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ABSTRACT 

A combined high-quality manual annotation and deep-learning natural language processing study is 

reported to make accurate name entity recognition (NER) for biomedical literatures. A home-made 
version of entity annotation guidelines on biomedical literatures was constructed. Our manual 

annotations have an overall over 92% consistency for all the four entity types — gene, variant, disease 
and species —with the same publicly available annotated corpora from other experts previously. A 

total of 400 full biomedical articles from PubMed are annotated based on our home-made entity 

annotation guidelines. Both a BERT-based large model and a DistilBERT-based simplified model 
were constructed, trained and optimized for offline and online inference, respectively. The F1-scores 

of NER of gene, variant, disease and species for the BERT-based model are 97.28%, 93.52%, 92.54% 
and 95.76%, respectively, while those for the DistilBERT-based model are 95.14%, 86.26%, 91.37% 

and 89.92%, respectively. The F1 scores of the DistilBERT-based NER model retains 97.8%, 92.2%, 
98.7% and 93.9% of those of BERT-based NER for gene, variant, disease and species, respectively. 

Moreover, the performance for both our BERT-based NER model and DistilBERT-based NER 

model outperforms that of the state-of-art model—BioBERT, indicating the significance to train an 
NER model on biomedical-domain literatures jointly with high-quality annotated datasets. 

Introduction 

With the rapid development of next-generation sequencing technology, the cost of interpreting the 

clinical significance of hundreds of thousands of genomic variants has become an obvious bottleneck 
for the whole genetic testing process.1-3 There are dozens of well-established biological databases 

that are curated and maintained by researchers, which facilitate the interpretation of genomic variants 

by clinicians, geneticists and biologists. However, the information provided by these valuable data 
resources is still quite limited.4-9 Literatures in biomedical domain are instead a huge repository to 

store tremendous knowledge for genetic variant interpretation and they are continuously updating. It 
indeed poses great challenge for genetic interpreters to consult literatures manually to find relevant 

literature evidences for a new variant. To our best knowledge, literature evidence search for an 
unknown variant is a rate-determining step for genetic variant interpretation. Therefore, it should be 

quite helpful to make literature evidence searching more efficient, not to mention to fully automate 

the searching task. In the biomedical domain, one primary application of natural language processing 
(NLP) is to identify key concepts in literatures,10-13 which is the first step to both filter relevant articles 

based on contents for literature evidence searching and develop an automated literature evidence 
searching tool.14  

As the main tool of identifying concepts in free texts, name entity recognition (NER) has long 

received a good deal of attention in NLP.10,15-18 Web-based services such as Pubtator, LitVar and 

Pubtator Central (PTC) were launched subsequently to automate annotations of literatures by 
combining existing text mining tools using rule-based and machine-learning-based NER 

techniques.4,19-22 The F1-scores for gene, variant, disease and species that PTC achieves were 
reported as 86.70%, 86.24%, 83.70% and 85.42%, respectively.19 It is obvious that there is a lot of 

room to improve the performance of such techniques due to their limitation of contextualized 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460567doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460567
http://creativecommons.org/licenses/by-nc/4.0/


information.23 In the past few years, deep learning neural network (DNN) such as bidirectional long 
and short term memory (BiLSTM) combined with conditional random field (CRF) have greatly 

improved performance in NER, but the constraints of sequential computations remain a problem.11-

13,24-26 In 2018, Google proposed a new self-attention-based language representation model called 

BERT, which pretrains deep bidirectional representations from unannotated texts and then finetunes 
them on annotated texts to create state-of-the-art models for a wide range of NLP tasks.27 In 2019, 

BioBERT was reported to pretrain and finetune pretrained BERT representations on biomedical texts, 

demonstrating that it is crucial to pretrain BERT on biomedical corpora when applying it to the 
biomedical domain.28 However, due to the lack of a high-quality dataset with all interested entity 

types annotated on the same corpus , BioBERT was trained for each entity type separately. Moreover, 
BioBERT was not applied to recognize variant for the shortage of the variant-annotated corpus, 

although variant is an extremely important entity type in genetic variant interpretation.28 In the same 

year, BioBERT team also introduced the web-based tool called BERN to tag entities in PubMed 
articles or raw texts, relying on tmVar 2.0 to extract variant while BioBERT for all the rest. 29 

