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Abstract  

Anti-cancer therapies often exhibit only short-term effects. Tumors typically develop drug resistance 

causing relapses that might be tackled with drug combinations.  Identification of the right combination is 

challenging and would benefit from high-content, high-throughput combinatorial screens directly on 

patient biopsies. However, such screens require a large amount of material, normally not available from 

patients. To address these challenges, we developed a scalable microfluidic workflow to screen hundreds 

of drug combinations in picoliter-size droplets using transcriptome changes as a readout for drug effects.  

We devised a deterministic combinatorial DNA barcoding approach to encode treatment conditions, 

enabling the gene expression-based readout of drug effects in a highly multiplexed fashion. We applied 

our method to screen the effect of 420 drug combinations on the transcriptome of K562 cells using only 

~250 single cell droplets per condition, to successfully predict synergistic and antagonistic drug pairs, as 

well as their pathway activities.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460212doi: bioRxiv preprint 

mailto:christoph.merten@epfl.ch
mailto:pub.saez@uni-heidelberg.de
https://doi.org/10.1101/2021.09.16.460212
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Introduction 

Despite major progress over the last decades, cancer remains a major cause of death. Our increased 

molecular understanding of the molecular basis of cancer has led to the development of targeted 

therapies. These therapies have so far provided limited efficacy and only in a small subset of patients1, 

despite major efforts to characterize patients genomically to find response biomarkers.  

An approach that holds the promise to improve this situation is to complement large-genomic profiling in 

basal conditions with measurements after perturbing cancer cells with drugs2. While many approaches 

can be used to perform drug screenings, they are often low in throughput3, cost and time extensive4 

and/or require large amounts of cells5, which together strongly restricts the number of potential drugs 

that can be screened per tumor biopsy. This limitation gets more pronounced when considering drug 

combinations due to the sheer number of potential combinations, which increases exponentially with the 

number of tested drugs.  

Due to limited screening capacities, computational approaches to model drug-drug interactions have been 

developed6. While models on drug efficacies improved over the past years by an increase in available data 

resources, predictions on drug responses remain challenging and limited to well characterized systems 

such as cell lines, thereby limiting their translatability into clinics. Among the different data types, gene 

expression states of cells were shown to be highly predictive for drug response7. Additionally, data 

repositories of drug-induced transcriptional changes, such as LINCS8, have proven to be a valuable 

resource. While there are already perturbation screening platforms available in plates for bulk9,10 and 

single cell11,12  transcriptomics, they usually require large numbers of cells per tested condition, and they 

have not been used for screening drug combinations.  Therefore, integrating transcriptomic readouts into 

a miniaturized combinatorial drug screening platform with the potential to screen tumor biopsies will 

enable more relevant predictions and increase our understanding on the mode of action of synergistic 

and antagonistic drug-drug interactions.  

Droplet based microfluidics, which uses picoliter to nanoliter sized droplets as reaction vessels to perform 

cellular screens, provides a promising approach to achieve this goal. Due to the miniaturization over 

several orders of magnitude as compared to conventional plate-based screens, the number of drugs or 

drug combinations can be massively upscaled while working with low input cell numbers13. We previously 

demonstrated a first step in this direction by integrating Braille valves into a droplet microfluidic system 

to generate drug combinations in so called plugs (~500 nl large droplets) stored sequentially in tubings14. 

Plugs were used to directly screen 56 combinatorial treatment options on pancreatic tumor biopsies to 
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find the most potent drug pairs using a phenotypic apoptosis readout. While our previous approach 

provided a first proof of concept in directly screening patient material, the still relatively large volumes of 

500 nl limited the number of drug pairs tested. Furthermore, an apoptosis assay provides only a single 

endpoint readout with limited insights into the drug pairs’ mode of action, which could significantly 

improve our understanding and the predictability of drug combinations to tackle resistance mechanisms.  

To overcome these limitations, we present here a microfluidic platform that allows to perform highly 

multiplexed screens of hundreds of drug combinations in an emulsion of picoliter sized droplets. By 

introducing a deterministic combinatorial barcoding approach, where sets of two barcodes encode drug 

pairs, we managed to screen all conditions in a highly multiplexed fashion, without the need to keep any 

spatial order (e.g. wells, plug sequence). Since the DNA barcodes were designed for whole transcriptome 

analysis of cells after drug perturbation, we were additionally able to perform massively parallelized gene 

expression-based profiling of drug combinations. We demonstrated that the presented approach can be 

applied to determine the impact of drugs on cell viability and cellular signaling, thus providing a high 

throughput approach to discover synergistic drug pairs and to decipher their mode of actions.    
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Results  

Microfluidic workflow to generate drug combinations in picoliter sized droplets 

Multiplexed combinatorial drug screens were performed in single cell droplets by encapsulating drugs 

together with DNA barcode fragments (Fig. 1a). Each pairwise drug combination was encoded by a unique 

combination of two DNA barcode fragments, which together provided a priming site for reverse 

transcription (poly-dT) and PCR. After off-chip incubation of droplets, reagents for cell lysis, barcode 

fragment ligation and reverse transcription were added to each droplet by picoinjection15. The ligation of 

two barcode fragments (BC-RT and BC-PCR) resulted in functional barcodes, encoding pairwise drug 

combinations (Fig. S1). Since the barcodes were used for the reverse transcription of mRNA released from 

lysed cells, transcriptomes were barcoded according to drug treatments (Fig. 1b). Subsequently, barcoded 

cDNA was extracted from the droplets to construct a sequencing library. Finally, sequencing was 

performed to demultiplex treatment conditions and to analyze their effects on gene expression.  

In order to generate drug combinations in picoliter sized droplets, we synchronized the Braille valve 

system and autosampler based injection of drugs into a droplet-maker chip (Fig. 1c). In addition, cell-

suspensions were injected into the droplet-maker chip at a density of 0.1 cells per droplet volume, to 

obtain droplets containing single cells (Movie S1). The autosampler (Dionex) was loaded with a 96-well 

plate, with each well containing a single drug together with the corresponding barcoded primer fragment 

(BC-PCR) and a marker dye enabling to monitor later mixing steps. Drugs were consecutively aspirated 

and injected into the droplet-maker. The time window between two samples from the autosampler (~3 

min) was used to generate a sequence of 20 chemically-distinct plugs, each containing unique pairs of two 

drugs and two barcode fragments (BC-RT and BC-PCR), by injecting secondary drugs and barcodes (BC-RT) 

into a separate Braille valve chip (Fig. 1c and Fig. S2a). In particular, each compound valve was opened 

sequentially and fluorinated oil was injected in between, so that drug-barcode plugs spaced out by an 

immiscible oil phase could be injected into a delay tubing (Fig. 1d). Once the delay tubing was filled with 

a sequence of 20 plugs, two oil valves were opened to inject all plugs into the droplet maker (~2 min, Fig. 

