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Abstract

Ecological dynamics is driven by an ecological network consisting of complex interac-
tions. Information processing capability of artificial networks has been exploited as a
computational resource, yet whether an ecological network possesses a computational
capability and how we can exploit it remain unclear. Here, we show that ecological
dynamics can be exploited as a computational resource. We call this approach “Eco-
logical Reservoir Computing” (ERC) and developed two types of ERC. In silico ERC
reconstructs ecological dynamics from empirical time series and uses simulated system
responses as reservoir states, which predicts near future of chaotic dynamics and emulates
nonlinear dynamics. The real-time ERC uses population dynamics of a unicellular organ-
ism, Tetrahymena thermophila. Medium temperature is an input signal and changes in
population abundance are reservoir states. Intriguingly, the real-time ERC has necessary
conditions for reservoir computing and is able to make near future predictions of model
and empirical time series.
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Introduction

Ecological dynamics are driven by complex interactions. Empirical and theoretical studies have
shown that prey-predator, mutualistic, competitive and biotic-abiotic interactions are prevalent, and
that they play a vital role in ecological community dynamics (Mougi & Kondoh 2012; Reynolds &
Bruno 2013; Ushio et al. 2018; Ratzke et al. 2020). In nature, the interactions shape an ecological
network that includes numerous species (nodes). Information of a node, for example, species
abundance, can be processed through interactions and transferred to another node in a very complex
way that is often difficult to accurately represent by equations. Population dynamics or community
dynamics is temporal fluctuations in species abundance, and is a consequence of the “information
processing.” Ecologists have tried to discern rules that govern the ecological dynamics or the
information processing.
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In computational science, information processing capability of artificial networks is exploited as a
computational resource (e.g., artificial neural networks). Artificial neural networks are represented
by a network of neuron-like processing units (nodes) interconnected via synapse-like weighted links
(interactions), which are typically classified into feedforward neural networks (Schmidhuber 2015)
and recurrent neural networks (RNNs) (Mandic & Chambers 2001). A machine learning approach
called reservoir computing (RC) is a special type of RNN that is suitable for temporal information
processing such as time series analysis (Jaeger 2002; Nakajima & Fischer 2021). In RC, input
data are nonlinearly transformed into spatiotemporal patterns in a high-dimensional space by an
RNN called a “reservoir.” Then, a pattern analysis from the spatiotemporal patterns is performed in
the readout. The main characteristic of RC is that the input weights (Win) and the weights of the
recurrent connections within the reservoir (W) are not trained, whereas only the readout weights
(Wout) are trained with a simple learning algorithm such as a linear regression. This simple and fast
training process makes it possible to drastically reduce the computational cost of learning compared
with standard RNNs, which is the major advantage of RC (Jaeger 2002; Nakajima & Fischer 2021).

Recently, RC implementation using a physical material has been gaining growing attention in ma-
chine learning and engineering fields (physical reservoir computing, Nakajima 2020). A nonlinear,
complex information processing capability is embedded in a physical material (embodiment, see
Pfeifer et al. 2007), and thus one can replace a reservoir in RC with a physical material. For
example, a soft robotic, octopus-like arm can process an input signal from a motor (i.e., a motor
that initiates a movement of the robotic arm), and then the signal transmits through the arm in a
way that depends on physical characteristics of the robotic arm such as length, material, and shape.
Nakajima et al. have shown that such a soft robotic arm has a short-term memory and can be used
to solve several computational tasks in real time (Nakajima et al. 2014; Nakajima et al. 2015).

Several successful examples of physical reservoir computing (Tanaka et al. 2019; Nakajima 2020;
Nakajima & Fischer 2021) imply that we may be able to exploit information processing capability
of other types of networks as a computational resource. Here, we show that ecological dynamics,
outputs of ecological networks, can be exploited as a computational resource. We call this approach
“Ecological Reservoir Computing (ERC)” and implement two types of ERC in this study (Fig. 1A).
The first type of ERC is in silico ERC; it reconstructs ecological dynamics from empirical time
series using a time-delay embedding (Takens 1981) and simulates the system dynamics in response
to input signals. In silico ERC uses the reconstructed dynamics and the simulated responses as a
reservoir and reservoir states, respectively. Information processing capabilities of reconstructed
dynamics were evaluated for prokaryote and fish time series, and this approach successfully predicts
the near future of chaotic dynamics and emulates nonlinear dynamics. The results suggest that a
real ecological system might also be used as a computational resource. The second type of ERC
is real-time ERC; in the present study, we set up an experimental system that enables continuous
monitoring of population dynamics of a unicellular eukaryotic organism, Tetrahymena thermophila.
Medium temperature is used as input and we manipulated the temperature in a small aluminum
chamber. Then, we monitored changes in population abundance as reservoir states. Population
abundance is an output of this single species system as a result of complex interactions among
individuals and environment. Surprisingly, the real-time ERC has necessarily conditions for RC,
e.g., echo state property and short-term memory, and is able to make near future predictions of
model and empirical time series.
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Figure 1. Conceptual illustrations of ecological reservoir computing (ERC) and how in silico ERC is imple-
mented. (A) Conceptual illustrations of in silico ERC and real-time ERC. In silico ERC uses either equations or
empirical dynamics reconstructed by empirical time series as a reservoir. Real-time ERC uses an empirical ecological
interaction network as a reservoir. A node in an ecological reservoir may represent an individual, species, or abiotic
variable in this study. (B) Examples of ecological time series, state space reconstruction, and scenario exploration for
in silico ERC. Two empirical time series are shown as examples: Fish catch time series of Japanese jack mackerel
(Trachurus japonicus) and DNA copy number time series of Emticicia sp. in water samples collected from experimental
rice plots (Ushio 2020). Empirical attractor dynamics can be reconstructed by time-delay embedding (Embedding
dimension = 3). The red inlet indicates that the behavior of a target point (light blue) is predicted by the behaviors (red
arrows) of nearest neighbors (red points).
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Ecological reservoir computing: Demonstration of the concept by a toy model