In spite of the high performance of BERT-based NER models, such large and complicated models 

face serious challenges when it comes to on-device real-time applications or under constrained 
computational training or inference budgets.30 A key solution to this problem in artificial intelligence 

(AI) community is knowledge distillation, in which a small model - the student - is trained to keep 

the same knowledge of a larger model - the teacher.30 There are a bunch of distilled versions of BERT 
such as BERT-PKD,31 DistilBERT,32 TinyBERT,33 and BERT-EMD.34 It was reported that 

DistilBERT reduces the size of a BERT model by 40%, while retaining 97% of its language 
understanding capabilities and being 60% faster. 32 

Here we report a combined high-quality manual annotation and deep-learning NLP study to make 

accurate NER for biomedical literatures. A home-made version of entity annotation guidelines on 

biomedical literatures was constructed. The interested entity types include gene, variant, disease and 
species, which are all critical for genetic variant interpretation. The performance of our annotation 

was assessed by comparing our annotated results with those publicly available from experts 
previously.20,21,35-38 The final consistency for all the four entity types is over 92%. The possible 

reasons for the 8% discrepancy are also discussed. A total of 400 full biomedical articles from 
PubMed are annotated based on our home-made entity annotation guidelines. All the manually 

annotated corpora as well as approximately 500,000 BERN-annotated PubMed abstracts are used as 

a critical part of the datasets for deep learning NER model development. Both a BERT-based large 
model and a DistilBERT-based simplified model were constructed, trained and optimized for offline 

and online inference, respectively. Offline inference refers to an approach that ingests all the data at 
one time to do model prediction whereas online inference is the one that ingests data one observation 

at a time. Offline inference can be potentially applied to knowledge base construction while online 

inference can be used in to build interactive prediction tools. The F1-scores of the DistilBERT-based 
NER model retains 97.8%, 92.2%, 98.7% and 93.9% of those of BERT-based NER for gene, variant, 

disease and species, respectively. Moreover, the performance for both our BERT-based NER model 
and DistilBERT-based NER model outperforms that of BioBERT, indicating the significance to train 

an NER model on biomedical literatures jointly with high-quality annotated datasets. 

Methods 

Annotated Data Acquisition 

Annotated literatures in this study were obtained in two ways: (1) our manual annotation, (2) 

downloading from public resources. The details are as follows: 

 1, Our manual annotation 

Our annotation was focused on four entity types, namely, gene, variant, disease and species. The 
annotating procedure was based on our home-made entity annotation guidelines on biomedical 

literatures, which was developed by four annotators in our group. These annotators all have had at 
least five-year experience in interpreting genetic testing reports at Beijing Genomics Institute (BGI). 

The overall procedure of the development of our home-made entity annotation guidelines can be 
described here briefly. Firstly, 10 common articles were assigned to each of the four annotators to 
annotate independently based on their own knowledge and public databases such as HGNC, NCBI. 

Taxonomy, Mondo Disease Ontology, Orphanet, etc. The four annotators then compared, discussed 
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and analyzed their annotated results to form a preliminary version of the annotation guidelines. 
Subsequently, such steps were iterated in two additional rounds to finalize the annotation guidelines. 

In order to validate our home-made version of the annotation guidelines, our annotators finally 
annotated part of four publicly available corpora that were annotated by experts previously for each 

of the four entity types20,21,36,37 and made the consistency analysis. 

Based on the above home-made entity annotation guidelines, a total of 400 full biomedical articles 

on PubMed were annotated. The overall workflow of manual annotation is shown in Figure 1. Briefly, 
our interested literatures were searched on PubMed and annotated with PTC,19 serving as the initial 

corpus for manual annotation. In the early stage of our annotation, the strategy of three-person manual 
annotation was adopted since annotators were not quite familiar with the whole annotation guidelines. 

Specifically, two annotators were assigned the same batch of articles independently. If their 
annotations of a complete article agree with each other, the annotated article would be ready for 

random inspection; otherwise, their discrepant annotations would go to a reviewer for correction 

before being added to the batch of articles for random inspection. It is noted that the reviewer also 
gave the feedback to the original annotators to make sure their annotation strategies would be well 

aligned over time. In the middle and late stages of our annotation, the strategy of two-person manual 
annotation is employed for a higher efficiency, in which only one annotator and one reviewer were 

involved for annotation. As for random inspection, a certain number of annotated articles in a batch 

were random inspected. If any problem arose, the whole batch would go back to the reviewer for 
recheck; otherwise, the whole batch would be finally aggregated into the annotated corpus when 

quality control is completed.  

