1	Adenylate kinase 1 overexpression increases locomotor activity in medaka fish
2	
3	
4	Michiyo Maruyama ^{1, 2} , Yuko Furukawa ² , Masato Kinoshita ³ , Atsushi Mukaiyama ^{4, 5} ,
5	Shuji Akiyama ^{4, 5} , Takashi Yoshimura ^{1, 2*}
6	
7	
8	¹ Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural
9	Sciences, Nagoya University, Nagoya 464-8601, Japan.
10	² Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya
11	464-8601, Japan.
12	³ Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University,
13	Kyoto 606-8502, Japan
14	⁴ Research Center of Integrative Molecular System (CIMoS), Institute for Molecular
15	Science, National Institute of Natural Sciences, Okazaki 444-8585, Japan.
16	⁵ Department of Functional Molecular Science, SOKENDAI (The Graduate University for
17	Advanced Studies), Okazaki 444-8585, Japan.
18	
19	*Corresponding author
20	E-mail: takashiy@agr.nagoya-u.ac.jp (TY)
21	
22	
23	

24 Abstract

25	Maintenance of the energy balance is indispensable for cell survival and function.
26	Adenylate kinase (Ak) is a ubiquitous enzyme highly conserved among many organisms.
27	Ak plays an essential role in energy regulation by maintaining adenine nucleotide
28	homeostasis in cells. However, its role at the whole organism level, especially in animal
29	behavior, remains unclear. Here, we established a model using medaka fish (Oryzias
30	latipes) to examine the function of Ak in environmental adaptation. Medaka
31	overexpressing the major Ak isoform Ak1 exhibited increased locomotor activity
32	compared to that of the wild type. Interestingly, this increase was temperature dependent.
33	Our findings suggest that cellular energy balance can modulate locomotor activity.
34	

35

36 Introduction

Energy homeostasis is crucial for survival and the maintenance of cell function. Disruption of energy balance is suggested to be associated with many conditions, including obesity, heart failure, and neurodegeneration [1–4]. Adenylate kinase (Ak) is an essential enzyme found in nearly every organism because of its crucial role in cellular energy metabolism [4–7]. Ak catalyzes the nucleotide phosphoryl exchange reaction

42	$(2ADP \leftrightarrow ATP + AMP)$ to maintain the adenine nucleotide balance and monitor energy
43	consumption. Ak and its downstream adenine nucleotide signaling pathway have
44	attracted attention because of their vital functions in many biological processes, such as
45	the cell cycle, hormone secretion, and stress tolerance [5,7–11]. To date, nine isoforms of
46	AK (AK1-AK9) have been identified and well characterized in humans [6]. AK1 is the
47	major isoform of AK and is expressed in the cytosol of most human tissues, with
48	particularly high levels in the brain, the heart, skeletal muscles, and erythrocytes. Several
49	reports have demonstrated the importance of Ak1 in metabolic stress conditions [9–11].
50	Interestingly, it was recently reported that hyperactive rat strains exhibit increased Ak1
51	expression [12]. To our knowledge, however, the role of Ak1 at the whole organism level,
52	especially in animal behavior, remains unclear.
53	In this study, we sought to clarify the effect of Akl on animal behavioral rhythms.
54	The medaka (Oryzias latipes), a small freshwater fish, has recently emerged as a useful
55	vertebrate model because of its small size and short generation time. Additionally, there
56	are well-established methods for transgenic and genomic editing in medaka. Behavioral
57	assays are also well established, for both medaka and zebrafish, but medaka can survive
58	a wider range of water temperatures (4–40 $^{\circ}$ C) than zebrafish (20–32 $^{\circ}$ C), and they exhibit
59	seasonal behavioral patterns [13-16]. Therefore, the medaka is an excellent model with

60 which to investigate adaptive strategies to environmental changes.

61	Here, we successfully established Ak1-overexpressing (Ak1-OE) medaka.
62	Behavioral assays of Ak1-OE medaka larvae revealed a temperature-dependent increase
63	in locomotor activity. These findings shed new light on the function of Ak1.
64	

65

66 Materials and methods

67 Ethics statement for animal experiments

All animal studies were performed in accordance with the ARRIVE guidelines. All methods were conducted in compliance with the relevant guidelines and regulations and were approved by the Animal Experiment Committee of Nagoya University (approved number: AGR2020009).