S2b). Thereby, drug-barcode plugs from the valve system were combined with the drug-barcode mixtures 

being injected from the autosampler and encapsulated together with single cells into droplets (Fig. 1e). 

By repeating this process, hundreds of combinations with specific pairs of barcode fragments were 

generated (Fig. 1f). It is important to note that scaling up the number of combinations can be achieved by 

increasing the number of drug injected from the autosampler.  
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Fig. 1 Workflow overview and microfluidic pipeline: (a) Workflow of the combinatorial drug screen with gene 

expression based read out. (1) Cells were encapsulated along with drug combinations and pairs of barcode fragments 

encoding drugs. (2) After 12h off-chip incubation at 37 °C, droplets were reinjected into a second chip and pico-

injection was used to add reagents for cell lysis, barcode ligation and reverse transcription (RT), enabling barcoding 

of the transcriptome according to the drug treatment. (3) Barcoded cDNA libraries were generated for sequencing 

which facilitated demultiplexing of drug treatments and gene expression-based readouts. (b) Barcoding strategy 

applied to encode and decode drug combinations. Pairs of barcode primers consisting of a biotinylated barcoded 

PCR primer (BC-PCR) and a barcoded poly-dT primer (BC-RT) were joined in a ligation reaction to form functional 

barcodes encoding a combination of two drugs. Reverse transcription of the mRNA incorporates a barcode 

combination encoding the perturbation the cells were exposed to into each transcriptome. By breaking droplets, 

barcoded cDNA can be recovered over the biotin handle and amplified for sequencing using primer sites on the BC-

PCR and a template switching oligonucleotide (TSO). (c) Scheme illustrating the microfluidic pipeline used to 

generate drug combinations in droplets. A Braille valve module (1) was used to direct the injected drug-BC-RT mixes 

and oil either to a waste outlet or into a delay tubing. By opening each valve sequentially and by injecting oil between 

each drug, a sequence of 20 drug-barcode plugs was generated within the delay tubing. The delay tubing was 

connected to a drop maker (2) into which cells were injected using a syringe pump and drugs and BC-PCR fragments 

from a 96-well plate were co-injected by an autosampler. Finally, injecting the plugs into the drop maker by opening 

two oil valves, droplets containing drug pairs with barcodes and cells were generated. Labels M1 – M3 show at which 

positions fluorescence signals were measured (e.g. for plots in figure 2) (d) Generation of drug-barcode plugs in the 

delay tubing: (1) Plugs spaced out by oil were produced by sequentially opening the corresponding valves, (2) 

resulting in a delay tubing filled with a sequence of 20 drug-barcode plugs. (3) By opening two oil valves, the plugs 
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in the delay tubing were injected into the droplet-maker chip. (e) Droplet production using an aqueous phase 

consisting of cell suspension, drug-barcode plugs and drug barcode mixtures injected by the autosampler, resulting 

in the co-encapsulation of cells together with drug-barcode combinations from the valve module and the 

autosampler. (f) Scheme illustrating the generation of drug combinations from 20 drugs from the valve module with 

drugs from a 96-well plate. Each sequence of 20 drug-barcode (BC-RT) plugs was combined with drug-barcode (BC-

PCR) mixes from one well.    

Synchronization between the autosampler and the valve-based injection of drugs was crucial to ensure 

that combinations were only generated once the drug injected from the autosampler had reached its 

plateau concentration. Between each drug coming from the autosampler, a time window with decreasing 

and increasing concentrations was observed, as shown by the alternating injection of fluorescence dyes 

(Fig. 2a). This phenomenon is based on Tailor-Aris dispersion of solutes in the continuous, miscible carrier 

phase (PBS) of the autosampler16.No combinations were generated during that time window, which was 

rather used to produce compound plugs in the delay tubing of the Braille module. Once the plateau 

concentration was reached, as indicated by measuring a constant intensity of a fluorescent marker dye, 

the 20 compound plugs were injected into the droplet-maker and combined with the drug from the 

autosampler and cells into droplets. The injection of one such plug train took 2 min, resulting in an overall 

time (plug production and injection) of 15 seconds for generating ~2500 droplets containing cells and one 

barcoded combinatorial treatment condition. Once all 20 plugs were injected, the autosampler started 

aspirating the subsequent drug.  

To ensure droplet contents with marginal cross-contamination, we designed the geometry and delay 

tubing connectors of the Braille valve drop-maker chips such that no residual drug-barcode mixtures 

remained in the channels (Fig. S3). Before each experiment, we measured a proxy for the level of 

contamination between plugs from the Braille display. This was done by using drugs supplemented 

alternatingly with Alexa-488 or Cascade Blue, resulting in an alternating sequence of blue and green 

fluorescence peaks (Fig. 2b). Fluorescence intensities of plugs were measured on the droplet maker and 

contaminations of drugs/dyes from one plug into the subsequent plug were detected by either green 

signals in UV peaks or UV signals in green peaks (Fig. 2c). The ratio between the fluorescence signals from 

each negative peak (n) in either the green or the UV channel with the previous positive peak (n-1) was 

used as a proxy to quantify the level of cross contaminations between two drugs (Fig. 2d). Over three 

different chip setups (Braille valve and drop-maker), we found a mean of 1.5% of contamination in the UV 

channel and 0.7% in the green channel (Table S1), indicating that the described systems can be applied to 

generate combinations with sufficiently high purity.  
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Fig. 2: Validations of the microfluidic pipeline: (a) A sequence of compounds supplemented alternatingly with Alexa-