We first demonstrate the concept of ERC using a toy model that is frequently used in ecology.
Eqn. [1] shows two coupled difference equations that can be interpreted as a model of two-species
population dynamics:

xt+1 = xt (rx − rx xt + βxy yt)
yt+1 = yt (ry − ry yt + βyx xt), ... [1]

where xt and yt indicate a population density of species x and y at discrete time t, respectively.
ri indicates the population growth rate of species i, and βi j indicates influences from species j
to species i (i.e., interspecific interactions). If βxy and βyx are negative, the equations represent a
two-species competition model (see Fig. S1A for an example of the population dynamics).

The simple nonlinear model can be used as a small reservoir in the context of RC. First, any inputs
can be converted using the weight matrix for the input-reservoir connections, Win, and then reservoir
dynamics follow Eqn. [1]. This information processing can be described as follows:

Xt+1 = f (Winut + g(Xt)), ... [2]

where t denotes discrete time, Xt is the state vector of the reservoir (Xt = {xt, yt}), ut is the input
vector, and g is the population dynamics model (g is adjusted so that g does not show chaotic
behavior; Fig. S1A). f represents an element-wise activation function. While hyperbolic tangent
is often used as f , we choose an identity function as f so that Eqn. [2] can be interpreted as the
population dynamics of two species, x and y, in response to the addition or removal individuals of
species x and y. Then, the reservoir states, Xt, are used to train readout weights, Wout, by a ridge
regression (see Methods for the definition of Wout).

This framework enables transforming a traditional ecological population model into an RC system.
We used Lorenz attractor as an input (ut; Fig. S1B), and near future predictions of the chaotic time
series are indeed possible (Fig. S1C–E). The performance of the small ecological reservoir is low,
which is expected given the small reservoir size (the number of reservoir nodes, N, is two). However,
this example demonstrates how we can potentially exploit ecological dynamics as a computational
resource.

Exploiting reconstructed ecological dynamics as a reservoir

The example of the two-species population model relies on equations, that is, we cannot use the
system for RC in silico unless equations governing the ecological dynamics are known. Unfortu-
nately, we usually do not know equations that govern real ecological dynamics, and thus, we need
an equation-free framework if we want to use ecological dynamics for RC in silico.

Scenario exploration, a method to simulate the response of an empirical ecological system to
external forces (Deyle et al. 2013), may be a promising approach to use empirical ecological time
series as a reservoir. Even when equations governing system dynamics are unknown, multivariate
system dynamics may be reconstructed from a single time series using a time-delay embedding (Fig.
1B, Takens 1981; Deyle & Sugihara 2011), which is known as state space reconstruction. Also, one
may add one or more variables (ordinates) in the reconstructed state space, allowing simulations of
ecosystem response to external forces. For example, Deyle et al. (2013) predicted how changes in
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sea surface temperature influence population abundance of Pacific sardine. In the context of RC,
changes in sea surface temperature and predicted population abundance of Pacific sardine may be
regarded as “input” and “readout,” respectively. The reconstructed state space contains a rule that
governs the empirical ecological dynamics and can be exploited as a reservoir.

We demonstrate this method, in silico ERC, using empirical ecological time series: (i) fish catch time
series collected from pelagic regions in Japan (Fig. 1B, Methods) and (ii) DNA-based quantitative
prokaryote time series taken from experimental rice plots (Fig. 1B, Ushio 2020). State spaces were
first reconstructed using an optimal embedding dimension determined following a previous study
(simplex projection, Sugihara & May 1990). The optimal embedding dimension (E) was estimated
to be three for both time series, so the state spaces were reconstructed in a three-dimensional space
(Fig. 1B). Then, reservoir states were calculated as follows:

Xt+1 = f (Winut + W simpXt), ... [3]

where W simp indicates a simplex projection (Sugihara & May 1990), a nonlinear forecasting method
that predicts a behavior of a target state based on behaviors of nearest neighbors in the reconstructed
state space. The behavior of Xt is predicted by W simp so that Xt follows the rule of the empirical
ecological dynamics (i.e., nonlinear map; see Methods). Then, a hypothetical input, ut, is added to
the state after transformation by Win (Fig. S2A). In this case, we again choose an identity function
as f . Alternatively, one may apply W simp after adding a hypothetical input, ut, to Xt as follows:

Xt+1 = f (W simp(Winut + Xt)), ... [4]

These methods may perform differently depending on the task (In the present study, Eqn. [3] was
used for a prediction task, and Eqn. [4] was used for an emulation task and a generation of an
autonomous system). In addition, this framework enables multiplexing reservoir states generated by
different species (species multiplexing; Fig. S2A). The reconstructed dynamics of different species
may generate different reservoir states, which can easily be combined and used to improve the
performance of in silico ERC.

