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Abstract 

Humans are social animals who engage in a variety of collective activities requiring coordinated action. 

Among these, music is a defining and ancient aspect of human sociality. Human social interaction has 

largely been addressed in dyadic paradigms and it is yet to be determined whether the ensuing 

conclusions generalize to larger groups. Studied more extensively in nonhuman animal behaviour, the 

presence of multiple agents engaged in the same task space creates different constraints and 

possibilities than in simpler dyadic interactions. We addressed whether collective dynamics play a role 

in human circle drumming. The task was to synchronize in a group with an initial reference pattern and 

then maintain synchronization after it was muted. We varied the number of drummers, from solo to 

dyad, quartet, and octet. The observed lower variability, lack of speeding up, smoother individual 

dynamics, and leader-less inter-personal coordination indicated that stability increased as group size 

increased, a sort of temporal wisdom of crowds. We propose a hybrid continuous-discrete Kuramoto 

model for emergent group synchronization with pulse-based coupling that exhibits a mean field 

positive feedback loop. This research suggests that collective phenomena are among the factors that 

play a role in social cognition. 

 

Keywords: collective behavior, group dynamics, joint action, drumming, rhythm, network analysis  
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Collective dynamics support group drumming, reduce variability, and stabilize tempo drift 

 

1. Introduction 

 Humans are social animals who engage in a variety of collective activities requiring coordinated 

joint action. Collective goals can be achieved through spontaneously distributed workloads among 

group members, such that the emerging collective dynamics confer benefits to performance not 

available to individuals—the “wisdom of crowds” (Galton, 1907; Surowiecki, 2005). 

 Principles of collective dynamics explain the adaptive value of collective behavior in some species 

(Couzin, 2018). For example, collective dynamics can overcome the limitations of individuals’ 

knowledge and ability to communicate (Goldstone & Roberts, 2006) by integrating information quickly 

during group decision making (Ispolatov, 2015; Miller et al., 2013; Rosenthal et al., 2015). Large 

coherent swarming and flocking in groups can arise from short-range interactions among proximal 

individuals in non-human animals including primates (Farine et al., 2017), insects (Jacobs et al., 2007), 

fish, and birds (Miller et al., 2013; Parrish et al., 2002). As such dynamics have been demonstrated in 

numerous species, theoretical models have been developed to provide additional quantitative 

explanatory support. In contrast, in spatial tasks such as navigation, aggregate group behavior, 

formalized as a mean field, can serve to stabilize feedback to individuals by virtue of being a group 

average (Berdahl et al., 2018; Sumpter, 2006; Torney et al., 2009). Here, we test whether mean field 

behaviour accounts for stability of temporal group dynamics in humans during a drumming task. 

 Collective dynamics are observable in animal as well as in human group behaviour. Crowds of 

walking individuals achieve globally coherent states based on local inter-individual interactions (Rio et 

al., 2018; Warren, 2018). In audiences, individual-group interactions and social contagion govern the 

spontaneous onset and offset of applause (Mann et al., 2013). Collective dynamics can also play a 

constitutive role in sports by permitting advantages not available to individuals alone (Vilar et al., 

2013). Evidence of collective dynamics is seen even in the minimal group, a dyad: Spontaneous 

synchronization between two individuals emerges from constraints such as weak coupling (Ouiller et 

al., 2008; Schmidt et al., 1990; Schmidt & O’Brien, 1997).  

Synchronized group action is an essential element of musicmaking, a defining social behaviour of 

human interaction (Honing et al., 2015; Patel & Iversen, 2014; Salimpoor et al., 2011; Savage et al., 

2015; Trainor, 2015), and the value of precise synchronization may vary from culture to culture and 

across musical contexts (Benadon et al., 2018; Davies et al., 2013; Lucas et al., 2011).The 
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archaeological evidence of musical instruments goes back 30,000 years, and singing and drumming are 

thought to be even older (Conard et al., 2009). The evolutionary origins of musical rhythmic actions 

may relate to social motor behaviors in non-human species, such as the synchronization and 

desynchronization of vocalizations between individuals in group chorusing, arising from pressures to 

either collaborate or compete (Gamba et al., 2016; Greenfield et al., 2017; Ravignani et al., 2014, 

2019). Fundamental aspects of music are present in humans from early stages in development: infants 

show early musical preferences, social-emotional responses to music, and rate-sensitive motoric 

responses to musical rhythm (Cirelli et al., 2014, 2018; Trainor & Marsh-Rollo, 2019; Zentner & 

Eerola, 2010). Although musical behaviour is found in individuals alone, it occurs mainly in groups 

ranging from duets to hundreds of participants. Yet, the role of collective dynamics, especially in 

groups larger than dyads, has largely remained untested. Here we consider a musical task in which 

timing consistency and synchrony is crucial. We investigate in what ways the group average performs 

better than the individuals, a temporal version of the wisdom of the crowd phenomenon. 

To account for group interaction, one popular strategy is to first develop a theory for single-person 

tasks and then extrapolate into dyadic contexts. For example, the idea that the brain is a prediction 

machine that enables timely motor control in an uncertain environment can be extrapolated as two 

brains mutually predicting each other (Friston & Frith, 2015; Wolpert et al., 2003). This means that 

each individual instantiates two processes: the first for controlling one’s own rhythm and timing and 

the second for predicting the rhythm and timing of the partner in the dyad (Heggli et al., 2019, 2021; 

Keller et al., 2014; van der Steen & Keller, 2013). It is not clear, however, if this can serve as an 

adequate foundation for behaviour in larger groups. Every individual would have to predict every other 

individual and potentially factor-in higher-order predictions. Further, at the perceptual level, group size 

changes the auditory information available to an individual. A listener is likely to hear an entire choir as 

one, or a small number of, coherent sounds rather than perceive every singer’s voice within that choir. 

Group interaction can also be addressed in terms of theoretical models explicitly developed for 

synchronization in systems made of many dynamic units (Alderisio et al., 2016; Ouiller et al., 2008; 

Schmidt et al., 1990; Schmidt & O’Brien, 1997). The individual units in such models usually do not 

contain processes dedicated separately to self-timing and other-predicting. Instead, each unit has only a 

self-timing and a phase-correction coupling term. The propagation of phase-adjustment across all units 

is sufficient for the collective to enter a group-synchronized state, despite that each unit is only trying 

to cancel a phase difference and not to predict what the other units are doing (see Section 2.9.2). An 
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important benefit of this approach is that it is inherently collective, converging on the same formalisms 

used for small or large groups of animals (Kelso, 2021; Zhang et al., 2019). Here we consider such a 

system of coupled oscillators to account for empirical data on individual and group variability in a 

drumming task. 