488 or Cascade blue was injected from a 96-well plate using the autosampler. Samples being injected in the time 

window of decreasing and increasing fluorescence signals (grey box) were discarded by ensuring no combinations 

were generated, whereas time windows with stable fluorescence signals (blue box) were used to generate drug 

combinations by the co-injection of 20 plugs generated on the Braille display chip. Since no drug-barcode plugs from 

the Braille display were injected during time windows with instable concentrations (grey box), droplets only 

contained a single barcode (BC-PCR) and so that mRNA from droplets produced during these time windows was not 

reverse transcribed and hence discarded. (b) Fluorescence intensities from a sequence of plugs from the Braille 

valves supplemented with either Alexa-488 or Cascade Blue measured at the delay tubing inlet of the droplet marker 

(= before combinatorial mixing). The blue overlay connecting (a) and (b) illustrates a time series during which a cycle 

of 20 Braille display plugs (2nd plug without reference dye) is combined with one sample from the autosampler. The 

alternating sequences of drugs supplemented with Cascade Blue or Alexa-488 were used to quantify cross-

contamination between specific (e.g. green) fluorescent-positive plugs into the subsequent negative (e.g. blue) 

sample for both injection modes, separately. (c) Measured cross-contamination from green positive plugs into green 

negative plugs over a total of 209 plugs injected from the Braille display (11 cycles as shown in b). (d) Cross 

contaminations in the plugs coming from the Braille display for three different chips: The ratio between fluorescence 

intensities of a blue or green negative plug and the previous blue or green positive plug was analyzed to quantify the 

level of cross-contamination between sequential samples. (e) Fluorescence signals of droplets after generating 

combinatorial mixtures. Scatterplot representing the fluorescence intensities measured for droplets generated from 

only Cascade Blue labelled compound plugs from the Braille valves and only Alexa-488 labelled compound injected 

from the autosampler. Fluorescence signals were measured at the droplet outlet. One highly dense population of 

double positive droplets was observed. (f) UV fluorescence intensities measured for individual droplets from 180 

combinations. Each color represents one cycle of 20 drug plugs combined with one drug from the autosampler. 

Fluorescence intensities were measured at positions M1 – M3, as indicated on the top left of each figure and in Fig. 

1c. Plots e) and f) show a total of 91899 droplets, each. 
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In the described microfluidic pipeline, drug combinations were generated by mixing drugs injected from 

an autosampler and a Braille valve module. To ensure the precise and accurate drug concentrations within 

droplets, both drugs had to be encapsulated at a constant and predefined ratio. We validated the precise 

mixing of two drugs by supplementing all compounds on the braille display with Cascade Blue and all 

compounds from the autosampler with Alexa 488. We observed one highly dense main population of 

double blue and green double positive droplets, demonstrating that both compounds were co-

encapsulated at a constant ratio (Fig. 2e). Furthermore, we confirmed the stable co-encapsulation of the 

two dyes for droplets over individual combinations (Fig. 2f). The median fluorescence intensities of 

individual combinations were highly stable with coefficients of variation (CV) over 180 combinations of 

2.9% and 3% for blue and green intensities, respectively. The scattering of droplets around the main 

population can be explained by a short (< 100 ms) flow equilibration phase at the beginning and end of 

plugs and fluctuation of the droplet trajectory within a focused laser beam (Fig. S4, Movie S2). 

Consequently, we concluded that the injections modes (Braille valve or autosampler) can be robustly 

synchronized to generate drug combinations in droplets at high precision and purity.  

 

Validations of gene expression based combinatorial drug screens  

To characterize the microfluidic pipeline and to demonstrate its applicability to perform gene expression-

based combinatorial drug screens, we designed a small 4x4 drug screen (Table 1). First, we wanted to 

assess whether the injection mode of drugs from the Braille valves vs. autosampler causes any bias, and 

therefore loaded the same set of drugs on the Braille valves and autosampler. In case of an injection bias, 

we would expect to see differences between the same combination generated in reverse order (e.g. 

Imatinib and Trametinib vs Trametinib and Imatinib). Secondly, we aimed at assessing the impact of the 

barcoding mode on the gene expression readout. For this purpose, we first encoded treatment conditions 

such that drugs injected from the Braille valves were supplemented with barcoded BC-RT, whereas drugs 

from the autosampler were supplemented with BC-PCR. Then we repeated the experiment with BC-RT 

encoding drugs from autosampler and BC-PCR encoding drugs from the braille valves, expecting 

comparable results if the barcoding mode is not impacting the readouts. We used the described pipeline 

to generate droplets each containing single human leukemia K562 cells and all pairwise combinations of 

drugs and the corresponding barcodes and incubated the emulsion for 12h. After ligation, the two 

barcoded primer fragments formed one functional barcode encoding the pairwise drug combination. In 

order to obtain three replicates, the whole process was performed three times.   
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Table 1: Matrix of drugs used in the combinatorial 4x4 screen  

 

Each ligated barcode was used to reverse transcribe the transcriptomes from perturbed cells (Fig. 1a). 

After data preprocessing (Methods) and initial quality controls (Median read and gene count per sample 

of 3.47x105 and 3229, respectively, Fig. S5) we performed dimension reduction using t-distributed 

stochastic neighbor embedding (t-SNE, Fig. 3a) on the demultiplexed count matrix. To analyze whether 

some systematic bias arises based on the injection source (autosampler or Braille valves), we analyzed 

samples according to the autosampler drug (Fig. 3a, top left panel), the Braille valves drug (Fig. 3a, top 

right panel), the “ordered” drug combination (where we made distinction between e.g.: Imatinib-

Trametinib and Trametinib-Imatinib combination), and the “unordered” drug combination (where 

Imatinib-Trametinib and Trametinib-Imatinib samples were not distinguished). While the injection mode 

for single drugs from the autosampler (Fig. 3a, top left panel) or the Braille valves (Fig. 3a, top right panel) 

has only moderate impact on the clustering of individual data points, their pairwise combinations (Fig. 3a, 

bottom panels) is the stronger determinant on the cohesion and separation between samples. To further 

quantify the extent of sample clustering based on injection source for ordered and unordered 

combinations we performed silhouette analysis (Fig. 3b, and Methods for further details). As the 

distribution of silhouette scores are dependent on the number of clusters (4 for drugs, 16 for unordered 

and 10 for ordered combinations), we compared the silhouette scores of clustering to random 

distributions created by permuting the sample labels. The silhouette scores for single drugs and 

combinations were significantly higher (p values < 0.01) than the background distributions, showing that 

samples cluster together based on the used drugs and combinations. Consequently, also the barcoding 

mode for single drugs injected from the Braille valves or the autosampler encoded either with barcoded 