The in silico ecological reservoir possesses a specific memory capacity and shows echo state property
(ESP), which are necessary for RC (Fig. S2B–D). We also measured information processing
capacities, which can evaluate the expressiveness of the reservoir in terms of memory capacity
and nonlinear processing of inputs, using both species systematically (Fig. S3 and Supplementary
Text). Then, we tested the performance of in silico ERC by several standard tasks: Prediction of
chaotic dynamics, emulation of nonlinear autoregression moving average (NARMA) time series,
and generation of an autonomous system (Mackey-Glass equation). First, in silico ERC with
species multiplexing accurately predicts Lorenz attractor (Figs. 2A and S2E). In the in silico ERC,
DNA-based time series of 500 prokaryotic species that were collected from the same experimental
system were multiplexed (Ushio 2020). Interestingly, the prediction accuracy measured by a
correlation coefficient increases with the number of species multiplexed (Fig. 2B), suggesting that
species diversity of a community might be related to the computational capability of an ecological
community. Second, NARMA2 can be accurately emulated with species-multiplexed in silico ERC
(Fig. 2C), although the performance is lower than that of a typical RC, echo state network (ESN)
(for details of the parameter setting of ESN, see Supplementary Text). Third, the Mackey-Glass
equation cannot be embedded in a closed-loop with species-multiplexed in silico ERC in our
current numerical experiments, but in silico ERC generates different attractor dynamics (Fig. 2E, F).
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Figure 2. The performance of species-multiplexed in silico ecological reservoir computing (ERC). (A) Time
series of Lorenz attractor (black points and lines) and one time-step future predictions by species-multiplexed in silico
ERC (red points and lines). (B) Correlation coefficients of observed and predicted values of Lorenz system and the
number of species multiplexed. (C) Nonlinear autoregression moving average (NARMA) time series (black points and
lines) and emulation by species-multiplexed in silico ERC (red points and lines). NARMA is NARMA2 in this panel (D)
Normalized mean square error (NMSE) of the NARMA emulations by species-multiplexed in silico ERC (red points
and lines) and echo state network (ESN; blue points and lines). (E) The closed-loop embedding of the Mackey-Glass
equations by species-multiplexed in silico ERC. The original attractor (black points and lines) was learned by the in
silico ERC and autonomous dynamics was generated from time point zero (red points and lines). (F) Two-dimensional
representation of the original Mackey-Glass attractor (black points) and that generated by the in silico ERC (red points).
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Interestingly, the analysis on information processing capacity suggests that the in silico ERC has
relatively higher nonlinear processing capacity than the linear one compared with the profile of the
conventional ESNs (Fig. S3C). Altogether, these results show that the method based on scenario
exploration can be used as RC and solve several standard tasks. More importantly, in silico ERC
may be useful to screen for real-time ecological dynamics with a high computational capability, and
the successful applications of in silico ERC suggest that real-time ecological dynamics may also be
exploited as a computational resource.

Real-time ecological reservoir computing

In silico ERC suggests that we may exploit real-time ecological dynamics as a computation resource.
Here we show that RC is possible even with real ecological dynamics. We focused on the microbial
dynamics in a culture system because the system can be easily intervened in and monitored. A
eukaryotic unicellular organism, Tetrahymena thermophila (hereafter, Tetrahymena), is a model
organism for molecular biology (Cassidy-Hanley 2012). It usually grows on a bacterial diet, but can
easily be cultured on inanimate media (Cassidy-Hanley 2012). Also, it has a high growth rate (the
doubling time under optimal conditions is ca. two hours), and its growth rate varies depending on
environmental factors such as temperature and nutrient concentrations (Fig. S4–S5).

We set up an experimental system to use Tetrahymena population dynamics as a reservoir (Fig.
3A–D). The Tetrahymena population is cultivated on modified Neff medium (see Methods) and
transferred to an aluminum chamber (Fig. 3B–D) when used for an experiment. Medium temperature
is accurately controlled with a custom temperature-regulator (Fig. 3A), which is an input signal of
real-time ERC. Tetrahymena population dynamics is monitored by taking time-lapse images from the
bottom of the incubator, and the number of cells is counted by a standard particle analysis (Fig. S6).
Although there is only a single species in the system, many factors, including temperature, medium
concentration, cell-to-cell interactions, and individual behaviors affect cell numbers captured at
the bottom of the chamber (Fig. 3E). Indeed, previous studies have demonstrated that population
dynamics of Tetrahymena is governed by complex, nonlinear processes (Becks et al. 2005; Jordan
et al. 2013; Weisse et al. 2016). Thus, the number of cells captured in an image is a response of the
system to an external force, temperature. Specifically, the cell dynamics can be formulated as:

Xt+1 = Wtetra(Winut, Xt), ... [5]

where Win determines how the effects of temperature, ut, propagate to the population dynamics, and
Wtetra determines how temperature influence (Winut) and population density captured at the bottom
of the chamber (Xt) interact in the chamber. Importantly, we do not know exact formulations of
Wtetra and Win, but we can still use this system for RC if Wtetra and Win are time-invariant (note that
Wtetra and Win could be nonlinear maps that represent rules governing empirical dynamics).