Group music making constitutes an ecologically valid and convenient paradigm for studying group 

action and collective experience in the laboratory (e.g., D’Ausilio et al., 2015). We used a timing task 

performed by groups of different sizes. Larger group dynamics are less studied because measuring 

highly precise timing while collecting group data is difficult for both logistical and methodological 

reasons (cf. Alderisio et al., 2016; Chang et al., 2017, 2019; Chauvigné et al., 2019; Shahal et al., 

2020). Participants completed a group synchronization-continuation task (SCT) (Figure 1A). It required 

them to drum in synchrony with an isochronous auditory stimulus and continue drumming at the same 

rate after the stimulus stopped, while we collected the onset times of each drum hit (Figure 1B). 

Stimulus tempo was varied across trials. We tested groups of 2 (dyads), 4 (quartets), and 8 (octets) 

participants (Figure 1C). The task tested participants’ ability to synchronize to an external reference as 

well as to other participants, while also minimizing temporal variability and maintaining the initial 

stimulus rate. This ensemble drumming was also compared against the solo condition. Specifically, 

participants tested in duets or quartets completed both solo and ensemble conditions. The octet group 

did not complete the solo conditions for logistical reasons, but they instead completed a control 

condition in which the synchronization phase continued for the whole trial (i.e., there was no 

continuation phase) as well as trials using a more complex and musically realistic rhythm. Analyses of 

the more complex rhythm will be reported separately. 

 Inspired by theoretical models from the animal literature (Sumpter, 2006), we assumed that 

individual interactions average to overall group behavior, a mean field, which provides feedback to 

individual group members. Our main hypothesis was that the influence of the mean field increases with 

group size, which exercises a stabilizing effect. We expected that larger groups would exhibit lower 

variability as measured using the coefficient of variation of inter-onset intervals. After analyzing the 

recorded drumming behaviour, we formalized this effect using an adapted Kuramoto model of group 

synchronization that replaced continuous feedback with pulse-based feedback and added a stochastic 

term. In our model, individual group members with different intrinsic frequencies became dependent 

on the ensemble–feedback from the average of all other individuals, akin to a mean field. A key 
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prediction was that the relative influence of the stabilizing feedback would increase with increasing 

ensemble size. 

2. Method 

2.1. Participants 

 A total of 102 university students participated in the duet (n = 11 sessions; 22 participants), quartet 

(n = 8 sessions; 32 participants), and octet (n = 6 sessions; 48 participants) groups. In addition, 88 high-

school students participated in the octet condition (n = 11 sessions). Participants were recruited from 

the department’s participant pool with course credit and from local high schools as part of science field 

trips to the university. Across the set of all participants, musical training was distributed in the range 

from non-musician to amateur musician. We did not control the composition of musical skill within 

each ensemble. 

2.2. Apparatus 

 In ensemble playing conditions, participants were seated in chairs facing each other, equally 

spaced in a linear, square, or octagon arrangement, with diagonal distances of three meters in the duet 

and quartet groups and six meters in octet group. Ensemble playing conditions were performed in a 

large, tall-ceiling dance studio, part of the LIVELab, a laboratory dedicated to auditory and movement 

neuroscience1. In the duet and quartet groups, solo trials were recorded with individual participants 

immediately before or after the ensemble sessions in an adjacent sound-proof room.  

 In the duet and quartet groups, participants used drumsticks on plastic buckets that were dampened 

and placed upside-down. Their fundamental frequencies varied in a narrow range (117-129 Hz). They 

are of the type seen in street-style group drumming observed in the community and were used 

previously by a group drumming workshop instructor. Piezoelectric sensor elements were taped on the 

inner side of the attack surface of each bucket. The analogue signal was recorded on a computer at 48 

kHz via a multi-channel studio-grade analogue-digital interface (Focusrite RedNet 4) and the digital 

audio production software Reaper (Cockos Incorporated, Rosendale, NY). This setup provided for a 

clean signal with minimal noise and a sharp, high-amplitude attack that was digitized into onset times 

in Matlab using a custom algorithm with thresholding and rejection of rebounds under 150 ms. 

 

 

 

 

1 http://livelab.mcmaster.ca 
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Figure 1. Experiment setup. (A) In ensemble condition, drummers faced each other in a circle. 

(B) The main task was synchronization-continuation where participants were paced initially by 

an auditory stimulus and then had to maintain the rhythm, tempo, and synchronization among 

each other. The inter-onset intervals between drum hits, shown schematically as vertical lines, 

were used to obtain individual-level measures variability and speeding up. Cross-correlation 

and transfer entropy were used as pair-level measures of synchronization and interaction. (C) 

Transfer entropies, color and width-coded, from three sample trials from different groups. 

Network analysis was applied to these graphs to obtain group-level characterization. 
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The octet group used a set of electronic pads which, unlike the bucket drums, allowed tuning the 

drums to distinct fundamental frequencies across a larger number of individual drums. Eight identical 

pads (Yamaha TP70 7.5” snare/tom) and eight independent powered studio reference monitors 

(Yorkville Sound YSM5) placed under each pad were connected to the head module (Yamaha DTX 

920K). The pads had linear amplitude response and, on impact, produced the same woodblock sound. 

The woodblock fundamental frequencies, about double those of the bucket drums, also varied in a 

narrow range (249-284 Hz). The two setups were similar as they both involved polymer impact 

surfaces and piezoelectric sensors embedded within those surfaces to detect impacts and record onset 

times. To record the electronic drums, the head module was connected to the computer which stored 

drum hits as MIDI events. The recording line was parallel to the drum set and did not contribute 

additional latency between drum impact and drum sound (5 ms). Separately, we measured that the 

recording pipeline added negligible timing variability with a standard deviation of 1 ms relative to the 

ground truth based on a direct analogue recording of the drum pad impacts. 

 The reference metronome that participants were asked to synchronize with was played over a 

dedicated speaker placed in the middle between participants. A custom patch for the sound synthesis 

and production software Pure Data (Puckette, 1996) ran on the computer to generate and time a sharp 

electronic kick drum sound, with a timbre very distinct from the individuals’ drums (600 Hz sine wave 

with 250 ms duration, 20 ms amplitude attack, and 230 ms decay). The stimulus was fed back and 

recorded as an additional channel along with the participants’ drum beats. 

2.3. Stimuli 

 The stimulus tempo of the isochronous reference metronome varied between 50 and 240 beats per 

minute (bpm) depending on condition (see below). Trials were 90 s long and the synchronization phase 

always included 32 stimulus events. Thus, slower tempos had longer duration synchronization phases. 

2.4. Task 

 Drumming is ecologically valid in terms of common musical practice, and tapping with sticks has 

been shown to improve timing relative to finger tapping (Madison et al., 2013; Manning et al., 2017). 

The task on each trial was a synchronization-continuation task (SCT). During the synchronization 

phase, participants were presented with trials containing a reference isochronous metronome at a 

particular tempo and were asked, using drumsticks, to: (1) synchronize with the given reference 

metronome, (2) keep their own variability as low as possible, (3) keep their drumming rate as steady as 

possible, and (4) synchronize with the other drummers when in an ensemble condition. During the 
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continuation phase, the reference metronome stopped, and participants were told to continue to keep 

their drumming rate as steady as possible while synchronizing with other drummers in an ensemble. 