72

73 Animals

74 Medaka fish (*Oryzias latipes*) were obtained from a local dealer (Fuji 3A Project, Nagoya,

75 Japan). The fish were maintained in a housing system (MEITO system; Meito Suien,

- Nagoya, Japan) under a 14 h light/10 h dark photoperiod (lights on at 05:00 and off at
- 19:00) at a water temperature of 25 °C. They were fed twice a day with Hikari Labo 450

78 (KYORIN, Tokyo, Japan).

79

80 Gene expression analysis

81	Total RNA was purified using an RNeasy micro kit (Qiagen, Hilden, Germany) with
82	DNase I. Extracted RNA was stored at -80 °C. Reverse transcription was performed on
83	total RNA (200 ng) using a ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka, Japan).
84	RT-PCR was performed using TaKaRa Ex Taq (Takara Bio Inc., Shiga, Japan) and the
85	following primers: Ak1 forward (F): 5'-ACACTCACCTGTCTTCAGGC-3' and reverse
86	(R): 5'-CTGTGTCCAGGGGTACAAGC-3', and Actb F: 5'-
87	GATTCCCTTGAAACGAAAAGCC-3' and R: 5'-
88	CAGGGCTGTTGAAAGTCTCAAAC-3'. Amplification was conducted at 94 °C for 2
89	min, followed by 30 cycles of 98 °C for 10 s, 60 °C for 30 s, 72 °C for 30 s and 72 °C for
90	5 min. The PCR products were analyzed using a MultiNA microchip electrophoresis
91	system (Shimadzu Corporation, Kyoto, Japan).
92	For real-time quantitative PCR (qPCR), 2 μ L of the synthesized cDNA was mixed with
93	SYBR Premix Ex Taq II (Takara Bio Inc.) and 0.4 μM primers (same as above) to a total
94	volume of 20 $\mu L.$ qPCR was performed on a QuantStudio 3 Real-Time PCR System
95	(Applied Biosystems, Waltham, MA, USA). The Actb gene was used as an internal

5

96 control.

97

98 Construction of Ak1-OE plasmid

99 Total RNA was purified from embryos at 4 dpf using an RNeasy micro kit (Qiagen) with 100 DNase I. Reverse transcription of total RNA (200 ng) was performed using a ReverTra 101 Ace qPCR RT kit (Toyobo). The entire Akl open reading frame (excluding the stop 102 codon) was amplified by PCR (98 °C for 2 min; 35 cycles of 98 °C for 10 s, 65 °C for 30 103 s, 72 °C for 1 min, and 72 °C for 5 min) using a Q5 Hot Start High-Fidelity 2× Master 104 Mix (New England Biolabs, Ipswich, MA, USA) and primers containing the restriction 105 subsequent 5'sites of SpeI or BglII for subcloning (F: 106 CCACTAGTATGGCAGACAAAATCAAGGAC-3' 5'-R: and 107 CCAGATCTCTTCAGTGAATCAATAGCCTG-3').

The overexpression plasmid contained the Actin β (*Actb*) promoter followed by the first noncoding exon and the first intron, a 3×FLAG tag, an internal ribosomal entry site (IRES), GFP and SV40 polyA sequences in the *NotI-NotI* interval [17]. *Ak1* cDNA and plasmids were digested with *SpeI* and *BgI*II and purified using NucleoSpin Gel and PCR Clean-up (Macherey-Nagel, Düren, Germany). Ligation was performed using Ligation High Ver. 2 (Toyobo). The sequence of the constructs was confirmed by direct

6

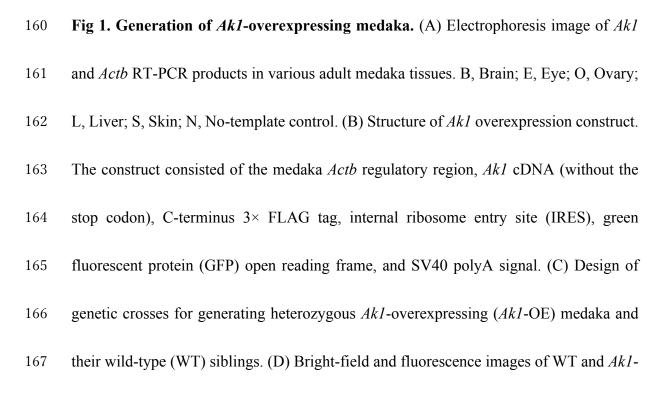
114 sequencing.