Generally speaking, it is a time-consuming process to annotate literatures manually. In our 
experience, it took 4 annotators approximately 120 hours to complete the annotation of all the 400 

biomedical literatures. 

2, Downloading from public resources 

Approximately 500,000 BERN-annotated PubMed abstracts were downloaded via 

https://bern.korea.ac.kr/. 

 

Data preprocessing 

Approximately 500,000 BERN-annotated PubMed abstracts were selected as datasets in this study, 

corresponding to the first 18 folders of the total of 1200 downloaded ones. Due to the sparsity of the 
overall annotated variants in the downloaded PubMed abstracts, the sentences containing the entity 

type of variant from all 1200 folders were collected. Both our annotated 400 articles and BERN-
annotated abstracts were divided into train/validation/test datasets at the ratio of 7:2:1 for model 

training, validating and testing. All the corpora were converted into CoNLL format and labeled using 
BIO format.39  

      

NER Model Building 

In order to build NER predictive models for both scenarios such as offline inference and online 
inference, a large model and a compact model were designed correspondingly, namely, BERT-based 

NER and DistilBERT-based NER, as is show in Figure 2.  The overall process of the NER models 
contains two stages: pre-training and fine-tuning with two phases, as is illustrated in Figure 2(a).  

1, BERT-based NER  

The BERT-based NER model in this study is a pretrained language representation model based on 
BERT for biomedical literatures. At the pre-training stage, the BERT-based NER model was loaded 

with weights from BioBERT, which was pretrained on 1 million PubMed abstracts based on BERT. 
The finetuning stage contains two phases with Phase I corresponding to the finetuning process of 

~500,000 BERN-annotated abstracts and Phase II corresponding to finetuning our 400 annotated full 

articles. The optimized BERT-based NER model is a large deep learning model with approximately 
110 M parameters and expected to take relatively long time to run. 

Similar to BioBERT, wordpiece embeddings that divide a word into several sub-words were 

employed in BERT-based NER model so as to recognize both known and out-of-vocabulary entities. 
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The overall architecture of the BERT-based model is the same with BioBERT characteristic by 12 
encoder layers and 12 attention heads. Different encoder layers and attention heads have been proven 

to capture different levels of input features such as surface, syntactic and semantic information.27 
There are three major modifications of the current BERT-based NER model compared to BioBERT. 

Firstly, instead of only one phase in the finetuning stage, the current BERT-based NER model has 
two phases for finetuning. That is, the pretrained weights from BioBERT were first finetuned on 

~500,000 BERN-annotated PubMed abstracts so as to achieve roughly acceptable weights before 

being further finetuned on the 400 annotated full articles. Secondly, the labels for the current BERT-
based NER model include the entity type of variant, which is extremely significant to understand 

genetic diseases but missing in BioBERT due to the shortage of a high-quality annotated dataset. 
Finally, unlike separate prediction of each entity type in BioBERT, the current BERT-based NER 

model trained all four annotated entity types in a single model, generating representations that capture 

invariant properties to tasks by sharing features.   

2, DistilBERT-based NER   

The strategy of knowledge distillation in this study is through a general-purpose pre-training 
distillation. In one word, the student model DistilBERT obtains pretrained weights from the 

distillation of that of the teacher model BERT at the pre-training stage while maintaining the finetune 
stage the same as that of BERT-Based NER model. As a distilled version of BERT, DistilBERT is 

characteristic by the overall same architecture as BERT with only half the number of its layers while 

the token-type embeddings and the pooler are removed.32 As is seen from Figure 2(b), the architecture 
of the teacher BERT has 12 encoder layers, and thus the student DistilBERT has 6 encoder layers. 