We first tested whether the Tetrahymena reservoir has a memory capacity and echo state property
(ESP). Uniform random values were set in the temperature regulator, and medium temperature and
Tetrahymena populations were monitored. Temperature inputs were switched every five minutes,
and each image was taken every minute (Fig. 3F). As the maximum number of inputs is 256 for the
experimental system, the monitoring continued for 21 hours 20 minutes, generating 1280 images.
To make the time series stationary and unbiased, we first estimated the trend by an additive model
(Wood 2004), and calculated the relative residuals from the trend (Fig. S6). The relative residuals
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Figure 3. The experimental set up of Tetrahymena thermophila reservoir. (A) Illustrations of experimental set up.
(B, C) Pre-incubated Tetrahymena population is maintained in an aluminum chamber. The total medium volume is five
ml, and the concentration of nutrient is adjusted to change parameters of the population dynamics. (D) Cell images
were taken from the bottom of the chamber. The number of cells was counted using a custom image analysis pipeline.
(E) We used 1.6%, 4%, and 10% modified Neff medium in the experiments. Temperature information first transmits
from the regulator to the aluminum chamber, and then propagates to several nodes in the medium and Tetrahymena.
The temperature information is processed through complex interactions among temperature, medium, and behavior
and physiology and Tetrahymena. The number of cells at the bottom of the chamber may contain the processed
information and we use it as a reservoir state. Reservoir states of different nutrient concentrations were used to improve
the performance of real-time ERC (i.e., space multiplexing) (F) Time series indicate input temperature (dense red),
medium temperature (red), and a population density index (relative residual of the population density) in a 4% (blue
line; Low nutrient), 1.6% (orange line; Med. nutrient), or 10% (brown line; High nutrient) modified Neff medium.
Black line indicates population density index of Tetrahymena in a 4% modified Neff medium in response to a different
temperature input sequence.
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were used an index of Tetrahymena population density, and used as reservoir states hereafter (For
more details, see Methods and Supplementary Text). An example of the monitoring results with the
same input sequence for different trials is shown in Figs. 3F and S7 (see also Supplementary Video
1, https://youtu.be/z_QeEka4W3w), which shows a clear common-signal-induced synchronization
that is a signature of ESP (Lu et al. 2018; Inubushi et al. 2021).

For RC, two strategies were adopted to increase the reservoir size: time-multiplexing and spatial-
multiplexing using different medium concentrations. Five cell counts (one-minute interval) were
acquired for one temperature input (five-minute interval); those five were used as the reservoir state
(time-multiplexing). Also, to increase the reservoir size, the uniform random temperatures were
inputted to the Tetrahymena population in different medium concentrations (i.e., 1.6%, 4%, and
10% modified Neff medium). The growth rate depends on the medium concentrations (Fig. S5),
suggesting that Wtetra is a function of the medium concentration, and therefore, the population dy-
namics under a different medium concentration may be used as a reservoir with different parameters
(Fig. 3E).

We tested three medium concentrations and ran two experiments for each medium concentration
(Fig. 3E). The same medium concentration generated similar population dynamics (Fig. 3E). We
further tested the correspondences between the two runs for each medium concentration, and found
that the state differences (i.e., the absolute distance between two states) become smaller when the
same input sequence is inputted to the system (Figs. 3F and S7A–F). On the other hand, with
a different input sequence in the 4% medium system, the population dynamics show a different
pattern, and the state difference does not converge (Figs. 3F and S7G–H). These results suggest that
the system has ESP (Lu et al. 2018; Inubushi et al. 2021). In addition, the population dynamics
have a specific memory capacity; the dynamics recover the input values at 5–15 minutes ago (=
1–3 steps ago) (Fig. 4A–C). These characteristics enable the Tetrahymena reservoir to measure the
medium temperature (Fig. 4D, E), showing that, by using a short-term memory of the reservoir,
the Tetrahymena population dynamics can work as a “thermometer” of the system. Together, these
results suggest that the ecological reservoir may be exploited as a computational resource.