RT or PCR primers do not introduce a bias, since their impact on clustering and hence gene expression, is 

indistinguishable. Contrary to this, pairwise combinations were driving clustering of the samples, showing 

that both drugs were detected together in an unbiased way.  
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Fig. 3: Validations of gene expression based combinatorial drug screens (a) TSNE plots of normalized gene 
expression data. Samples are color coded based on Autosampler drug (top left panel), Braille valves drug (top right 
panel), ordered combination (bottom left panel) and unordered combination (bottom right panel). Color code is 
labeled for autosampler and Braille valves drugs (top panels). (b) Silhouette scores of sample clustering based on 
autosampler / Braille valves drugs and ordered / unordered combinations. Silhouettes scores are compared to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460212
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

random distributions (color code) created by permuting sample labels. (c) Pathway activity heatmap of samples. 
PROGENy pathway activities were calculated for each sample (z-scores of pathway activities, color code) and the 
pathway activity matrix was hierarchically clustered. Drugs of combinations are color coded (yellow: autosampler 
drug, blue: braille valves drug, cyan both drugs). (d) Drug induced pathway activity changes. A linear model 
(pathway_activity ~YM155 + Imatinib + Trametinib) was fitted for each pathway, and the linear model coefficients 
(color code) for each drug is plotted as a heatmap. (e) Drug induced MAPK activity changes. MAPK activity (y axis) 
grouped based on autosampler drug (x axis) and Braille valves drug (color code) and plotted as a boxplot (median, 
quartiles and full distribution). 

 

We also performed hierarchical clustering using the 100 most highly expressed genes across samples, 

which also showed drug and combination-based clustering of the samples (Fig. S6). To further 

demonstrate that our experimental pipeline does not introduce significant technical biases, we performed 

the small 4x4 screen with swapped barcodes (Braille valves drugs supplemented with BC-PCR and 

autosampler drugs supplemented with BC-RT). We observed similar quality (Fig. S7) and clustering (Fig. 

S8) of samples in this case. 

To further analyze the gene expression signatures of cells treated with different combinations, we 

calculated pathway activity changes for each sample, using the PROGENy method17-19. PROGENy 

calculates pathway activities from gene expression data for 14 cancer related pathways. Hierarchical 

clustering of samples based on pathway activities (Fig. 3c) also showed the drug and combination-based 

clustering. We observed two main clusters, one corresponding to combinations including YM155, while 

the other was dominated by Trametinib treated samples. Analyzing the associations between pathways 

activity changes and drugs (Fig. 3d), we found a decreased activity of Hypoxia pathway in all YM155 

treated samples, while all Trametinib (MAPK inhibitor) treated samples showed strong inactivation of 

MAPK (Fig. 3e, p value from linear model: 0.03), and related EGFR pathways. This pathway analysis 

suggests that the observed gene expression changes correspond to the known mechanism of action of 

the used drugs. This supports the use of our screening method to analyze combination induced gene 

expression changes in a high-throughput manner, enabling the characterization of drug responses in much 

greater detail as compared to phenotypic assays used previously14. 

 

High throughput gene expression based combinatorial drug screen 

Based on the promising results of the 4x4 drug combination experiment, we performed a high-throughput 

screen, using a total of 420 different combinatorial treatment conditions. In order to estimate optimal 

drug concentrations for large scale combinatorial screens, we generated dose response curves using K562 

cells to determine their GR35 values for each single drug (Table S4)20. Drugs were assigned to the Braille 
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valves or autosampler to achieve a balanced distribution of drugs with high and low GR35 values. Drugs 

loaded on the Braille valves or autosampler were supplemented with BC-RT or BC-PCR, respectively. We 

aimed at generating 250 droplets containing a single cell for each of the 420 treatment conditions and 

incubated droplets for 12h at 37 °C before performing picoinjection for cell lysis, barcode ligations and RT 

(Fig. 1a). This process was performed three times to obtain replicates.  

After initial preprocessing and quality control (median reads and genes per sample of 32892 and 547, 

respectively, Fig. S9), we performed the same dimensionality reduction (Fig. 4a) and silhouette analysis 

(Fig. 4b), as for the 4x4 screen. Again, samples clustered significantly better based on the used 

combination, than randomly expected (p values of silhouette scores vs. random distribution: <0.01, 0.47 

and <0.01 for autosampler drug, Braille valves drug and combination, respectively.). 

To further investigate whether the gene expression values of the high-throughput screen are biologically 

meaningful, we compared the obtained gene expression signatures to those available for the same drugs 

in the public LINCS-L1000 dataset8. As LINCS-L1000 contains only expression signatures of monotherapy 

drug treatments, we calculated consensus signatures for each drug of our high-throughput screen 

(Methods) and compared these to consensus signatures generated from the LINCS-L1000 database across 

all available cell lines and concentration doses (note that LINCS-L1000 does not include data obtained 

directly from K562 cells). For 32 drugs used in our microfluidic screen, corresponding data on LINCS-L1000 

was available. To compare signature similarities of these, we calculated Spearman's correlation 

coefficients for all pairs of drugs across the two datasets. Our ROC analysis showed that signatures of the 

same drugs from the two screens (true positives) are more similar, than signatures of unrelated drug pairs 

(Fig. 4c, ROC AUC: 0.59), and this area under the ROC curve is statistically significant compared to a 

random distribution created by permuting drug labels (p=0.019).  

As all used drug concentrations were GR35 values, we expected that synergistic combinations could lead 

to decreased cell viability, while in case of antagonistic combinations we expected increased cell viability 

values. While we did not measure cell viability directly, the CEVIChE algorithm (Methods)18 allowed us to 

infer cell viability changes for all used drug combinations from gene expression data (Fig. 5c). We found 

several clusters of potential synergistic and antagonistic combinations (e.g.: Triciribine-Dacarbazine and 

Razoxane-Trametinib, respectively).  To experimentally validate these results, we performed 5x5 dose 

matrix combinatorial cell viability screens with all possible combinations of Triciribine, YM155, Razoxane 

and Doxorubicin with Dacarbazine, Imatinib and Trametinib drugs in a microtiter plate format. We 

calculated synergy scores (positive: synergistic, negative: antagonistic) for the tested combinations using 
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the Bliss independence synergy model (Methods)21. Our measured (plate experiment) and predicted (from 

gene expression data obtained in the microfluidic system) synergies showed significant correlation 

(Pearson correlation r = -0.66, p= 0.018), further confirming the discovery potential of our platform.  