Those in the octet group also completed trials in a synchronization-only control task in which the 

isochronous metronome played for the entire trial (i.e., there was no continuation phase). Participants 

were instructed to focus their eyes on an ‘X’ taped in the centers of their drums, thus reducing the 

visual coupling among group members in the ensemble conditions. 

2.5. Design 

 Participants were assigned to one of three group sizes: duet (2), quartet (4) or octet (8). Those in 

the duet and quartet groups completed the SCT task in both solo and ensemble conditions. Duet and 

quartet groups completed 6 trials at each of the following tempos: 50, 80, 120, 160, 200, 240 beats per 

minute (bpm) (or 1200, 750, 500, 375, 300, 250 ms onset-to-onset intervals between beats) in each of 

the solo and ensemble conditions, with the order of tempos randomized. For each set of participants, 

there was random assignment to either the solo or ensemble condition first. Trials lasted 90 s with a 

synchronization phase of 32 metronome beats.  

For octet groups, there were three differences in the design. First, they did not complete solo trials 

because of time and space constraints. Second, the set of tempos was slightly different (80, 100, 120, 

160, 200 bpm or 750, 600, 500, 375, 300 ms intervals). Finally, an additional condition was included, 

consisting of a synchronization-only control task (i.e., with the reference metronome throughout).  

We found that the very low and very high tempos led to poor performance, hence we eliminated 

extreme tempo trials and only analyzed the set of matching tempos across dyads, quartets, and octets, 

namely 80, 120, 160, and 200 bpm (750, 500, 375, 300 ms). See Supplementary Materials for figures 

showing data from the extreme tempo conditions. For all groups, prior to completing the trials in each 

condition, participants engaged in practicing synchronized steady drumming without an initial 

metronome to set the tempo, so that participants could become familiar with the sticks and drums and 

playing together in an ensemble. 

2.6. Procedure 

 After providing informed consent, filling out demographic and music background questionnaires, 

reading instructions, and observing a demonstration of the apparatus, participants were instructed to 

find a comfortable posture on their chair and adjust the drum position during practice. They were asked 

not to adjust these further during the trials. Participants were allowed to practice as needed to feel 

comfortable with the task. After each trial, the experimenter verified with the participants that they 
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were ready to start drumming again before the next trial was initiated. The whole session from arrival 

to departure lasted about an hour. 

 During the solo performance in the duet condition, one participant was moved to an adjacent 

sound-proof room while the second remained in the large dance studio. For the quartet condition, two 

of the participants were randomly assigned to arrive earlier and perform their solo trials before the 

group trials and the other two to perform their solo trials after the group trials. In the octets, individuals 

did not perform solo trials. 

2.7. Analysis 

 2.7.1 Pre-processing of onset times 

 Onset times were processed using custom Matlab scripts. In SCT trials, only data from the 

continuation phase was analyzed. In the synchronization-only control trials of the octet group, the full 

trial length was analyzed. The following steps were taken to remove artifacts and condition the data 

according to the requirements of the analyses used. 

2.7.1.1 Signal. On a few occasions participants accidentally pulled the cable from the drum and 

disconnected or damaged the sensor. A total of fifteen bad channels (i.e., participants) were detected 

and removed from further analysis with a custom script using the onset variability, signal noise, and 

amplitude consistency. For further verification, we visually inspected the signals and onset times from 

all channels and trials. 

Figure 2. Group-aggregate onset times from convolving the drummers’ onsets with a 

Gaussian kernel. 
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 2.7.1.2 Group-aggregate (mean field) measure for ensembles and pseudo-ensembles. For 

ensemble trials, we created a measure of the beat onset times of the group as a whole by constructing 

theoretical group-aggregate onsets in the center of clusters of individuals’ onset times, tn,g, where n is 

the beat onset number and g signifies it is the group-aggregate onset. Specifically, we: (1) convolved 

onset times with a Gaussian kernel 200 ms in width, (2) smoothed the resulting group activity rate with 

a moving average window of a quarter of the reference stimulus beat onset-to-onset time, and (3) took 

the peak locations for group-aggregate beat onset times (see Figure 2). This algorithm, typically used in 

neuroscience to extract a firing rate or population activity from the spike times of multiple recorded 

units (Dayan & Abbott, 2001), provides a measure of central tendency of one or more events clustered 

in time. The method does not necessarily restrict the group-aggregate pattern to one average onset 

because if a single onset time is isolated away from other clusters, for example when a participant 

erroneously hits the drum while the other participants were silent, it will also be detected as a single-

event cluster. Such events of large individual deviations from the group were very rare in the present 

study and eliminated from analysis because, overall, participants performed the task consistently and in 

agreement with group members. Group-aggregate beat onset times were calculated for each trial in 

each group during ensemble playing conditions. In solo trials of dyads and quartets, participants could 

not see or hear each other but we computed onset times of the pseudo-group-aggregate for a baseline. 

 2.7.1.3 From beat onset times to IOIs, outlier removal, clustering. For each trial for each 

participant, the sequence of onset times tn,i, where i is participant and n onset number, were differenced 

to produce a time-series of inter-onset-intervals, IOIn,i = tn,i – tn-1,i. Where appropriate for a more 

intuitive interpretation, we expressed these as tempos, Tn,i = 60/IOIn,i. The same procedure was carried 

out to obtain the time-series of IOIs for the group-aggregate measure in ensemble conditions and the 

pseudo-aggregate measure in solo playing conditions. 

 If a participant skipped a beat on a certain occasion this would produce an outlier IOI twice as 

large as most others in the trial, thus biasing subsequent measures. IOIs exceeding 50% difference 

above or below the trial median were removed. The measures of individual variability and tempo trend 

(see below) were based on these IOIs. 

 2.7.1.4 Alignment of IOIs. Quantifying inter-personal coordinated tapping with the cross-

correlation requires pairing IOIs from all participants in a given trial. To this end, we used a custom 

algorithm to detect IOIs that were matching across all group members. To illustrate, if one group 
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member skipped a beat, the produced IOI was about double that of the others and the corresponding 

IOIs for all group members were removed.  

 2.7.1.5 Pre-whitening. Cross-correlations are difficult to interpret in the presence of non-

stationarities such as slow drift up and down of the IOI. We applied a method for removing such non-

stationarities by pre-whitening the IOIs (Dean & Dunsmuir, 2016). Specifically, each time-series of 

IOIs was filtered using an auto-regressive model with coefficients estimated with automatic model-

order selection (‘prewhiten’ function from the TSA package for R). 

 2.7.2 Performance measures and dynamics 

All subsequent measures were based on the individual participants’ timing data. For the sake of 

characterizing overall group performance, the group-aggregate timing was analyzed in the same way as 

was individual participant timing, and reported as a separate condition. 