115

116 Generation of *Ak1*-OE medaka

The *Not*I-*Not*I interval of the *Ak1*-OE plasmid was purified and diluted with sterilized water (final concentration: 20 ng/ μ L) and then microinjected into the cytoplasm of onecell stage embryos (F0). F0 fish with mosaic GFP fluorescence were raised and crossed with WT fish to obtain heterozygous transgene carriers (F1). F1 fish with GFP fluorescence were crossed with the WT fish. Heterozygous F2 offspring were used for behavioral experiments.

123


124 Behavioral assays

F2 *Ak1*-OE and WT embryos were incubated under a 14L10D cycle at 25 °C until hatching. At the end of the light phase at 8 dpf, *Ak1*-OE larvae and their WT siblings were distributed among 48 round well plate (CELL STAR; Greiner Bio-One, Kremsmünster, Austria) each containing 1200 μ L of water, with 1 larva per well. The plate was then installed in a DanioVision Observation Chamber (Noldus, Wageningen, the Netherlands). At 19:00 8 dpf, the light was turned off and the larvae were acclimated for 10 h during the dark phase. Behavior was recorded from 05:00 9 dpf to 5:00 12 dpf (for 3 days) under

132	a 14 h light (300 lx) and 10 h dark (0 lx) photoperiod (lights on at 05:00 and off at 19:00)
133	at a water temperature of 15 or 25 °C. Behavior was recorded at 3.75 frames per second
134	and analyzed using the tracking software EthoVision XT (Noldus). Locomotor activity
135	was calculated by measuring the "distance moved" every 10 min.
136	
137	Statistical analysis
138	Data are presented as the mean ± SEM generated using the statistical software GraphPad
139	Prism 9. Two-tailed Welch's <i>t</i> -test was used for comparisons between two groups. For
140	comparisons among three or more groups, two-way ANOVA and post hoc tests were
141	conducted using GraphPad Prism 9.
142	
143	
144	Results
145	Generation of Ak1-OE medaka
146	We first examined Akl expression in various medaka tissues. Reverse
147	transcription polymerase chain reaction (RT-PCR) results showed widespread expression
148	(Fig 1A). To evaluate the effect of constitutively high Akl expression, we used a construct
149	that overexpressed Ak1 in response to regulation of the Actb promoter (Fig 1B). This

150	construct enabled us to visualize transgene expression via green fluorescent protein (GFP),
151	which was linked to the 3' internal ribosome entry site (IRES) downstream of Actb-Ak1
152	[17].
153	To generate Ak1-OE medaka, the construct was microinjected into the cytoplasm
154	of one-cell stage embryos. Exhibiting chimeric GFP expression embryos were raised as
155	F0 medaka. These medaka were paired with the wild type to obtain heterozygous
156	transgene carriers (F1). GFP-expressing F1 medaka were then crossed with the wild type
157	to generate heterozygous F2 offspring (Figs 1C and D). Overexpression of Ak1 in GFP-
158	positive F2 medaka was confirmed by quantitative RT-PCR (qPCR) (Fig 1E).

159

168	OE embryos at 5 days post-fertilization (dpf). (E) Akl expression level of larvae at 9 dpf.
169	Data represent the mean \pm SEM, n = 4 each. WT expression level was set at 1. The <i>p</i> -
170	value was calculated using two-tailed Welch's t-test. Each dot represents an individual
171	value.

172

173 Ak1-OE larvae exhibited increased locomotor activity at 25 °C

174 The high-throughput behavioral tracking assay is well established in larvae of zebrafish and medaka fish [14,15]. Therefore, we used this method to examine the 175 176 locomotor activity of medaka larvae. Ak1-OE embryos and their wild-type (WT) siblings 177were raised in an incubator under a 14 h light/10 h dark (14L10D) cycle (lights on at 05:00 and off at 19:00) at 25 °C. At the end of the light phase at 8 days post-fertilization 178 179 (dpf), hatched larvae were placed in each well of a 48-well plate. The plate was then put 180 into a high-throughput behavior tracking system. Larvae were maintained under a 181 14L10D cycle at 25 °C. After 10 h of habituation, at the onset of the light phase at 9 dpf, locomotor activity was tracked for three full days (Fig 2A). The tracking profiles showed 182 183 that both Ak1-OE and WT larvae were more active during the light phase than during the 184 dark phase (Fig 2B). Compared to that on the first day of the assay, the total distance moved by the WT larvae significantly decreased on the third day (Fig 2C). As in previous 185

studies [14,15], larvae were not fed during the assay to avoid interrupting it. This may