In summary, using our combinatorial microfluidic gene-expression platform, we showed that i) the 

measured gene expression values cluster based on the chemical perturbation, ii) the resulting data is in 

good agreement with public monotherapy perturbation profiles and iii) predicted cell viabilities and drug 

synergies could be validated in a microtiter plate format for selected hits. Taken together, this illustrates 

how comprehensive information can be gained from gene expression profiles obtained in a highly 

multiplexed microfluidic format, sequencing only about 250 cells per drug treatment. This should make 

the workflow particularly interesting for use with very limited material, such as patient samples. 
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Fig. 4 High throughput gene expression based combinatorial drug screen (a) TSNE plots of normalized gene 
expression data. YM155 (left panel), Blebbistatin (middle panel) and YM155-Blebbistatin combination treated 
samples are labeled as a representative example. (b) Silhouette scores of sample clustering based on autosampler / 
Braille valves drugs and combinations. Silhouettes scores are compared to random distributions (color code) created 
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by permuting sample labels. (c) ROC analysis of drug signature similarity to LINCS-L1000 data. For each drug, a 
consensus signature was calculated and similarity (Spearman’s rank correlation) to corresponding LINCS-L1000 
signatures was calculated. The similarity values were used as predicted values for ROC analysis, while true positives 
were the matched drug pairs between high-throughput screen and LINCS-L1000. (d) Heatmap of predicted cell 
viability for drug combinations. Cell viability was predicted from gene expression data using the CEVIChE method. 
(e) Experimental validation of predicted cell viability. Drug synergy (y-axis) was measured for 12 combinations in a 
microtiter plate format (color code) and plotted against the predicted synergy value (x-axis).  
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Discussion  

Cancer patient stratification for personalizing treatments with chemotherapeutics and targeted drugs 

have shown to increase the successes of cancer therapies22-24. These efforts are largely driven by dissecting 

the genomic and transcriptional landscape of tumors or cell lines in order to identify traits that explain 

drug sensitivities25,26. While a variety of identified genomic and/or transcriptomic markers are successfully 

used in clinics, they are available for only a small subset of tumor types and patients1. Furthermore, many 

patients often suffer from tumor relapse27, which is largely rooted in intra-tumor heterogeneity28. The 

relapse is often driven by the surge of a resistance mechanism to the drug that renders the efficacy of 

single drugs short lived29. While treatments with drug combinations offer the potential to reduce the risk 

of drug resistance, their prediction and empirical evaluation remains challenging.  

To advance in solving these challenges, we present here a microfluidic pipeline enabling highly 

multiplexed combinatorial drug screens in single-cell droplets using global transcriptomics as a readout. 

By integrating deterministic barcoding of treatment conditions, we were able to assess the efficacy of 

drug combinations by changes in gene expression and gained comprehensive readouts from whole 

transcriptome sequencing. We applied our pipeline to screen 420 combinatorial treatment conditions in 

a single tube, illustrating the high level of multiplexing. Based on assay miniaturization in a droplet format, 

only about 250 cells were needed per tested condition, hence opening a way for personalized screens on 

patient material. 

We have designed the microfluidic platform as a modular system in which the Braille display valves allow 

us to quickly change between injected drugs overcoming the limitations from a slow autosampler based 

injection. Since both are combined on the droplet generator, fast and efficient generation of drug 

combinations becomes feasible and allows the encapsulation of single cells into droplets of high chemical 

diversity. Since the autosampler used here injects drugs from up to three 96 or even 384-well plates, the 

number of drug combinations can be further scaled up to a theoretical maximum of 3 x 384 x 20 = 23040 

combinations in a single experiment. What becomes most limiting at that scale are sequencing costs and 

available material (when e.g. using primary cells) rather than instrument throughput.  

We see significant added potential by the possibility to screen such large numbers of drug combinations 

at the single cell level: Integrating fluorescence-based droplet sorting upstream of the picoinjection (cell 

lysis) step could, for example, be used to physically separate and sequence resistant clones for all 420 

treatment options in a single experiment (e.g. implementing the phenotypic Caspase-3 assay we used 

previously)14. This way one could analyze the difference in their transcriptomic signature as compared to 
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responding cells, opening the way for highly multiplexed studies to reveal new biomarkers for resistance 

and (chemical) sensitizers to overcome these. As recently demonstrated, single cell readouts of drug 

perturbation provide great insights into heterogeneous drug response11. Performing such screens on 

patient biopsies will allow us to dissect subclonal drug responses and thereby to define more efficacious 

drug combinations and additionally gain insights into their potential resistance mechanisms. In order to 

enable the encapsulation of primary tumor cells, we aim at integrating support structures for cell 

adherence and growth in droplets as previously shown30,31.  

All generated datasets demonstrate that neither the barcoding approach nor the injection mode biased 

the gene expression-based readout. Monotherapies from both injection and barcoding modes had similar 

impacts, while their combinations had the strongest impact on gene expression and was the main driver 

of the observed clustering. This confirms the highly precise and accurate operation of the presented 

microfluidic workflow and the specificity of the deterministic barcoding approach. Additionally, we found 

significant similarities between consensus gene expression signatures of monotherapies from our large-

scale screen with drug signatures from the LINCS-L1000 dataset, illustrating a high level of reproducibility. 