 2.7.2.1 Variability and tempo trend. The tempo trend was defined as the linear trend of IOIs along 

successive beats in a trial. The slope b in the regression equation Tn,i=a+bni was fitted separately in 

each trial for each individual. The variabilities of each individual and group-aggregate were estimated 

separately using the coefficient of variation of their de-trended and pre-whitened IOIs. 

 2.7.2.2 Autocorrelation. Individuals’ and group-aggregate dynamics were analyzed using 

autocorrelation of IOIs. 

 2.7.3 Inter-personal coordination 

 2.7.3.1 Cross-correlation. The temporal pattern of co-variation among participants was analyzed 

using cross-correlation applied to the pre-whitened IOIs. 

 2.7.3.2 Transfer entropy. The bidirectional interaction between every pair of participants in a 

group was measured using transfer entropy (TE) (Schreiber, 2000). This is an information-theoretic 

measure of directed mutual information used for quantifying the effective connectivity in, for example, 

moving animals (Brown et al., 2020), sensori-motor and motor-motor interactions (Dotov & Froese, 

2018; Lungarella & Sporns, 2006; Stoffregen et al., 2009), and complex networks of neurons 

(Gourévitch & Eggermont, 2007). Effective connectivity, sometimes also referred to as causality, is 

understood in the Wiener sense that having information about past source dynamics improves the 

prediction of future target dynamics (Wiener, 1956). We used a Matlab toolbox for TE (Ito et al., 2011) 

adapted for point processes such as neuronal firing times where a delay d separated the source (J) and 

target (I) dynamics are binary events, . The t 

indices here are bins of time, set to 10 ms. We took the maximum TE over a range of up to 100 delay 
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steps (i.e., 1 s). We performed the analysis either with or without removing the trend of decreasing 

intervals between time indices in a trial (i.e., trend for tempo to speed up), and found this did not 

change the pattern of results. 

 Arguably, TE has several benefits over comparable methods (Lungarella et al., 2005). We 

identified another reason for applying TE to the sequence of time onsets t rather than what would be the 

first choice historically, namely TE or Granger causality among sequences of IOIs paired across 

participants. The latter scenario involves several steps of subtractive pre-processing consisting of 

removing outliers due to missed taps, pruning and aligning observations across participants, and 

filtering smooth trends that could be intrinsic to the performance, whereas applying a version of TE for 

point processes (sequences of onsets) avoids the steps which risk excessive data removal. 

 2.7.4 Network analysis 

 The measures in Section 2.7.2 are univariate and describe drumming performance of individuals. 

This individual-level analysis does not say much about how participants coordinate with each other to 

achieve group performance. Section 2.7.3 lists bi-variate measures typically used to analyze dyadic 

tapping and sensorimotor coordination problems. Yet, even such pair-level analysis is not sufficient in 

the group context where more than two participants coordinate simultaneously with each other. Hence, 

we obtained group-level measures by analyzing the network of effective connectivity among drummers 

(Newman et al., 2011). Drummers were treated as nodes (or vertices) and TE values as the weights of 

links (or edges) of a directed graph. 

 2.7.4.1 Causal density and Mean node strength. Among the rich set of phenomena that potentially 

can be quantified in a large network, only a few measures are relevant in the present context because of 

the low number of nodes and the real-valued nature of the graph consisting of continuous connection 

weights rather than binary links. We defined causal density as the average of all edge weights (Seth et 

al., 2011; Seth & Edelman, 2004). Mean node strength (Barrat et al., 2004), obtained using the igraph 

package for R (Csardi & Nepusz, 2006), was defined as the average across drummers of each 

drummer’s total outbound connectivity. This is a version of the more popular measure of node degree 

which is used for binary graphs. 

2.8. Statistical Analyses 

 Linear mixed effects models (Bates et al., 2014; Singer & Willett, 2003) were used instead of 

ANOVAs because of the complex, unbalanced design and missing observations. By taking different 

subsets of the data and fitting separate models, we tested for: (1) effects of group size in SCT trials 
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comparing dyads, quartets and octets, (2) differences between solo and ensemble playing conditions in 

dyads and quartets, (3) differences between SCT and synchronization-only in octets, and (4) differences 

between individual and group-aggregate performance. For brevity, only the selected model with best fit 

is reported in Results. The modeling procedure was incremental, starting with the minimal specification 

of a grand mean and iteratively including predictors and their interactions until the model became over-

specified or too complex to converge, which tended to be the case when including tempo. The 

Satterthwaite method was used to determine significant effects and interactions (Kuznetsova et al., 

2017). Effect sizes are given by the ω2 (Ben-Shachar et al., 2020). 

2.9. Theoretical account 

 2.9.1 The Kuramoto model of emergent collective synchrony 

The Kuramoto (1975) dynamic system of coupled phase oscillators, Eq. 1, was conceptualized as a 

large population of oscillators with different natural frequencies capable of spontaneously locking to a 

common frequency. 

 �̇�𝑖 = 𝜔𝑖 +
𝐾

𝑁
∑ sin(𝜃𝑗 − 𝜃𝑖)𝑁

𝑗=1                                                        (1) 

Here θi is the phase of oscillator i, ωi is its preferred frequency, i.e. how fast around the unit circle θi it 

likes to go, K is coupling strength, and N is the number of oscillators. 

 The model gives a mathematical account of group synchronization as dependent on a mean field, 

referred to here as group-aggregate. A central feature of the model is that the feedback is positive: the 

amplitude of the mean field grows as a function of inter-individual synchronization and, reciprocally, 

the individual oscillators are affected more by the mean field if its amplitude is larger, see Figure 3. 

This is shown by using the definition of the mean of phases, Eq. 2, to express Eq. 1 equivalently2 in 

terms of the coupling between individual oscillators and the mean field, Eq. 3. ψ is the mean field 

phase and r is the mean field coherence, also called order parameter (Kuramoto, 1975). 

 𝑟𝑒𝑖Ψ =
1

𝑁
∑ 𝑒𝑖𝜃𝑗𝑁

𝑗=1                                                               (2) 

 �̇�𝑖 =  𝜔𝑖 + 𝑟𝐾 sin(Ψ − 𝜃𝑖)                                                        (3) 

 Such individual-collective positive feedback loops enable ant trails and other phenomena in 

swarming animals (Sumpter, 2006) as well as acoustic herding in chorusing animals (Ravignani et al., 

2014). The system also serves as a model for neuronal collective synchronization (Breakspear et al., 

2010; Frank et al., 2000; Noori et al., 2020). Theoretically, the principles embodied by this system 

 

2 The mean-field approximation in Eq. 2 is analytically exact in the limit of infinitely large groups (Strogatz, 2000). 
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should apply to group action in humans too (Zhang et al., 2019). It has found application in 

understanding inter-personal synchronization of dyads (Dotov et al., 2019; Heggli et al., 2019; Roman 

et al., 2019), individual rate preferences in the dyad (Bégel et al., 2022), and effects of coupling 

topology in larger groups (Alderisio et al., 2016). In the present context, the model predicts that 

ensembles will be more stable than individuals because of the feedback loop between the timing of 

individuals and the group-aggregate of individuals. 