186

187	have caused decreased energy, and hence, decreased activity, later in the experiment.
188	Notably, the average locomotor activity of the Ak1-OE larvae tended to be higher than
189	that of the WT larvae throughout the assay. This trend was particularly obvious on day 3,
190	at which point the total locomotor activity of the Ak1-OE larvae was significantly higher
191	than that of the WT larvae, both in the light and dark phases (Fig 2D).
192	
193	Figure 2. Locomotor activity of <i>Ak1</i> -overexpressing larvae at 25 °C. (A) Structure of
194	the behavioral assay. Larvae (8 dpf) were placed into a photoperiod- and temperature-
195	controlled chamber (14L10D, 25 °C) at the end of the light phase. After 10 h of
196	habituation (Hab.), recording was started at the onset of the light phase at 9 dpf and
197	continued for 3 full days. (B) Mean locomotor activity of Ak1-overexpressing (Ak1-OE)
198	and wild-type (WT) larvae. (C) Total locomotor activity of Ak1-OE and WT larvae per
199	day. Data represent the mean \pm SEM and were analyzed via two-way repeated measures
200	ANOVA. Effect of time, $F_{(1.386, 37.43)} = 11.45$, $p = 0.0006$; effect of overexpression, $F_{(1, 27)}$
201	= 7.891, p = 0.0091; effect of interaction, $F_{(2, 54)}$ = 0.2186, p = 0.8044. * p < 0.05; n.s., not
202	significant (Dunnett's multiple comparisons test, vs. day 1). (D) Total locomotor activity
203	of <i>Ak1</i> -OE and WT larvae per day during the light phase (white) and dark phase (gray).

Data represent the mean \pm SEM. The *p*-values (*p < 0.05) were calculated using twotailed Welch's *t*-test. Each dot represents an individual value. (B–D) n = 15 (WT), n = 14 (*Ak1*-OE).

207

208 Ak1-OE larvae did not exhibit increased locomotor activity at 209 15 °C

210 Ambient temperature directly affects the metabolic rate of ectothermic animals. 211 Therefore, we further examined the locomotor activity of Akl-OE larvae at a lower 212 temperature (15 °C), a condition associated with lower energy expenditure. After they 213 were raised at 25 °C, at 8 dpf, larvae were placed in a tracking chamber and exposed to a 214 14L10D cycle at 15 °C (Fig 3A). In both the Ak1-OE and WT larvae, locomotor activity levels on days 2 and 3 were similar to those on day 1 (Figs 3B and C). This suggests that 215 216 the larvae conserved their energy until the end of the experiment at the lower temperature. 217 Unlike the results at 25 °C, there was no difference in locomotor activity between the Akl-OE and WT larvae throughout the experiment (Fig 3D). This suggests that the 218 219 increase in the locomotor activity of Ak1-OE larvae was temperature dependent. 220

221 Figure 3. Locomotor activity of Ak1-overexpressing larvae at 15 °C. (A) Structure of 222 the behavioral assay. Larvae were maintained in a chamber under a 14L10D cycle at 223 15 °C. (B) Mean locomotor activity of Ak1-overexpressing (Ak1-OE) and wild-type (WT) 224 larvae. 225 (C) Total locomotor activity of Ak1-OE and WT larvae per day. Data represent the mean \pm SEM and were analyzed via two-way repeated measures ANOVA. Effect of time, $F_{(1.910)}$ 226 $_{68.74)} = 1.848$, p = 0.1669; effect of overexpression, $F_{(1,36)} = 3.607 \times 10^{-5}$, p = 0.9952; effect 227 228 of interaction, $F_{(2, 72)} = 0.2813$, p = 0.7556. n.s., not significant (Dunnett's multiple 229 comparisons test, vs. day 1). (D) Total locomotor activity of Ak1-OE and WT larvae per 230 day during the light phase (white) and dark phase (gray). Data represent the mean \pm SEM. n.s., not significant (two-tailed Welch's *t*-test). Each dot represents an individual value. 231 232 (B-D) n = 20 (WT), n = 18 (Ak1-OE).233