In the pathway activity analysis, we found that the hierarchical clustering was largely driven by the three 

drugs YM155, Imatinib and Trametinib, which further supports the detection of drug-specific effects. The 

two main clusters were driven by Trametinib treatments inhibiting MAPK and EGFR pathway activities, 

and the opposing effects of YM155 treatments, inducing the up-regulations in MAPK and EGFR pathway 

activities while inhibiting hypoxia and TRAIL related pathways. While the effects of Trametinib on MAPK 

are expected32, the effects of survivin inhibition by YM155 are less well understood, due to complex 

signaling and incomplete knowledge on survinin33. The increased MAPK pathway activity is likely to reflect 

a counteractive mechanism, since survivin expression was described to be regulated by Sp1 and c-Myc 

activation through the MAPK pathway34 and higher concentration of the drug target will reduce the drug 

effect. As survinin expression has been linked to drug resistance in leukemia, a combinatorial treatment 

with YM155 and Trametinib could potentially have a beneficial effect on decreasing the chances for 

relapse, due to the inhibition of survivin and putative compensatory expression induced by the MAPK 

pathway. Taken together, these findings show that the described microfluidic pipeline can be applied to 

disentangle the effects of drug combinations on pathway activities. Such information will be of great 

impact when screening patient biopsies to identify potential resistance mechanisms and to predict 

efficacious drug pairs. Analyzing the pathway activities upon perturbations was limited by the number of 

detected genes, and therefore, to the small 4x4 screens, since these samples were sequenced at higher 

depth. To detect a comparable number of genes for all 420 drug combinations, a ten times higher 
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coverage would have been necessary. We instead used the large screen to show that shallow sequencing 

data is sufficient to determine synergistic drug pairs. We mined the dataset with 420 treatment conditions 

for drug pairs with synergistic or antagonistic effects and identified Triciribine-Dacarbazine and Razoxane-

Trametinib combinations as corresponding examples. Furthermore, we validated that there is good 

correlation between viability scores from the gene expression data and the experimentally validated 

synergy scores obtained from the plate-based drug screen. These results show that it is possible to use 

cost effective low sequencing depth in large transcriptomics screens to discover synergistic drug pairs.  

Together with the inferred pathway activities under perturbation, this should not only allow for the 

identification of synergistic combinations, but also gain insights into their mechanisms of action. 

Compared to our previous single-measurement phenotypic assay platform14, the global transcriptomic 

readout provides orders of magnitude more data points per sample, while the cell consumption could be 

reduced further by a factor of about 6-fold. The higher content readouts should enable more robust 

predictions on the best combinatorial treatments and the discovery of new drug sensitizers and 

biomarkers, and the even smaller needs of material further facilitate the application in the clinic for 

patient stratifications and treatment prioritization.    
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Methods  

Braille valve module  

All devices used for the valve module were replicated from moulds prepared using soft-lithography with 

AZ-40XT positive photoresist (Microchemicals) according to the manufacturer's instructions. Structures 

from 25400 dpi photomasks (Selba) were patterned on 4-inch silicon wafers (Siltronix) in a mask aligner 

(Suess MicroTec MJB3) using light with a wavelength of 375 nm. Structures were covered with a ~1 cm 

thick layer of PDMS mixed with curing agent at a 1:10 ratio (Sylgard 186 elastomer kit, Dow Corning Inc) 

and cured overnight at 65 °C. In addition, we prepared PDMS membranes by mixing PDMS with curing 

agent at a 1:10 ratio and distributing it over a transparent sheet using a spin coater at 500 rpm (Laurell 

WS 650), which were cured overnight at 65 °C. The drug inlet and waste ports of the valve chip were 

punched using 0.75 mm biopsy punches (Harris Unicore), whereas the plug outlet port was punched 

horizontally to the outlet channels using a 0.5 mm biopsy punch (Harris Unicore). Chips were bonded to a 

PDMS membrane using a plasma oven (Diener Femto). We inserted PTFE tubings with an inner diameter 

of 0.4 mm (Adtech) into the horizontally punched outlet port until the tubing reached the funnel-like 

structure of the outlet channel. Subsequently, chips were bound to a glass slide to support chip structures 

with inlets and outlets.  In order to prevent surface wetting, channels were treated with Aquapel (PGG 

Industries) before use. The valve structures of Braille chips were aligned (Fig. S2a) on top of the pins of a 

Braille display (KGS Corporation, Fig. S10a) and mounted using a plexiglas holder (Fig. S10b). Using our 

“SamplesOnDemand” LabVIEW software (all required software can be downloaded from 

www.epfl.ch/labs/lbmm/downloads/mathur). the movement of the pins was controlled, so that opening 

the collection channel results in closing of the waste channel and vise versa. Closing a channel was 

achieved by a pin pushing into the elastic PDMS membrane. This could be opened again by moving the 

pin down. For all experiments, we used 20 syringes (Becton Dickinson) filled with 5 ml drug-barcode 

solutions and 4 syringes filled with 5 ml HFE oil (Novec™ 7500, 3M). These were connected to the inlet 

ports of the valve chip with PTFE tubing, and fluids were injected at 500 µl h-1 using syringe pumps 

(Harvard Apparatus). The waste outlets were connected with a piece of PTFE tubing to direct fluids to a 

waste container. 

  

Preparing a drop maker 

Drop maker moulds were manufactured from negative photoresist SU-8 2075 as described by the 

manufacturer (Microchemicals). PDMS containing 10 % (w/w) curing agent was poured over the moulds 

and cured overnight. Inlet ports for cells and HFE were punched vertically using 0.75 mm or 1 mm biopsy 
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punches for PEEK tubing coming from connecting the autosampler. Inlet ports for compound plugs from 

the Braille valves were punched horizontally using 0.5 mm punches. Chips were first plasma bound to a 

PDMS membrane and subsequently to a glass slide. The channel wall hydrophobicity was increased by 

injecting Aquapel (PGG Industries) into the channels.  

  

Autosampler operations  

To facilitate the injection of drugs from microtiter plates into the drop maker device, we used a Dionex 

3000SL Autosampler aspirating drugs from a 96-well plate. The autosampler was programmed to 

sequentially aspirate 310 µl of compound from wells into a 125 µl sample loop. The large excess of 

aspirated volume accounted for a needle volume of 60 µl and a loop overfill factor of 2. By overfilling the 

sample loop by twice its volume, we ensured that the remaining compound mixture was not diluted by 

the carrier fluids that remain in the sample loop after each cycle due to washing. The injection of 

compounds from the sample loop into the droplet maker was driven by a syringe pump (Harvard 

Apparatus) injecting PBS (Thermo Fisher) at 500 µl h-1. After the aspiration of one drug, a delay time 

started to ensure that each drug got injected and combined with all drugs from the Braille display, before 

the next drug was aspirated.  