 Our approach is related to an influential model dealing with collective animal behavior. The 

Vicsek model explains the spontaneous coherent heading direction arising in collective animal 

movement, also in human crowds, in terms of local interactions of attraction and repulsion (Silverberg 

et al., 2013; Vicsek et al., 1995). This approach also relies on individual coupling with the average of a 

group, with the important difference that only a small radius of neighbors defines the interaction field, 

called a local order parameter (Chaté et al., 2008). 

 

 

Figure 3. Group synchronization of eight oscillators with random initial conditions (A) and 

coherent phases later in the trial (B). The middle inset shows individual trajectories (red lines) 

and the mean field (blue line) in time (t). Averaging the phase oscillators θ (red lines) gives a 

so-called mean field (blue lines) with phase Ψ and amplitude r. As the individual oscillators 

become more coherent from (A) to (B), r increases which leads to stronger influence from Ψ 

to diverging θ’s (weight of the downward vectors). 

 

 2.9.2 Hybrid continuous-discrete model of group synchronization 

 The original Kuramoto model involves continuous dynamics and continuous coupling with 

constant gain and no delay. In a drumming task, participants are coupled by way of discrete acoustic 
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onset times. Here we propose a hybrid continuous-discrete system of oscillators with event-based 

feedback updated once per cycle, Eq. 4. It utilizes a pulse function shaped like the acoustic envelope of 

a drum hit. To this end, Eq. 5 with parameters a=1.25 and b=0.02 specifies an asymmetric gamma 

distribution that rises sharply at time zero and then decays slowly in about 200 ms (Supplementary 

Materials, Figure 1). In the model, an oscillator emits a pulse once per cycle when its phase angle 

crosses zero. Furthermore, we posit additive phase variability with a Gaussian distribution 𝒩(0, 𝜎). 

 �̇�𝑖 =  𝜔𝑖 +
𝐾

𝑁
∑ 𝑃𝑗≠𝑖(𝑡)𝑠𝑖𝑛𝜃𝑖 + 𝒩(0, 𝜎)𝑁

𝑗=1 ,      𝑖 = 1, … , 𝑁                          (4) 

 𝑃(𝑡) = 𝑓(𝑡|𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)
𝑡𝑎−1𝑒

−𝑡

𝑏                                                  (5) 

Like the Kuramoto system, this model involves intrinsic dynamics (ωi) and interaction dynamics given 

by the whole coupling term. Without going into details, it is important to clarify one theoretical 

distinction. The present model would be more like a predictive account had we included a new variable 

and an additional equation, �̇�𝑗,𝑖 = 𝑓(𝜃𝑖, 𝜃𝑗 , 𝜃𝑗,𝑖), corresponding to a separate internal oscillatory process 

𝜃𝑗,𝑖 that individual i dedicates to the prediction of an external signal j. 

 Conditions consisted of the full crossing of group size N={2,4,8} with coupling strength (K=0 in 

solo and K=8 in ensemble). The noise term had a mean of zero and variability σ = 6. Intrinsic 

frequencies ωi were drawn from a normal distribution with a mean of 2 Hz and standard deviation of .5. 

Comfortable finger tapping in humans is in the range 1.5-2 Hz (McAuley et al., 2006), tapping is 

optimally precise in the range 0.8-2.5 Hz (Moelants, 2002), and walking cadence on average is at 2 

steps per second (MacDougall & Moore, 2005).  

 We simulated3 100 runs per condition where each run corresponded to a trial with duration of 100 

seconds. We used a sampling rate of 300 Hz and a third-order solver. Different sampling rates and 

using solvers with the Euler method or with an adaptive step size produced similar results. Performance 

variability was measured in terms of the coefficient of variation of cycle durations, treating zero-phase 

crossings as onset times, reproducing the behavioural data qualitatively. For comparison, we repeated 

the simulations using two alternative models. The first was the classic Kuramoto system with constant 

full coupling among the units, Eq. 1. The second was the hybrid continuous-discrete model, Eqs. 4-5, 

with a sparse coupling matrix in a ring topology. Specifically, the individual units were only coupled to 

their two immediate neighbors, 𝑗 = 𝑖 ± 1, with a periodic boundary condition, 𝜃𝑁+1 = 𝜃1 and 𝜃0 = 𝜃𝑁. 

 

 

3 The code needed to run the full simulation is available at https://gitlab.com/dodo_bird/group_sync_elife. 
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3. Results 

3.1. Performance 

 3.1.1 Variability.  

3.1.1.1. Does individual variability increase in ensemble compared to solo conditions? To answer 

this question, we fitted a model including only individuals’ data in dyads and quartets. (Octets did not 

complete solo conditions.) As Figure 4A shows, individuals’ variability increased when playing in an 

ensemble relative to playing solo [β=.009, SE=.001, t=6.65, ω2=.10]. 

3.1.1.2. In the context of true ensemble playing, how does variability of the individuals and group-

aggregate change across dyads, quartets, and octets? To specifically test the main hypothesis, we fitted 

a model to continuation (SCT) trials from all three group sizes in the ensemble playing condition. We 

found that individual variability increased with group size [β=.001, SE=.0005, t=2.20, ω2=.09], group-

aggregate variability was lower than individual variability [β=-.010, SE=.003, t=-3.29, ω2=.01], and the 

difference between individual and group-aggregate variability increased for larger group sizes 

[β=-.0025, SE=.0005, t=-5.19, ω2=.03], see Figure 4B. As a sanity check, we verified that the 

procedure for group-aggregate onset times did not lead to spuriously periodic data by observing very 

high variability for the pseudo-group-aggregate in solo condition where individuals did not hear each 

other, see Supplementary Materials, Figure S2A. 

3.1.1.3. How does variability compare between continuation and synchronization? The octet group 

completed trials in conditions of both SCT (i.e., after the offset of the reference metronome) and 

synchronization-only (with a constant reference metronome). Surprisingly, there were no differences 

between these conditions either in individual [t<1] or in group-aggregate variability [t<1]. 
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Figure 4. Task performance measured in terms of mean (SE) coefficient of variation of IOIs. 

(A). SCT drumming trials (no data collected in N8 Solo Condition). (B). Pulse-coupled 

Kuramoto model. N2 = dyad; N4 = quartet; N8 = octet; Inds = individual participants; Aggr = 

group-aggregate; Solo = solo condition; Ensemble = ensemble condition. 
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 3.1.2 Speeding up.   