The student model is initialized from the teacher model by taking the latter one layer out of two and 
is trained to reproduce the behavior of teacher model. The training loss is given by32 

𝐿𝑜𝑠𝑠=5.0∗𝐿𝐾𝐿𝐷𝑖𝑣 +1.0 ∗𝐿𝐶𝑂𝑆 +2.0 ∗ 𝐿𝐶𝐸                           (1) 

Where 𝐿𝐾𝐿𝐷𝑖𝑣 is Kullback-Leibler divergence loss between the soft target probabilities of the 

teacher and the student, 𝐿𝐶𝑂𝑆 is the cosine embedding loss between the soft target probabilities of the 

teacher and the student and 𝐿𝐶𝐸 is the cross-entropy loss of the soft target probabilities of the student.  

 

NER Model Evaluation 

To evaluate the performance of BERT-based and DistilBert-based NER models, reported metrics 
of BERN were compared and BERN was also applied to the same test set in the current study. It is 

noted that the NER of BERN for gene, disease and species relies on BioBERT while variant 

extraction adopts tmVar 2.0.29 The tool can be accessed at https://github.com/dmis-lab/bern. As for 
the evaluation metrics of NER, entity-level precision, recall and F1 score were calculated. 

 

Results 

1, Consistency analysis between our annotators and experts annotating the public available 

corpus 

Table 1 displays the statistics of the annotations from our annotators, publicly available annotated 
corpora from experts previously, the intersection between these two parties and the consistency rate. 

In total, 3,818 genes, variants, diseases and species were annotated from us while the total number 

of the annotations from experts previously is 3,868, resulting in an overall consistency rate of 92.24%. 
Specifically, the consistency rates for gene, variant and specie are all over 94.00%, among which 

those of gene and species are both as high as around 98% while that for disease is only 76.59%. The 
list of all the inconsistent cases are provided in supplementary materials. 

Table 2 shows the statistics of inconsistent annotated entities between experts previously and our 

annotators due to three different factors (discrepant rules of both annotation parties, the false 

annotations from the experts and our false annotations), the total inconsistent number, experts’ false 
annotation rate and the discrepant rules rate. The most significant factor that causes annotation 

inconsistency between experts and us for each entity is bolded. It is obvious that discrepant rules 
between previous experts and our annotators should be the dominant factor for all the inconsistent 

annotated entities and the ratio of inconsistent cases caused by discrepant rules to total inconsistent 
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cases for gene, variant, disease and species is 58.33%, 96.30%, 79.17% and 71.11%, respectively. 
For instance, a mention without a clear description of a specific variant was annotated as variant by 

previous experts while not annotated by our annotators such as “T>C” (PMID:20738799), “G/A” 
(PMID:20738799), “G>C” (PMID:17961316) and “C-->T” (PMID:16001362). Detailed information 

for all inconsistent cases is provided in supplementary materials. In addition, false annotating from 
experts is the second most prominent factor for the inconsistency of disease annotation, which 

contributes to 25.78% annotation inconsistency. According to our annotation guidelines, an entity 

that either refers to a major category of disease, or is not curated in our referenced databases or is not 
curated as a phenotype should not be annotated as the entity type of disease. However, such entities 

are instead annotated as disease by previous experts. For example, “cancer” was not annotated as the 
entity type of disease from us while it was annotated in NCBI disease corpus. In addition, the 

inconsistency caused by the false annotation from experts is also as high as 25.78%. The main reason 

is that the entities that should belong to the entity type of gene are annotated as disease. For example, 
“APC” should be a gene in semantics while it was actually annotated as disease in NCBI disease 

(PMID:9724771). 

 

2, The statistics of annotated entities in datasets at the finetuning stage   

Table 3 shows the statistics of annotations in datasets for Phase I and Phase II of the finetuning 

stage, corresponding to ~500,000 BERN-annotated PubMed abstracts and 400 our annotated full 

articles, respectively. It is obvious that the training, validation and test datasets in both phases at the 

finetuning stage are relatively balanced among the four entity types, respectively, which is essential 

for the current neural network (NN) models to achieve decent performance. In addition, the number 

of annotations in the training, validation and test datasets in Phase I of the finetuning stage is 30~50 

times, 25~50 times and 20~75 times of that in Phase II of the finetuning stage, respectively, indicating 

that the annotated corpus for the finetuning stage is considerably enriched from our small-size high-

quality dataset by adding publicly available machine annotated corpus.  

