$,%%N$,%3$,%
3$,%&2$,%

𝑀!,- =
O$,%%N$,%3$,%
3$,%&2$,%

       (A.12) 

By applying the inverse Laplace transform to Equation (A.10), we obtain a function, 𝑍!,-(𝑡), in the time domain as: 

𝑍!,-(𝑡) = ℒ&# tℒ{;J=$}(9)ℒ{;J=%}(9)
u = 𝛿(𝑡) + 𝐿!,-𝑒2$,%) +𝑀!,-𝑒3$,%)   (A.13) 

where 𝛿(𝑡) is the Dirac delta function. 

By applying the inverse Laplace transform to Equation (A.4), and considering Equation (A.13), we can express the TAC 

in each target region (𝐶!(𝑡)) as a function of the TAC in the source region (𝐶-(𝑡)) and of 6 free parameters: 3 for the 

source region, which are in common across all target regions (𝐾#,-, 𝑘*,-, 𝑘+,-)	and 3 for each target region (𝐾#,! , 𝑘*,! , 𝑘+,!): 

𝐶!(𝑡) =
𝐾#,!
𝐾#,-

'𝑍!,-⨂𝐶-,(𝑡) =
𝐾#,!
𝐾#,-

𝐶-(𝑡) +
𝐾#,!
𝐾#,-

𝐶-(𝑡)⨂'𝐿!,-𝑒2$,%) +𝑀!,-𝑒3$,%), = 𝑓(𝑡; 	𝐾#,! , 𝐾#,! , 𝑘*,! , 𝑘*,-, 𝑘+,-, 𝑘+,-) 

 (A.14) 
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