234

235 **Discussion**

Ak are essential enzymes that play critical roles in metabolic monitoring and signaling of cells. Among the Ak family members, we focused on Ak1, the major cytosolic isoform of Ak. In the present study, in various medaka tissues, we observed *Ak1*

239	expression similar to that reported in other animals [6] (Fig 1A). Ak1 is highly conserved
240	among many organisms. Indeed, the alignment of human AK1 (NP_000467.1, 194 aa)
241	with medaka Ak1 (XP_004074790.1, 194 aa) exhibited 75% identical residues and 88%
242	similar residues (via the NCBI BLAST Needleman-Wunsch Global Align function).
243	To know the function of Ak1 at the whole organism level, we established an
244	Ak1-OE medaka line (Figs 1B–E). Behavioral assays of the medaka larvae revealed that
245	Ak1-OE larvae exhibited increased locomotor activity compared with that of the WT
246	larvae at 25 °C, and the difference between the Ak1-OE and WT larvae was most obvious
247	on the last day of the experiment (Fig 2D). Ak1-OE larvae maintained a higher activity
248	level throughout the entire experiment, whereas the total amount of locomotor activity of
249	the WT larvae significantly decreased on day 3 (Fig 2C). In contrast, throughout the
250	experiment at 15 °C, the locomotor activity of Ak1-OE larvae did not differ from that of
251	the WT larvae (Fig 3D). Several knockout studies have shown that Ak1 deficiency can be
252	compensated for by other members of the Ak family under normal conditions, whereas
253	Akl deficiency leads to failure of metabolic homeostasis under stress conditions
254	[10,11,18]. As our behavioral assays were conducted without feeding, the lack of energy
255	later in the experiment might have mimicked metabolic stress even at the moderate
256	temperature of 25 °C, and this could have caused the large difference in activity between

the *Ak1*-OE and WT larvae on the last day of the assay.

258	In summary, Ak1 is known to play crucial roles in cell function. Our results
259	indicate the importance of AkI not only at the cellular level but also at the behavioral
260	level.
261	
262	
263	Acknowledgments
264	We thank Drs. T. Nishiwaki-Ohkawa, A. Shinomiya and T. Nakayama for
265	helpful discussions. We also thank A. Ieda and A. Matsumiya for technical assistance.
266	This research was supported by Joint Research by Institute for Molecular Science
267	(IMS). (IMS program No, 21-251)
268	
269	
270	Author contributions
271	M.M. and T.Y. designed the research. M.M. and Y.F. conducted the experiments
272	and analyzed the data. M.K., S.A. and A.M. provided new material and methods. M.M.
273	and T.Y. wrote the manuscript. All authors discussed the results and commented on the
274	manuscript.

275

276

Referen	ces
	Referen

- 278 1. Wells JCK, Siervo M. Obesity and energy balance: Is the tail wagging the dog?
- 279 Eur J Clin Nutr. 2011;65: 1173–1189. doi:10.1038/ejcn.2011.132
- 280 2. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J
- 281 Physiol. 2004;555: 1–13. doi:10.1113/jphysiol.2003.055095
- 282 3. Błaszczyk JW. Energy metabolism decline in the aging brain—pathogenesis of
- 283 neurodegenerative disorders. Metabolites. 2020. pp. 1–20.
- 284 doi:10.3390/metabo10110450
- 4. Ionescu MI. Adenylate Kinase: A ubiquitous enzyme correlated with medical
- 286 conditions. Protein J. 2019;38: 120–133. doi:10.1007/s10930-019-09811-0
- 287 5. Dzeja P, Terzic A. Adenylate kinase and AMP signaling networks: metabolic
- 288 monitoring, signal communication and body energy sensing. Int J Mol Sci.
- 289 2009;10: 1729–1772. doi:10.3390/ijms10041729
- 290 6. Panayiotou C, Solaroli N, Karlsson A. The many isoforms of human adenylate
- kinases. Int J Biochem Cell Biol. 2014;49: 75–83.
- doi:10.1016/j.biocel.2014.01.014