3.1.2.1. Do individuals speed up more when playing solo than in dyad or quartet ensembles? 

Speeding up was defined as the linear increase in tempo (i.e., decrease of IOIs) over the course of a 

trial. As expected, individuals sped up even when playing solo [β=.018, SE=.007, t=2.67, ω2=.10] and 

greater speeding up was observed in ensemble than in solo conditions [β=.022, SE=.007, t=3.29, 

ω2=.16]. The effect of group size was not significant [t<1].  

3.1.2.2. Do dyad, quartet, and octet ensembles speed up to different extents? To test the effect of group 

size across the duets, quartets, and octets, a second model was fitted with group size as a continuous 

predictor, but only including trials in SCT ensemble playing. As suggested by Figure 5, there was a 

trend for speeding up to decrease as group size increased. The best linear model included an effect of 

tempo [β=-.001, SE=.00005, t=-1.98, ω2=.005] and an interaction between group size and tempo 

[β=-.00004, SE=.000007, t=-6.20, ω2=.11], reflecting that at higher tempos larger ensembles sped up 

less than smaller ensembles, see Supplementary Materials, Figure S3B. 

 

Figure 5. Mean (SE) speeding up defined as the linear slope of tempo over time, computed 

from the IOIs. N2 = dyad; N4 = quartet; N8 = octet. (No data collected in Solo N8 condition.) 
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3.2. Dynamics and coordination in ensemble, SCT conditions 

 3.2.1 Individual and group-aggregate dynamics (autocorrelations).  

3.2.1.1. Individuals. Figure 6A shows that individuals’ autocorrelations at lag1 were negative 

across all group sizes and tempos. This is typical for the alternating long-short IOIs seen in 

synchronization tasks, reflecting alternating fast-slow synchronization errors when adapting to the 

previous interval. There was also a trend across all group sizes and tempi for positive peaks at even 

lags (2, 4, 6 and 8) and negative peaks at odd lags (3, 5, and 7), see Supplementary Materials, Figure 

S4. However, this general pattern became smoother with increasing group size. To test this statistically, 

in each trial we took the average absolute difference between successive lags, thus measuring the 

average range of the autocorrelation function up to lag 8, and applied the same linear modeling 

approach as in Section 3.1. The effect of group size was significant [β=-.0054, SE=.0023, t=-2.35 

ω2=.13]. There was also a decrease of range with increasing tempo [β=-.00039, SE=.0001, t=-4.92 

ω2=.04]. Additionally, we verified the signs, relative magnitudes, and the effects of group size and 

tempo on the autocorrelations by fitting separate linear models for each lag, see Supplementary 

Materials, Table 1a. 

3.2.1.1. Group-aggregate. Interestingly, group-aggregate IOIs revealed the same overall pattern of 

results, see Figure 6B and Supplementary Materials, Table 1b, even though by definition the group-

aggregate timing was smoother and less variable (Section 3.1.1).  There was a trend across all group 

sizes and tempi for relative positive peaks at even lags 2, 4, 6 and 8, and relative negative peaks at odd 

numbered lags 1, 3, 5, and 7. The similarity of the dynamics of individuals and the group-aggregate is 

not trivial because it implies that even groups of up to eight participants spontaneously acquire the 

alternating long-short interval dynamics characteristic of when individual participants synchronize with 

a stimulus. There were also effects of tempo, see Supplementary Materials, Table 1b. 

3.2.2 Inter-personal coordination (cross-correlations). Cross-correlation applied to the pre-

processed IOIs assessed inter-personal coordination between pairs of participants drumming together in 

the continuation phase of ensemble performances. On rare occasions, individuals produced diverging 

beat times by, for example, missing the drum or hitting it two times. The resulting outlier IOIs were 

removed, and the remaining were re-aligned relative to the other participants by temporal adjacency. 

The last pre-processing step consisted of whitening each time-series of IOIs (see Sections 2.7.1.3-5).  

We analyzed lags in the range 0-4 because cross-correlation coefficients tended to be symmetric 

between positive and negative lags, see Figure 7 and Supplementary Materials, Figure S5. As expected, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2021.09.16.458206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.458206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 COLLECTIVE DYNAMICS IN GROUP DRUMMING   21 

cross-correlations at lag0 were negative in duets [β=-.039, SE=.011, t=-3.60, ω2=.04], consistent with 

the pattern of results for autocorrelations, and inter-personal coordination dynamics were smoother in 

larger group sizes. Furthermore, lag0 cross-correlations became less negative with increasing group 

size [β=.012, SE=.002, t=5.93, ω2=.13]. Lag1 cross-correlations were positive [β=.14, SE=.012, 

t=11.80, ω2=.32] but their magnitude decreased with group size [β=-.016, SE=.002, t=-7.14, ω2=.20]. 

There were also effects of tempo, see Supplementary Materials, Figure S5. 

 

 

Figure 6. (A) Autocorrelations of individual IOIs in the condition of ensemble SCT drumming, 

averaged (SE) across participants’ trials and tempos, separately per group size (color-coded). 

(B) Same for group-aggregate IOIs. 
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Figure 7. Cross-correlations in the SCT task in ensemble conditions. Averages (SE) across 

participant pairs and tempos are shown separately per group size (color-coded lines). IOIs 

were aligned across participants and pre-whitened by filtering with an autoregressive model. 

 

 

3.3. Group dynamics 

 3.3.1 Network analysis. We used network analysis in the continuation phase of trials of ensemble 

playing to describe group coordination at an even higher level of organization than interpersonal 

coordination. First, we obtained the directed graphs of functional connectivity among participant 

drummers. In each trial, the graph consisted of the real-valued directed links between pairs of 

drummers estimated by way of the transfer entropy (TE), see Figure 1C. Then, network properties of 

these graphs were computed, see Section 2.7.4. There was a significant effect of group size on causal 

density [β=-.0006, SE=.0001, t=-5.88, ω2=.47], see Figure 8A. Causal density increased with tempo 

[β=.008, SE=.0019, t=4.01, ω2=.12]. As Figure 8B shows, mean node strength increased with group 

size [β=.0032, SE=.00032, t=10.13, ω2=.73]. Node strength was affected by tempo4 [β=.016, SE=.005, 

t=2.96, ω2=.07]. Comparing between SCT trials and synchronization-only trials in the octet group 

found no difference for causal density [t<1] or mean node strength [t<1], suggesting group dynamics 

were similar regardless of whether a pacing stimulus was present or not. 

 

4 For better model conditioning, tempos values were reduced and compressed by transforming them with a logistic function. 
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Figure 8. Network dynamics. A. Mean node strength increases with group size in the 

continuation phase of SCT, ensemble drumming trials. B. Causal density decreases with 

group size. (Abscissa jittered for visibility.) 