 

3, Performance comparison of BERT-based NER, DistilBert-based NER and BERN 

Table 4 exhibits the performance comparison of BERT-based NER, DistilBERT-based NER, and 

BERNR for gene, variant, disease and species at the entity level. BERNR indicates BERN reported 

metrics.29 It is clear that the F1-scores of BERT-based NER for gene, disease and species are all 

highest while the F1 score of BERT-based NER for variant is nearly 0.2% lower than that of BERNR. 

The F1-scores of NER of gene, variant, disease and species for the BERT-based model are 97.28%, 

93.52%, 92.54% and 95.76%, respectively, while those for the DistilBERT-based model are 95.14%, 

86.26%, 91.37% and 89.92%, respectively. Therefore, the F1 scores of the DistilBERT-based NER 

model retains 97.8%, 92.2%, 98.7% and 93.9% of those of BERT-based NER for gene, variant, 

disease and species, respectively.  

Discussion 

Training deep learning NN models often requires tremendous resources and time. Fortunately, 

pretrained models based on huge corpora are often readily reused in NLP community. For instance, 

in order to adapt BERT models to the domain-specific language of biomedical texts, BioBERT was 

re-pretrained with PubMed abstracts and PubMed central full-text articles based on the BERT 

pretrained model.28  We started our model by loading pretrained BioBERT model weights. 

Although the overall model structure we selected is the same as BioBERT, the performance of our model 

is much better than that of BioBERT. As indicated in Table 4, the F1-scores of BERT-based NER for 

gene, disease and species are 12.88%, 3.18% and 5.95% higher than those of BioBERT in BERNR, 

respectively. Actually, BERN predictions on the same test set as in BERT-based NER were also 

obtained from BERN server. However, its performance was not as good as that of BERNR, so the 

corresponding metrics are not included here.  It is noted that the F1-score for variant is not 

compared since BERNR adopted the tool of tmVar 2.0 for variant recognition, although the F1-score 

for the BERT-based NER model— 93.52%— is comparable to that of BERNR— 93.70%.  

There are at least two reasons for the above improvement. Firstly, we have carefully curated a 

high-quality data set to finetune the Bert-based NER and DistilBert-based NER models instead of 

using public available scattered entity-type corpora without the key entity of variant as in Biobert. 
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The improvement indicates the significance of the good quality of training data for a NN-based 

model, especially for domain-specific corpora. Secondly, our model trained all four entity types 

jointly. An obvious advantage is that the features of all entities can be shared so that the internal 

relationships among the entities can be captured, which actually provides much more information 

than a separately-trained model. Another advantage is that the joint model can be easily further 

extended to relationship extraction tasks where at least two entity types should be included.   

While the F1-scores of DistilBERT-based NER are relatively smaller than the corresponding 

values of its larger counterpart, the F1-scores of DistilBERT-based NER for gene, disease and 

species are still 10.74%, 2.01% and 0.11% higher than those of BioBERT in BERNR, respectively. 

This demonstrates the effectiveness of knowledge distillation of a large pretrained general-purpose 

language representation model, suggesting that the well-trained DistilBERT-based NER model can 

be applied for online inference. 

Several directions for future work can be proposed based on the current study. Firstly, manually 

annotating is a time-consuming process, and thus automated algorithms can be introduced to 

accelerate the process. Secondly, the optimized Bert-based NER model may be applied to a large 

number of literatures to build a more accurate web-based platform for entity tagging for the 

biomedical community. Finally, the DistilBERT-based NER model can be added on the web-based 

platform for real-time, raw text tagging due to its faster computing speed. 

Conclusion 

We report a combined high-quality manual annotation and deep-learning NLP study to make 

accurate NER for biomedical literatures. A total of 400 full articles from PubMed are annotated based 

on our home-made entity annotation guidelines. Both a BERT-based large model and a DistilBERT-

based simplified model were constructed, trained and optimized for offline and online inference, 

respectively. The performance for both our BERT-based NER model and DistilBERT-based NER 

model outperforms that of the state-of-art model—BioBERT, indicating the significance to train an 

NER model on biomedical domain literatures jointly with high-quality annotated datasets. It is quite 

promising that the models can be applied to construct a useful and efficient entity-tagging platform. 
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Entity 
Type 

Dataset Number of Annotations Consistency 
Rate (%) 

(#Intersection/
#Experts) 