293	7.	Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, et
294		al. Adenylate kinase and metabolic signaling in cancer cells. Front Oncol.
295		2020;10: 1-9. doi:10.3389/fonc.2020.00660
296	8.	Karl Olson L, Schroeder W, Paul Robertson R, Goldberg ND, Walseth TF.
297		Suppression of adenylate kinase catalyzed phosphotransfer precedes and is
298		associated with glucose-induced insulin secretion in intact HIT-T15 cells. J Biol
299		Chem. 1996;271: 16544-16552. doi:10.1074/jbc.271.28.16544
300	9.	Janssen E, Dzeja PP, Oerlemans F, Simonetti AW, Heerschap A, De Haan A, et
301		al. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite
302		metabolic rearrangement. EMBO J. 2000;19: 6371-6381.
303		doi:10.1093/emboj/19.23.6371
304	10.	Dzeja PP, Bast P, Pucar D, Wieringa B, Terzic A. Defective metabolic signaling
305		in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic
306		coronary reflow. J Biol Chem. 2007;282: 31366-31372.
307		doi:10.1074/jbc.M705268200
308	11.	Xie M, Zhang G, Zhang H, Chen F, Chen Y, Zhuang Y, et al. Adenylate kinase 1
309		deficiency disrupts mouse sperm motility under conditions of energy stress. Biol
310		Reprod. 2020;103: 1121-1131. doi:10.1093/biolre/ioaa134

311	12.	Horiguchi T, Miyatake Y, Miyoshi K, Tanimura A, Hagita H, Sakaue H, et al.
312		Gene-expression profile reveals the genetic and acquired phenotypes of
313		hyperactive mutant SPORTS rat. J Med Investig. 2020;67: 51-61.
314		doi:10.2152/jmi.67.51
315	13.	Nakayama T, Okimura K, Shen J, Guh YJ, Katherine Tamai T, Shimada A, et al.
316		Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like
317		behavior. Proc Natl Acad Sci U S A. 2020;117: 9594–9603.
318		doi:10.1073/pnas.2000278117
319	14.	Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, et al.
320		TMT-Opsins differentially modulate medaka brain function in a context-
321		dependent manner. PLoS Biol. 2021; 19: e3001012.
322		doi:10.1371/JOURNAL.PBIO.3001012
323	15.	Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, et al. Zebrafish
324		behavioral profiling links drugs to biological targets and rest/wake regulation.
325		Science. 2010;327: 348-351. doi:10.1126/science.1183090
326	16.	Wittbrodt J, Shima A, Schartl M. Medaka - A model organism from the far east.
327		Nat Rev Genet. 2002; 3: 53-64. doi:10.1038/nrg704
328	17.	Fukamachi S, Yada T, Meyer A, Kinoshita M. Effects of constitutive expression

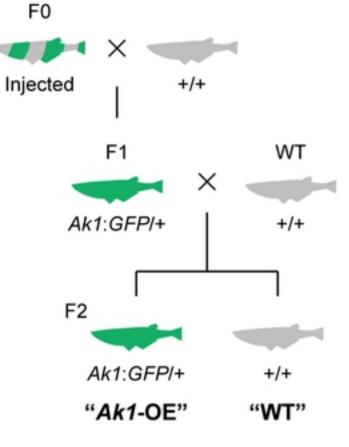
329		of somatolactin alpha on skin pigmentation in medaka. Gene. 2009;442: 81-87.
330		doi:10.1016/j.gene.2009.04.010
331	18.	Pucar D, Janssen E, Dzeja PP, Juranic N, Macura S, Wieringa B, et al.
332		Compromised energetics in the adenylate kinase AK1 gene knockout heart under
333		metabolic stress. J Biol Chem. 2000;275: 41424-41429.
334		doi:10.1074/jbc.M007903200