 

 

 3.3.1 Network analysis and task performance. The relation between group dynamics and group 

performance was evaluated by regressing the network properties separately with respect to speeding up 

and IOI variability in ensemble playing. Speeding up decreased with increasing causal density 

[β=-.005, SE=.002, t=-2.22, ω2=.02] and was not associated with node strength [β=-.01, SE=.007, t=-

1.66], see Supplementary Figures S7A-B. Variability was not associated with causal density [β=-.003, 

SE=.0017, t=-1.97] but decreased with increasing node strength [β=-.007, SE=.0019, t=-4.01, ω2=.09], 

see Supplementary Figures S7C-D. Interestingly, we also observed that TE tended to be higher in trials 

that deviated less from the stimulus tempo, see Supplementary Figure S7. 

3.4. Variability in the mean-field model with discretely updated feedback 

 The results of the modeling showed that the cycle duration variabilities of the mean-field hybrid 

Kuromoto model, adapted to have discretely updated feedback, reproduced the main experimental 

findings. The model results are summarized in Figure 4B and can be compared to the experimental 

results in Figure 4A. The adapted model reproduced the pattern of behavioural results at both the level 

of individual oscillators (relating to individuals in our drumming data) and the mean field (relating to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2021.09.16.458206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.458206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 COLLECTIVE DYNAMICS IN GROUP DRUMMING   24 

our group-aggregate analyses). Specifically, for all group sizes, variability was higher for individual 

oscillators when playing in the group than when playing solo, but variability was always lowest for the 

mean field (group-aggregate). In addition, with increasing group size, the difference between individual 

variability and that of the mean field became greater, indicating increasing collective benefits with 

increasing group size. See Supplementary Materials, Figure S2B for a comparison with the null 

(pseudo-ensemble) condition. A separate report will address the model’s individual unit dynamics and 

co-variation in more detail (Delasanta et al., in preparation). The importance of the mean-field hybrid 

model for understanding the present results can be seen in that other versions of the Kuromoto model 

did not successfully replicate the pattern of the data. Specifically, a pulse-coupled network in a 

neighbors-only ring-topology and a constant coupling network in full connectivity did not exhibit the 

same pattern of variability as the empirical data, see Supplementary Materials, Figure S8A-B. 

4. Discussion 

The present study examined how group performance in a synchronization timing task depends on 

group size and interactions among group members. Our overall hypothesis was that the mean field 

would influence individuals in a group, thereby stabilizing group performance. We expected that larger 

groups would exhibit more stable performance due to a more stable mean field. This hypothesis was 

motivated by the collective dynamics that allow animals with limited capacity for interacting with each 

other to achieve mutual goals by exploiting processes such as positive collective feedback and wisdom 

of crowds (Sumpter, 2006). As expected, we observed that temporal variability in group drumming 

decreased with group size. This occurred only at the level of the ensemble or mean field, when the 

group was taken as a single entity. The effect was reversed for individual participants: their variability 

increased from solo to group playing conditions and with group size. We showed that this result agrees 

with a collective dynamics framework based on an adapted Kuramoto model. The model is consistent 

with the idea from theoretical biology that self-organizing systems can successfully coordinate with an 

external constraint by reducing their disorder at the macro-level at the expense of increasing their 

micro-level disorder (Kugler & Turvey, 1987; Prokopenko et al., 2014) and that medium-sized groups 

exhibit commonalities with principles of organization found both in two-unit and large collectives 

(Kelso, 2021; Zhang et al., 2019). 

The continuous-discrete Kuramoto system introduced here included fluctuating intrinsic 

frequencies and event-based feedback. Consistent with the discrete nature of time asynchronies in a 

drumming task, the model used a pulse function instead of continuous coupling. The implications of 
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this idea reach beyond the topic of the present study. The combination of continuous movement and 

discrete sensory sampling of the environment is a frequently observed scenario; in the present study, 

participants used the discrete auditory feedback of drum taps to inform their continuous movements 

leading up to future drum taps. Our task reduced the opportunity of visual coupling but did not 

eliminate it completely, leaving the possibility that group drumming involved both discrete and 

continuous feedback such as visual information about continuous arm, hand, and drumstick movements 

related to the timing of individual drumming sounds. Future studies should address whether visual 

feedback during group drumming is informative, as well as explore how that visual information is 

captured within the individual and collective dynamics of the system.  

Interestingly, in the octet group, individual variability was similar in both the synchronization-only 

condition, where the metronome pacing stimulus was present, and in the self-paced continuation stage 

of the SCT trials, where no pacing stimulus was present. This result implies that, although tempo 

accuracy and drift were superior when the pacing stimulus was present, the stability of group timing in 

a group of 8 participants may hit a ceiling, where performance becomes as stable as with a pacing 

stimulus. 

Individuals’ tempos tended to increase in solo trials and, as expected, this effect was amplified (i.e., 

speeding up was greater) when trying to stay synchronized with other participants (Okano et al., 2017). 

Surprisingly, the amount of speeding up was not higher for larger groups of drummers and it was even 

reduced for larger groups, at least at faster tempos. In contrast, accounts based on mutual prediction 

imply more speeding up for larger groups (Thomson et al., 2018; Wolf et al., 2019). This discrepancy 

highlights the importance of testing tempo drift with specific task constraints and avoiding hasty 

generalizations from smaller to larger groups. Indeed, tempo can also slowdown in some 

circumstances. This was observed, for example, in a group synchronization task when participants 

synchronized their oscillations using swung pendulums, a task involving continuous visual coupling 

rather than discrete acoustic event coupling (Bardy et al., 2020). 

 Having summarized task performance in terms of consistency and accuracy, we next considered 

drumming dynamics. Individuals’ autocorrelations exhibited negative coefficient peaks at odd lags and 

positive coefficient peaks at even lags. This is the typical error-correction process demonstrated when 

individuals synchronize their tapping with a stimulus or with each other in pairs (Konvalinka et al., 

2010; Repp, 2005). With increasing group size, however, the magnitudes of the autocorrelation 

coefficient fluctuations with lag decreased; individuals’ alternating patterns became smoother. This 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2021.09.16.458206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.458206
http://creativecommons.org/licenses/by-nc-nd/4.0/


 COLLECTIVE DYNAMICS IN GROUP DRUMMING   26 

suggests that as group size increases drumming dynamics are dominated less by tap-by-tap error-

correction and more by a group dynamic. Interestingly, the group-aggregate onsets exhibited the same 

autocorrelation pattern as individuals, even in octets. This implies that the collective mean field 

behaviour spontaneously acquired some of the dynamic properties typically associated with individual 

performance. 

 Inter-personal coordination in duets exhibited the negative cross-correlation at lag0 and positive 

cross-correlation at lag1 expected from past studies (Repp, 2005). The results for speeding up, 

variability, and cross-correlations in the dyads were consistent with the literature on dyadic interaction 

with tapping tasks. Yet, as group size increased in the present study, the coefficient magnitudes for 

cross-correlations decreased. In fact, they all but disappeared for groups of 8, suggestive of a leader-

less group coordination scenario (Heggli et al., 2019). In a small number of trials, we even observed 

positive lag0 cross-correlations in groups of 8, a signature of anticipation emerging from dynamic 

interaction. This result is consistent with the idea that group members coordinated less with each other 

and more with the mean field. Along with a more slowly decaying autocorrelation function, this 

suggests the emergence of a larger-scale group dynamic in the octet. As we hypothesized, mutual 

prediction is not necessarily the only basis for coordination in larger groups. Note that there is no 

reason to treat collective dynamics and dyadic mutual prediction as mutually exclusive theoretical 

alternatives, only that collective dynamics is a mode of social interaction that emerges under certain 

constraints such as a large number of interacting agents. 