Our 
annotators 

Experts Intersection 

Gene GnormPlus/BioCreative II GN 1,269 1,256 1,232 98.09 

Variant tmVar 2.0 509 464 437 94.18 

Disease NCBI disease 844 961 736 76.59 

Species Linnaeus 1,196 1,187 1,163 97.98 

Total 3,818 3,868 3,568 92.24 

 
Table 1 the statistics of the annotations from our annotators, publicly available annotated corpora from 

experts previously, the intersection between these two parties and the consistency rate 
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Table 2. the statistics of inconsistent annotated entities between experts previously and our annotators 

due to three different factors (discrepant rules of both annotation parties, the false annotation from the 

experts and our false annotation), the total inconsistent number, experts’ false annotation rate and the 

discrepant rules rate. The most significant factor that causes annotation inconsistency between experts 

and us for each entity is bolded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entity 
Type 

Inconsistent Number Due to 
Different Factors 

Total 

Experts' False 
Annotation 

Rate(#Experts False 
annotation/#Total,%) 

Discrepant Rules 
Rate(#Discrepant 
Rules/#Total,%) Discrepant 

Rules 

Experts' False 

Annotation 

Our False 

Annotation 

Gene 14 2 8 24 8.33 58.33 

Variant 26 1 0 27 3.70 96.30 

Species 19 3 2 24 12.50 79.17 

Disease 160 58 7 225 25.78 71.11 

Total 219 64 17 300 21.33 73.33 
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Entity 

Type 

Number of annotations in  

datasets for finetuning (Phase I) 

Number of annotations in  

datasets for finetuning (Phase II) 

training validation test training validation test 

Gene 1,002,127 286,716 144,811 33,443 11,061 6,265 

Variant 858,759 249,472 124,706 18,117 4,985 1,743 

Disease 804,217 228,937 116,144 26,729 8,016 4,166 

Species 596,828 169,618 84,247 16,177 4,272 2,176 

 

Table 3. the statistics of annotations in datasets for Phase I and Phase II of the finetuning stage, 

corresponding to ~500,000 BERN-annotated PubMed abstracts and 400 our annotated full articles, 

respectively.  
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Entity Type Model Precision(%) Recall(%) F1-Score(%) 

Gene 

BERT 97.11 97.45 97.28 

DistilBERT 94.84 95.45 95.14 

BERNR 85.16 83.65 84.40 

Variant 

BERT 94.31 92.75 93.52 

DistilBERT 85.94 86.59 86.26 

BERNR 97.25 90.40 93.70 

Disease 

BERT 91.22 93.90 92.54 

DistilBERT 90.44 92.32 91.37 

BERNR 89.04 89.69 89.36 

Species 

BERT 98.30 93.34 95.76 

DistilBERT 96.39 84.26 89.92 

BERNR 93.84 86.11 89.81 

 

Table 4. the performance comparison of BERT-based NER, DistilBERT-based NER, and BERNR 

for gene, variant, disease and species at the entity level. BERNR indicates BERN reported metrics. 
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Figure 1. the workflow of manual annotation 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.15.460567doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460567
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Figure 2. (a) the schematic of BERT-based and DistilBERT-based name entity recognition (NER) 

strategies, corresponding to the orange and blue arrows, respectively. In general, the BERT-based 

model is much larger than the DistilBERT-based model so that the former better fits offline inference 

while the latter can serve online inference. The NER module contains the pretraining stage and the 

finetuning stage with two phases due to the relatively small data set size for the second finetune phase. 

The pretrained weights of BERT NER model are from Biobert while those of DistilBERT are distilled 

from Biobert using 400 full articles, which is also used for Phase II at the finetuning stage. (b) The 

structural details of knowledge distillation. the teacher model (BERT) contains 12 layers while the 

student model (DistilBERT) has 6 layers. The well pretrained weights of the 2nd, 4th, 6th, 8th, 10th 

and 12th layers of the teacher model are transferred as the initialized weight of the student model. 

The output logits of the last layers of both the teacher and student models are used to calculate the 

total loss of the model according to 𝐿𝑜𝑠𝑠=5.0∗𝐿𝐾𝐿𝐷𝑖𝑣 +1.0 ∗𝐿𝐶𝑂𝑆 +2.0 ∗ 𝐿𝐶𝐸. 
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