To explicitly show that the Tetrahymena reservoir can solve computational tasks, we predicted
three time series: Lorenz attractor (model time series) and two fish-catch time series (empirical
time series; see Methods). As with the uniform random inputs, the same inputs generate similar
population dynamics under the same medium concentration, showing ESP of the system (Fig. S8).
By time-multiplexing those reservoir states, the Tetrahymena reservoir reasonably predicts the near
future of the three time series (Figs. 5A–C; see Supplementary Video 2 for how the Tetrahymena
reservoir predicts the near future, https://youtu.be/SUmkYAnfjFk). The predictions made by the
Tetrahymena reservoir are more accurate than those made by linear readout (i.e., a ridge regression)
at certain time points, suggesting that the computational capability of Tetrahymena population
dynamics has been successfully exploited by the experimental system. The Tetrahymena reservoir
predicts 15 time-step future of Lorenz attractor, 19 time-step future of flatfish time series, and
30 time-step future of Japanese jack mackerel time series (Fig. 5D–F; for a version that uses the
medium temperature as input, see Fig. S9D–F).
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Figure 4. Memory capacity of the Tetrahymena reservoirs. (A) Memory capacity of the Tetrahymena reservoir
measured using three time series of population density index (each from three medium concentrations) as a training set
and the other three time series as a test set. Red points and lines indicate how well the Tetrahymena dynamics remembers
the uniform random inputs. Blue points and lines indicate temporal correlations. (B) Correlations between observed
and predicted values of uniform random inputs. Red dashed line indicates 1:1 line. (C) Observed (gray points and lines)
and predicted (red points and lines) time series of uniform random inputs. In the panel C, temperatures five minutes ago
were predicted by the states of the Tetrahymena reservoir. (D) Measurements of the medium temperatures five minutes
ago by the Tetrahymena reservoir, suggesting that the Tetrahymena reservoir may work as a thermometer (Tetrahymena
thermometer). (E) Correlations between observed and predicted temperature by the Tetrahymena thermometer.
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Figure 5. The performance of the Tetrahymena thermophila reservoir in predicting model and empirical time
series. The relationship between prediction accuracy (Normalized Mean Square Error; NMSE) and prediction time
step of (A) Lorenz attractor, (B) flatfish time series, and (C) Japanese jack mackerel time series. Red points and lines
indicate predictions by the Tetrahymena reservoir, and blue points and lines indicate predictions by ridge regressions.
NMSE below 0.4 was not shown in A-C.Time series of observed (gray points and lines) and predicted (red points
and values) of (D) Lorenz attractor with 15 time-step future prediction, (E) flatfish time series with 19 weeks future
prediction, and (F) Japanese jack mackerel time series with 30 weeks future prediction.
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Concluding remarks

In the present study, we show a proof-of-concept that ecological dynamics can be exploited as a
computational resource in two ways: in silico ERC and real-time ERC. The former provides a
numerical framework to quantify the potential computational capability of the ecological dynamics
and to use the reconstructed dynamics as a computational resource. The framework also provides
a unique opportunity to screen for ecological dynamics with a high computational capability,
which may be useful for searching for potentially high-performance real ecological dynamics.
Furthermore, quantifying the computational capability of existing ecological time series and com-
paring the computational capabilities with ecological factors (e.g., species identity, phylogeny, and
environmental factors) would be an interesting direction. The latter is more intriguing, and its
significance is multi-fold. First, real-time ERC is a novel computational framework. Though the
computational performance of ERC is still poorer than that of the typical RC, other ecological
dynamics (e.g., high-diversity community dynamics) with different experimental settings (e.g.,
different input signals such as light) will possess different reservoir properties (e.g., with/without
echo state property and different memory capacity), and such ecological reservoirs might outperform
the typical RC. Second, the real-time ERC enables quantifications of the computational capability
of empirical ecological populations or communities. The computational capability may be regarded
as an “extended” functional trait of organisms, which should evolve by interacting with biotic and
abiotic factors in a natural habitat. Identifying responsible genes for the computational capability
would be a fascinating direction. Third, a community with high diversity may potentially have a
high reservoir size, which could possess a high computational capability (as shown in Fig. 2B). The
potential positive relationship between community diversity and computational capability may add
a new value to biodiversity. Lastly, if the “closed-loop” approach as shown in the Mackey-Glass
equation in in silico ERC (Fig. 2E, F) is successful in real-time ERC, it would imply that we may
be able to design specific dynamics in real-time ecological dynamics. It would be a novel approach
to manipulate ecological dynamics. Altogether, this study presents how ecological dynamics can
be exploited as a computational resource and how ERC provides a new way for understanding,
exploiting, and managing ecological dynamics.
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Methods
A classic reservoir computing framework: Echo state network (ESN)

In the early 2000s, Echo State Networks (ESNs) as well as Liquid State Machines (LSMs) were proposed as a
seminal Reservoir Computing (RC) approach (Jaeger 2002; Maass et al. 2002). ESNs (and LSMs) are different from
conventional Recurrent Neural Networks (RNNs) in that weights on the recurrent connections in the reservoir are not
trained but only the weights in the readout are trained (Jaeger 2002). To apply a simple machine learning method to the
readout, the reservoir should be appropriately designed in advance. The characteristics of ESNs are briefly described
below.