 Characterizing inter-personal interaction on the basis of bivariate measures is typical in the context 

of dyadic paradigms. Larger groups, however, create the possibility for higher-order interactions. 

Network analysis was applied to the connectivity graph of transfer entropies among drummers. Larger 

groups had lower causal density but higher node strength. This is possible because individual nodes in 

larger groups project to a larger number of other individual nodes and suggests that in larger groups 

each individual has a decreased influence on the group, both less potential to destabilize the group and 

lower requirements to keep the group stable. We also found that higher node strength was associated 

with better overall performance, both in terms of variability and tempo accuracy. 

Group timing tasks address some of the foundations of human social interaction. This area of 

research has been labeled the “dark matter” of social neuroscience (Dumas et al., 2014; Insel, 2010; 

Schilbach et al., 2013) because it has not received enough attention despite the fact that large parts of 

the human cortex respond to social stimuli (Frith & Frith, 2001). The temporal regularities in music 
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make it an ideal stimulus to promote synchronous and cooperative movement, providing evidence as to 

why music is often present at emotional social gatherings such as weddings, funerals, parties, and 

political rallies. Feelings of affiliation and cooperation increase between people who have experienced 

synchronous movement with each other, even during infancy (Cirelli et al., 2014, 2016; Hove & Risen, 

2009; Mogan et al., 2017; Trainor & Cirelli, 2015; Valdesolo et al., 2010). The ability of music to 

strengthen social bonds within a group may have evolutionary roots that enhance survival capabilities 

of the group (Huron, 2001; Savage et al., 2020; Trainor, 2015). Arguably, the presence of a convergent 

regular rhythm defined over the ensemble allows individuals of varying skill level to perform together 

without having to predict each note they play, an idea that remained largely untested in the present 

study because of the relative simplicity of the isochronous stimulus. 

Participants in group activities sometimes report a so-called state of flow characterized by 

absorption, loss of sense of control, loss of self-consciousness, togetherness, and effortless action 

towards a shared goal (Csikszentmihalyi, 1990; Gaggioli et al., 2017; Hart et al., 2014). Little is known 

about the underlying group processes that enable such experiences. Some of the required conditions 

have been studied in the context of group musical performance (Bishop et al., 2019; D’Amario et al., 

2018). Collective intentionality is often seen as an extrapolation of single-person cognitive processes in 

that individuals predict other individuals’ goals and actions (Tomasello, 1999, 2014). Yet, the neural 

and cognitive mechanisms historically identified in single-person paradigms do not always map onto 

the ontology of social behavior (Przyrembel, Smallwood, Pauen, & Singer, 2012). Collective 

intentionality can stand for an independent mode of social cognition (Satne & Salice, 2018; Zahavi & 

Satne, 2015). Social cognition theory can even be turned upside-down by observing cases where 

individual agency arises from social interaction (de Jaegher & Froese, 2009; Froese et al., 2014). The 

present work shows how collective dynamics can absorb individual action. 

4.1. Beyond the group average 

We have argued that attraction to the group average constitutes an organizing principle that 

supports the coordinated performance of medium and large groups of individuals. There are theoretical 

and empirical reasons, however, to assume that other organizing tendencies can compete with the group 

average and potentially lead to more complicated dynamics. To begin with, our synchronization task 

was designed to foster collaboration, did not challenge individual skill, and did not create any 

incentives for competitive individual behavior. This collaborative aspect corresponds to social 

behaviors where crowds want to appear as a strong unity, for instance when chanting a protest song or 
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storming into battle. In contrast, choir singing demonstrates that both cooperation and competition are 

involved often in group musical performance (Keller et al., 2017). And different players in musical 

ensembles often simultaneously play different parts with different melodic and rhythmic features. 

While these parts must fit together, reflecting cooperation, at any one point, the player of  the “melody” 

or most important part influences other players more than vice versa, setting up leadership dynamics 

within the group (e.g., Chang et al., 2017). Different cultural contexts and performance styles may even 

emphasize the creative and expressive de-synchronization from the regular group beat, or avoid 

isochrony altogether, allowing musicians to unfold their own ideas or belonging to a specific tradition 

(Benadon et al., 2018; Davies et al., 2013; Lucas et al., 2011). Understanding musical creativity 

requires a situated approach and ethnographic engagement to find which features of the emergent 

collective acoustic environment constitute meaningful affordances for given musicians in a given 

context (Linson & Clarke, 2017). 

The combination of attractive and repulsive coupling among individuals is particularly evident in 

the context of collective animal behavior. The well-known Vicsek model accounts for the coherent 

heading direction in collective movement in terms of a combination of local attraction and repulsion 

forces (Vicsek et al., 1995). In chorusing animals, there is a tendency for male individuals to cluster 

their acoustic behavior in time but also to advance ahead of the cluster, presumably to have better 

chances at attracting the attention of other relevant individuals (Gamba et al., 2016; Greenfield et al., 

2017; Ravignani et al., 2014, 2019). 

The present study focused on a scenario with uniform coupling by keeping group members close to 

each other5 and restricting the timbre and pitch of their drums to a very narrow range, making them 

acoustically inseparable from each other when playing synchronously. Yet, selective attention plays an 

important role in animal chorusing (Greenfield et al., 2021). Variations in the layout of the acoustic 

environment, individualized timbres, and the availability of alternative coupling modalities such as 

vision, all create affordances for selective attention and individualized roles in the ensemble. For 

example, low-pitch sounds afford better beat-based timing precision in humans (Burger et al., 2013; 

Hove et al., 2014, 2020). The discernability of individual sounds facilitates temporal coordination 

tasks, presumably through the involvement of neural mechanisms for self-other segregation and 

 

5 Musicians who play on large stages sometimes report noticeable delays amongst each other. In the present study, the delay 

was limited, in the range from 4 ms to 16 ms depending on partners' spatial separation, and the sound intensity drop was 

from 6.3 to 15.1 dB. 
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integration mechanisms (Liebermann-Jordanidis et al., 2021; Novembre et al., 2016; Ragert et al., 

2014).  

In conclusion, we assume that the aforementioned factors fit within the collective dynamics 

framework as symmetry-breaking terms, complexities in task space that enable more interesting 

stabilities than mere attraction to the group average. Future studies can address this idea by 

manipulating individual heterogeneity, task difficulty, spatial layout, and coupling topology. 
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