 

Deterministic combinatorial barcoding system 

Random 10 nt long DNA-sequences with balanced base distributions were generated using the bgen tool 

(gear.embl.de). Barcoded PCR primers were functionalized with a 5’-end biotin for purification, followed 

by a spacer sequence, a common primer sequence, a unique barcode sequence and a ligation site (Tab. 

2). The reverse complements (RC) were functionalized with a free 5’-end phosphate to enable ligation. 

Barcoded RT primers comprised a dT(20)-VN sequence, a unique barcode sequence and a phosphate 

group at the 5’-end. The RC for this had a ligation site complementary to the ligation site of the PCR 

primers. A list of all barcode sequences can be found in the supplementary materials. Complementary 

sequences were annealed at equimolar concentrations by heating mixtures to 95 °C for 10 min in a 

thermal block (Eppendorf) followed by their cooling to room temperature (RT) for 1h. 

Tab. 2: Sequences used in the barcode fragments   

BC-PCR  5’-biotin-TTTTTTTAAGCAGTGGTATCAACGCAGAGTACNNNNNNNNNNgcggc 
RC: 5’-Phos-NNNNNNNNNNGTACTCTGCGTTGATACCACTGCTTAAAAAAA 

BC-RT 5’-[Phos]NNNNNNNNNNTTTTTTTTTTTTTTTTTTTTVN 
RC: 5’-NNNNNNNNNNgccgc 
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Barcode-drug mixtures used for the Braille valves and autosampler  

Barcode-drug mixtures for the valve module were prepared by diluting barcoded RT primers in FreeStyle 

media (ThermoFisher) to 1 µM. Drugs dissolved in DMSO were added to their corresponding barcode at 

2x the final concentrations (see supplementary materials). The barcode-drug mixtures were 

supplemented with either Cascade Blue (ThermoFisher) or Alexa-488 (ThermoFisher) at 10 µM for 

monitoring purposes and subsequently aspirated into 5 ml luer-lock syringes (BD) connected with PTFE 

tubings using 27G ¾ needles (BD). Barcode-drug mixtures for the autosampler-based injection were 

prepared in round bottom 96-well plates by diluting barcoded PCR primers to 4 µM in FreeStyle media 

and the corresponding drugs to 4x the final concentrations. Mixtures were supplemented with Alexa-488 

at 10 µM and plates were sealed with adhesive qPCR seals (ThermoFisher).    

 

Preparation of cell suspensions 

K562 cells (ATCC) were cultured in IMDM media (ThermoFisher) supplemented with 10% FBS 

(ThermoFisher) and 1% Penicillin-Streptomycin (ThermoFisher). On the day of the experiments, cells were 

washed twice in PBS and resuspended in FreeStyle Media (ThermoFisher) supplemented with 4% FBS. The 

concentration of the cell suspension was adjusted to 2x106 cells ml-1 and subsequently aspirated into a 3 

ml luer-lock syringe (BD).   

 

Operations of the microfluidic pipeline for combinatorial drug screens  

Syringes containing drug-barcode mixtures and HFE oil were connected to the Braille valve chip as shown 

in figure 1C and all injected at 500 µl h-1. The default mode for all compound valves was to direct fluids to 

the waste outlets and two HFE oil valves to direct fluids to the outlet tubing. The length of outlet tubing 

of the Braille valve was adjusted to harbor all 20 compound plugs spaced out with HFE oil and then 

connected to the Braille inlet on the drop marker chip (Fig. S2b). A syringe containing cells was mounted 

on a pump and connected to the drop maker and injected at 500 µl h-1. Cell sedimentation was prevented 

by low-speed rotations of the magnetic disc using the Multi Stirrus™ system (VP Scientific). Autosampler 

output tubing and HFE carrier phase supplemented with 1% Pico-Surf1 (Sphere Fluidics) were connected 

via the respective inlets and injected at 500 µl h-1 and 6000 µl h-1, respectively. The droplet maker chip 

was mounted on a microscope (Nikon) with an optical setup for measuring fluorescence intensities of 

compound plugs or droplets as described previously14. Briefly, lasers with a wavelength of 375 nm or 488 

nm were used to excite dyes and emitted light (450 nm or 520 nm) was measured using photomultiplier 

tubes.  
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Tab. 3: Braille valve operations 

Valves to 
open 

Opening times Outcome Number of cycles 

A 7 sec Compound Plug  
 
 

21x  
 

Can be adapted to the 
number of drugs in 
the 96-well plate 

2x oil 2 sec Oil Spacer 

B 7 sec Compound Plug 

2x oil 2 sec Oil Spacer 

17x 

T 7 sec Compound Plug 

2x oil 120 sec  Plug injection  

 

A CSV file containing the Braille valve opening sequence (Tab. 3) was loaded into the sample on demand 

software. The number of cycles was set to 21, since we were combining all 20 drugs from the Braille valves 

with 21 drugs from a 96-well plate. Once all tubings were connected and fluids were injected into the drop 

marker (carrier fluid from the autosampler and HFE oil from the Braille valves), plug production and 

autosampler-based injection were started simultaneously. 20 plugs were produced into the delay tubing 

(180 sec) and subsequently injected into the drop-maker, by opening two HFE oil valves (tot. flow rate of 

1000 µl h-1). This ensured a continuous and stable flow rate for plug injections, and therefore, resulted in 

a laminar flow of compounds from the Braille valves, autosampler compounds and cells from which 

droplets were generated at the flow focusing junction (Movie S1). Droplets of approx. 800 pl were 

collected in an Eppendorf tube which was kept on ice. Once 420 combinations were generated (~100 min) 

the Eppendorf tube was placed in a humidified incubator at 37 °C and 5% CO2 atmosphere to incubate 

cells for 12h.  