The ESN model was proposed by Jaeger (Jaeger 2002; Jaeger et al. 2007). This model uses an RNN-based reservoir
consisting of discrete-time artificial neurons. When the feedback from the output to the reservoir is absent, the time
evolution of the neuronal states in the reservoir is described as:

Xt+1 = f (Winut + WXt), ... [6]

where t denotes discrete time, Xt is the state vector of the reservoir units, ut is the input vector, Win is the weight
matrix for the input-reservoir connections, and W is the weight matrix for the recurrent connections in the reservoir.
The function f represents an element-wise activation function of the reservoir units, which is typically a sigmoid-type
activation function. Eqn. [6] represents a non-autonomous dynamical system forced by the external input ut. The output
is often given by a linear combination of the neuronal states as follows: zt = Wout Xt, where zt is the output vector and
Wout is the weight matrix in the readout. In supervised learning, this weight matrix is trained to minimize the difference
between the network output and the desired output for a certain time period.

ERC with a two-species model system: Demonstration of the concept of ERC

To demonstrate the concept of Ecological Reservoir Computing (ERC), we first used logistic equations, a commonly
used system to simulate ecological population dynamics, for RC. Eqn. [1] in the main text shows two coupled difference
equations that can be interpreted as a model of two-species population dynamics. In the demonstration, we used the
following equations (corresponds to Eqn. [1] in the main text):

xt+1 = xt (2.9 − 2.9 xt + 0.1 yt)
yt+1 = yt (2.92 − 2.92 yt − 0.2 xt), ... [7]

The simple nonlinear model can be used as a small reservoir in the context of RC, as in the main text. Parameter values
used in the toy model are follows: rx = 2.9, ry = 2.92, βxy = 0.1, βxy = −0.2. The sparsity (i.e., the proportion of zero in
the matrix elements) of Win was set to 0.1. Matrix elements of the input weight were chosen from a uniform random
distribution, and they were multiplied by 0.2 to adjust the influence of the input vectors. Readout was trained using a
ridge regression (λ for the regularization = 0.05).

In silico ERC: Empirical ecological time series and scenario exploration

Empirical ecological time series is used to simulate an ecological system’s responses (for how the ecological time series
obtained, see Supplementary Text). For this purpose, we developed a framework based on state space reconstruction
(SSR), a method to reconstruct an original dynamics from a single time series (Takens 1981; Deyle & Sugihara 2011)
(Fig. 1B). In a natural ecosystem, it is often impossible to collect time series of all potentially important variables
involved in a target ecosystem dynamics. Takens (1981) offered a theoretical basis to solve this problem: Takens’
embedding theorem demonstrated that a shadow version of the attractor can be reconstructed using a single observed
time. In other words, delineation of the system state trajectory, originally constructed using multiple variables, can
be possible even if a time series is available only for a single variable (Takens 1981; Sauer et al. 1991). To embed
such a single time series, xt, vectors in the putative phase space are formed from time-delayed values of the time
series, {xt, xt−τ, xt−2τ, ..., xt−(E−1)τ}, where E is the embedding dimension, and τ is the time-lag unit. This procedure, the
reconstruction of the original dynamics, is known as SSR.

Based on SSR, Deyle et al. (2013) proposed a numerical method to predict an ecosystem’s responses to external forces
(Fig. 1B). A typical way to view temporal dynamics is as separate time series of each species. For example, see Fig.
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1B for time series of Japanese jack mackerel (Trachurus japonicus) and bacteria (Emticicia sp.). However, according
to Takens’ theorem, system dynamics may be delineated by plotting time-lagged coordinates in a multidimensional
space. In the case of Japanese jack mackerel and Emticicia sp., the system dynamics can be reconstructed by taking
three coordinates (E = 3; the optimal E was estimated by simplex projection), Xt = {xt, xt−1, xt−2}. The reconstructed
attractor preserves essential information about the system dynamics, and we may be able to predict near future behaviors
of the system (Fig. 1B). One or some of the coordinates may be replaced with an external force (yt) such as temperature,
generating a new, but topologically equal, attractor, e.g., Xt = {xt, xt−1, yt}. A hypothetical input, for example,
Winut = {0, 0, ut}, may be added to the vector, and the behavior of the perturbated vector, Winut + Xt = {xt, xt−1, ut + yt},
is predicted by a function, Wsimp, as follows:

Xt+1 = W simp(Winut + Xt) =

∑n
i=1 wiXti∑n

i=1 wi
, ... [8]

where n is the number of nearest neighbors, ti is the time point of the ith nearest neighbor, Win is an input weight matrix,
and wi is a weight based on the distance between the target vector to nearest neighbors. The weight is calculated as
follows:wi = exp(−|Winut − Xti |/|Winut − Xt1 |) where | · | denotes Euclidean distance. W simp, the near future prediction
based on behaviors of nearest neighbors in the reconstructed state space, is called “simplex projection” (Sugihara &
May 1990), and the numerical method to predict ecosystem’s response based on SSR and simplex projection is called
“scenario exploration” (Deyle et al. 2013). From an RC point of view, W simp may be applied either before or after the
perturbation, that is, either of Xt+1 = Winut + W simpXt, or Xt+1 = W simp(Winut + Xt) may work as ERC. The collection
of the readout, Xt, was trained using a ridge regression (λ = 0.05).

The performance of in silico ERC was evaluated using three tasks: Prediction of chaotic dynamics, emulation of
nonlinear autoregression moving average (NARMA) time series (Atiya & Parlos 2000), and generation of an autonomous
system (Mackey-Glass equation). Detailed information about the parameters and the setting of the numerical experiments
is described in Supplementary Text.