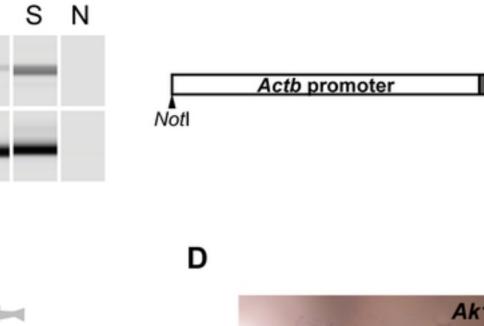
Figure 1

Α

Ak1

Actb

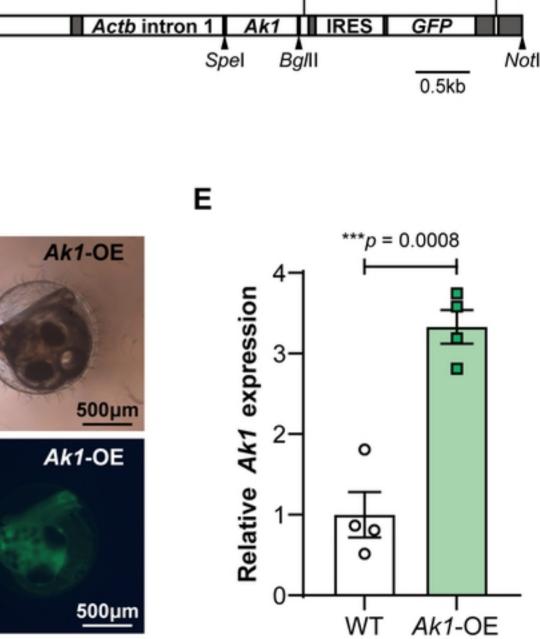

С


В

Е

Ο

L



Bright-field