Real-time ERC: A target unicellular microbe

In real-time ERC, real-time ecological dynamics is used as a reservoir. In the present study, the population dynamics of
Tetrahymena thermophila was used as a reservoir. Tetrahymena thermophila (hereafter, Tetrahymena) is a unicellular,
eukaryotic organism (belongs to ciliates) of which the cell size is ca. 30-100 µm. Tetrahymena is commonly found in a
freshwater ecosystem, and is widely used as a model organism in molecular biology studies. Tetrahymena can easily
be cultured using a wide variety of media, chambers, and conditions, and its doubling time is ca. two hours under an
optimal conditions (Cassidy-Hanley 2012).

In reality, an ecological reservoir should have several desired characteristics: (i) reservoir states are easily monitored, and
(ii) reservoir states change relatively quickly in response to external forces. As for the first characteristic, Tetrahymena
population is known to respond to temperature. Its population growth rate maximizes ca. 37◦C. Our experiment
confirmed the response of the Tetrahymena population to the medium temperature (Fig. S4). The doubling time is
125 min at 30◦C using modified Neff medium (for the medium preparation, see the following paragraph). Also, the
Tetrahymena population changes its growth rate in response to medium concentration (Fig. S5). These facts indicate
that parameters of Tetrahymena population dynamics change easily in response to external forces, which may a suitable
characteristic as an ecological reservoir. As for the second characteristics, Tetrahymena cell size is 30–100 µm, which is
relatively large compared with unicellular, prokaryotic organisms. Therefore, their cells can easily be observed under a
standard optical inverted microscope. By combining time-lapse imaging and simple image analysis, their cell numbers
can easily be monitored (Fig. S6). We chose the Tetrahymena population as a candidate for real-time ERC because of
these characteristics.

Tetrahymena thermophila (strain CU428.2, RRID:TSC_SD00178) was obtained from the Tetrahymena Stock Center
(Cornell University; https://tetrahymena.vet.cornell.edu/). As described previously (Cassidy-Hanley 2012), Tetrahymena
is maintained at 27◦C in PPYG medium (0.4% Bacto proteose peptone, 0.2% Bacto yeast extract, and 1% glucose). In
the PPYG medium, 1% antibioside (antibiotic-antimycotic mixed solution; Nacalai tesque, Kyoto, Japan) was added to
prevent growth of harmful fungi. The Tetrahymena populations were transferred to fresh medium once per week. When
used for experiments, 50 µl of the Tetrahymena stock was transferred to modified Neff medium (0.25% Bacto proteose
peptone, 2.5% Bacto yeast extract, and 33.3 µM FeCl3).
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Real-time ERC: Experiments using a Tetrahymena population

The computational capability of RC positively correlates with the reservoir size, and to increase the reservoir size, we
used three concentrations of modified Neff medium in the experiments. For the 1.6% medium condition (“Low nutrient”
in Fig. 3F), 50 µl of the stock Tetrahymena, 200 µl of modified Neff, and 4750 µl of H2O were mixed and pre-incubated
overnight (ca. 20 hours) at 27◦C. Then, two ml of the pre-incubated medium and three ml of H2O were mixed and used
for the experiments. For the 4% medium condition (“Med. nutrient” in Fig. 3F), 50 µl of the stock Tetrahymena, 200 µl
of modified Neff, and 4750 µl of H2O were mixed, pre-incubated for three hours at 30◦C, and used for the experiments.
For the 10% medium condition (“High nutrient” in Fig. 3F), 50 µl of the stock Tetrahymena, 500 µl of modified Neff,
and 4450 µl of H2O were mixed, pre-incubated for three hours at 30◦C, and used for the experiments. For each medium
condition, two separate runs were performed to confirm the reproducibility and ESP of the population dynamics of
Tetrahymena (Figs. 3 and S8).

The Tetrahymena population in the medium was incubated in an aluminum chamber (Fig. 3A–D), and the temperature
inside the aluminum chamber was automatically regulated using a custom temperature regulator system (E5CC;
OMRON, Kyoto, Japan). This system enables accurate temperature control of the medium inside the aluminum
chamber, and a user can set a maximum of 256 consecutive temperature values at flexible time intervals. In the
experiments, medium temperatures were set between ca. 10–25◦C because the population growth coefficient responds
well to the medium temperature in this temperature range (Fig. S4). Medium temperatures were changed every five
mins, and thus the total incubation time for each experiment was 256 time-steps × 5 mins = 1280 mins. The medium
temperature was also monitored every minute using a temperature logger/sensor (Ondotori TR-52i; T&D, Matsumoto,
Japan). We used four time series as inputs, ut: (i) uniform random, (ii) Lorenz attractor, (iii) empirical fish-catch time
series (flatfish; Paralichthys olivaceus), and (iv) empirical fish-catch time series (Japanese jack mackerel; Trachurus
japonicus). The first one was used to quantify the memory capacity of the ecological reservoir, and the other three were
used to test the predictive capability of the Tetrahymena reservoir.