Fluorescence

WT

wт

3xFLAG

SV40 polyA

В

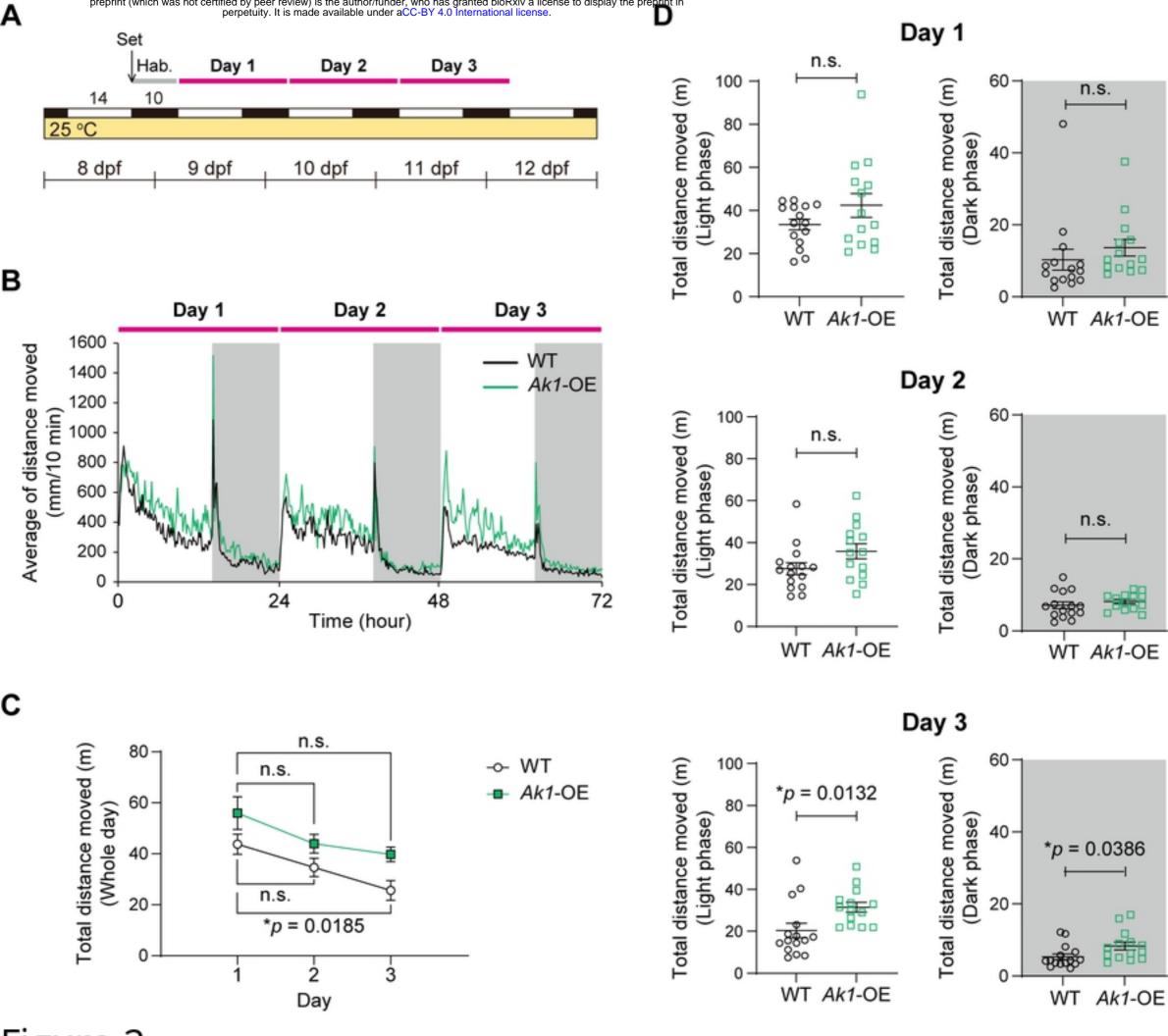


Figure 2

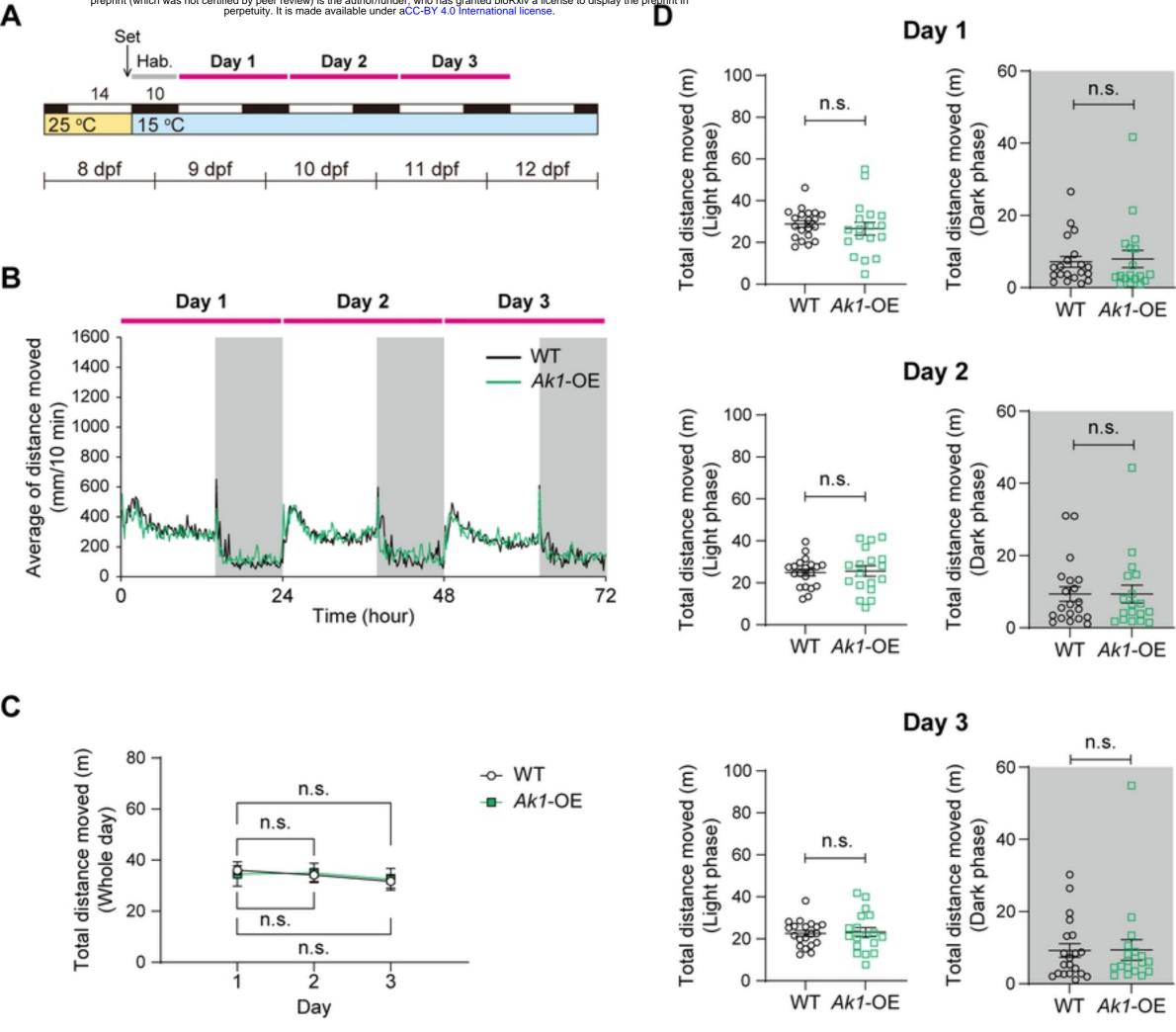


Figure 3