During the incubation, images of the Tetrahymena population at the bottom of the aluminum chamber were taken every
minute, resulting in 1280 images for each run. The number of cells in each image was semi-automatically counted using
Fiji (Schindelin et al. 2012) and OpenCV (Bradski 2000) with custom python codes (Fig. S6). Briefly, the color images
were converted to gray scale images and background was subtracted using the rolling-ball algorithm implemented in
Fiji. Then, the gray-scale, background-subtracted images were binarized, and the Tetrahymena cells in each image were
identified using the watershed algorithm.

Real-time ERC: Preprocessing of cell count data and training of readout

By using the automated temperature regulator and cell counting system, responses of the Tetrahymena population
to changing medium temperatures were monitored semi-automatically (for an example of the population dynamics,
see Fig. S6B). Although there is only a single species in the system, the population dynamics at the bottom of the
aluminum chamber is a result of complex interactions among biotic and abiotic factors such as medium temperature,
cell physiological states, cell-cell interactions, and behaviors. Indeed, previous studies demonstrated that Tetrahymena
population dynamics and behavior may be influenced by temperature and medium concentrations, and complex
nonlinear interactions seem to govern the dynamics and behavior (Jordan et al. 2013; Weisse et al. 2016). In addition,
another study showed that, using an experimental prey-predator system, Tetrahymena pyriformis may exhibit various
population dynamics from simple equilibrium to limit cycle to chaotic dynamics (Becks et al. 2005). These studies
imply that complex, but deterministic, nonlinear interactions drive the population dynamics of Tetrahymena, and that
such dynamics can be a reservoir that processes information efficiently.

To use the cell count data as reservoir states, we processed the raw data. First, a long-term trend of the cell count data
was removed by calculating residuals of a general additive model (Fig. S6B,C). This process was done to make the time
series stationary. Second, the residuals were divided by the predicted values by the additive model at the same time
point (Ten was added to the predicted values to mitigate the effect of a low cell count) (Fig. S6D). This process was
done to correct the dependence of fluctuations in the population dynamics on the absolute cell density. The resulting
time series includes information about how the Tetrahymena population responds (i.e., an index of the relative response)
to the medium temperature and was used as a reservoir state (Fig. S6D).

We obtained two preprocessed time series of the Tetrahymena population for each medium concentration for each
input time series (Figs. 3B and S8). Therefore, we had six preprocessed time series for each input time series. Each
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preprocessed Tetrahymena time series, Xt, has 1280 values with a one-minute time interval, e.g., Xt = {x1, x2, ..., x1280}.
On the other hand, the input value, ut, has 256 values with a five-minute time interval, ut = {u1, u2, ..., u256}. In the
analysis, we time-multiplexed the reservoir states. For example, five individual reservoir states {x1, x2, ..., x5} correspond
to one input value, u1, enabling us to increase the reservoir size.

For explanation purposes, we name the reservoir state S i, j
n , where i, j, and t indicate a nutrient condition (“l,” “m,” and

“h” denote low, medium, and high, respectively), a replicate of the experiment (“1” or “2”), and time step, respectively.
For example, S m,1

t indicates the reservoir state taken from the first run of the medium nutrient concentration (4%
modified Neff). For the uniform random value inputs, {S l,1

t , S
m,1
t , S h,1

t } was used for the training and {S l,2
t , S

m,2
t , S h,2

t } was
used for the testing. As each Tetrahymena time series, S i, j

t , was time-multiplexed for each run, the combined reservoir
state, {S l,1

t , S
m,1
t , S h,1

t }, has a 256 × 15 matrix. Wout, a 1 × 15 matrix, was learned by a ridge regression, and used to
predict a past input value with the test reservoir state, {S l,2

t , S
m,2
t , S h,2

t }. For the prediction tasks, all six reservoir states
were time-multiplexed and combined. Thus, {S l,1

t , S
l,2
t , S

m,1
t , S m,2

t , S h,1
t , S h,2

t } is a 256 × 30 matrix. Wout was learned by
a ridge regression, and the remaining data were used for testing. Detailed information on the size of training and testing
data is described in Supplementary Text.

Computation

Analysis codes to reproduce the results will be available at Github (https://github.com/ong8181/ecological-RC). For
RC, custom codes written in python 3.6.10 executed in R environment with “reticulate” (version 1.18) (Ushey et al.
2020) were used. Image processing for cell counting was performed using Fiji (version 2.1.0/1.53c) (Schindelin et al.
2012) and OpenCV (version 4.4.0) (Bradski 2000) with custom python codes. Preprocessing of the cell count data was
performed using “tidyverse” (version 1.3.0) (Wickham 2017), “lubridate” (version 1.7.9.2) (Grolemund & Wickham
2011), and “mgcv” (version 1.8.34) (Wood 2004) packages of R4.0.3 (R Core Team 2020).
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Data and code availability
Empirical ecological time series and analysis scripts will be available at https://github.com/ong8181/ecological-RC.
The citable versions of the supplementary videos are available at figshare: Supplementary Video 1 (https://doi.org/10.6
084/m9.figshare.16608802) and Supplementary Video 2 (https://doi.org/10.6084/m9.figshare.16608808).
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