 

Picoinjection for cell lysis, barcode ligation and reverse transcription  

Chips for picoinjection were produced by replicating SU-8 moulds using PDMS with curing agent as 

described above. Casts were plasma bound to glass slides and treated with Aquapel. Chips were heated 

to 95 °C and first low melting solder and second cables were inserted into the ports for the two electrodes 

(Fig. S11). The chip was mounted on the microscope of a microfluidic station and the power electrode was 

connected to a high voltage amplifier, while the chip was grounded over the grounding electrode.  
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After an incubation of 12h, droplets containing cells, drug combinations and corresponding DNA-barcodes 

were transferred into a 3 ml syringe and injected through the droplet inlet port into a picoinjection chip 

(Fig. S11). Droplets were flushed at 180 µl h-1 and individual droplets were spaced out by injecting HFE oil 

with 1% PicoSurf surfactant at 700 µl h-1 to 1000 µl h-1 over the oil inlet. For cell lysis, barcode ligation and 

reverse transcription of mRNA released from lysed cells, we pico-injected a one-pot reaction mix  

containing 0.9% Igepal (Sigma Aldrich), 3x ligation buffer (NEB), 60,000 U/µl T4 Ligase (NEB), 1.5 mM 

dNTPs (ThermoFisher), 7.5 µM Template Switching Oligonucleotide (IDT), 12 U/µl Maxima -H reverse 

transcriptase (ThermoFisher) and 6,000 U/µl NxGen RNase Inhibitor (Lucigen). Flow rates for the reagent 

mix were adjusted according to the droplet frequency and size in order to inject the equivalent of ⅓ of 

the final droplet volume (Movie S3). In order to achieve the injection of reagents into the droplets passing 

by the injector nozzle, we applied a continuous electrical field of 0.1V using a function generator (Rigol). 

Pico-injection was performed over ~1h during which all droplets (injection and collection) were kept on 

ice. Subsequently the emulsion was kept at RT for 30 min and then incubated for 90 min at 42 °C.    

 

Library preparation and sequencing  

Upon reverse transcription of mRNA, all cDNA was barcoded according to drug treatments, and therefore, 

we broke the emulsion by adding 0.5 ml to 1 ml of 1H,1H,2H,2H-Perfluorooctanol (Abcr). The supernatant 

was transferred into a fresh Eppendorf tube, supplemented with 1x the volume of C1 dynabeads 

(ThermoFisher) at 2.5 µg µl-1 in 6x SSC buffer (ThermoFisher), and incubated at RT for 20 min. Beads were 

washed 2x in TE-SDS (10 mM Tris pH 8.0, 1 mM EDTA and 0.5% SDS) and 2x in nuclease free water 

(ThermoFisher). Beads were resuspended at 5 µg µl-1 followed by MseI (NEB) digestion according to the 

manufacturer's instructions. The supernatant was purified 2x using SPRIselect beads (BD), first at 0.6x and 

then at 0.8x the volume of cDNA and finally amplified in KAPA HiFi ready mix (Roche) with 0.8 µM of 

SMART primer (Table S2) over a total of 13 cycles (PCR program in Table S3). Products were purified on 

0.6x the volume SPRIselect beads and then analyzed using high sensitivity DNA chips on a 2100 Bioanalyzer 

(Agilent). Fragmentation of cDNA was performed to shorten the fragments and to introduce linker 

sequences. This was achieved using a Tn5-based tagmentation protocol for 3’ end libraries developed in 

house35. Fragments were amplified using a P5-SMART primer (Table S2) and an i7 indexed P7 adapter 

primers (Illumina, Table S2) at 0.75 µM in KAPA HiFi ready mix (PCR program table S4). Fragments were 

purified on 1x the volume of SPRIselect beads and size distributions were determined using a Bioanalyzer. 

All replicates were pooled at equimolar ratios and sequenced on a NextSeq 500 (Illumina) machine 

together with 10% PhiX spike-ins. Paired-end sequencing was performed by sequencing the barcode 
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combination (Read 1, 26 bp) using the sequencing custom primer (Table S2) and the mRNA (Read 2, 59 

bp). 

 

Statistics 

In boxplots the center line represents the measured median and the upper box and lower box hinges 

corresponds to the first and third quartiles. The whiskers extending from the lower and upper hinges of 

the box represent the 1.5-fold interquartile range. The dots with the lines shown in the violin plot in Fig. 

2d correspond to the mean with standard deviation for each of the measured cross contaminations.  

 

Gene expression data preprocessing 

We used the SCANPY pipeline36 for gene expression preprocessing and quality control. Samples with low 

gene count and high ratio of mitochondrial genes (>15 percent) and genes with high dropout rate were 

filtered out. Read counts were normalized based on sequencing depth and z-score transformed. Batch 

effect (replicates) was removed by using the combat function of SCANPY. For dimension reduction we 

used Principal Component Analysis, followed by t-distributed stochastic neighbor embedding (TSNE)37.  

 

Clustering based quality control of gene expression data 

To analyse the clustering of samples based on the different factors (Autosampler Drug, Braille Valves Drug, 

Combination) we used silhouette score analysis. Silhouette coefficient (b − a) / max(a,b) was calculated 

for each sample, where a was the mean intra- and b was the mean nearest-cluster distance. For each 

clustering factor, the average of Silhouette Coefficients were calculated (scikit-learn Python library). As 

silhouette score is dependent on the number of clusters, we created random clusters by permuting 

sample labels, thus cluster membership. 

 

Functional genomic analysis of gene expression signatures 

Pathway activities were calculated using PROGENy method17-19. Individual drug specific pathway activities 

were calculated by fitting a linear model (pathway_activity ~ YM155 + Imatinib + Trametinib).  

To compare similarity between gene expression signatures from the high-throughput screen and LINCS-

L1000 dataset8 we calculated consensus signatures for each drug of the high-throughput screen. To 

calculate consensus signatures, we fitted a linear model (gene_expression ~ Drug1 + Drug2 + … + Drugn) 

for each gene of the expression matrix, and used the linear model coefficients as drug specific signature. 

To compare signature similarities, we calculated Spearman’s rank correlation coefficient between the 
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drug signatures of high-throughput screen and LINCS-L1000 signatures. The similarity values were used 

as predicted values for ROC analysis, while true positives were the matched drug pairs between high-

throughput screen and LINCS-L1000. 

For cell viability predictions we used the CEVIChE method. CEVIChE predicts cell viability from gene 

expression changes based on a linear model, trained on a large compedion of matched cell viability and 

gene expression dataset18. As the measured genes of the high-throughput screen showed low overlap 

with the genes used by the original CEVIChE model, we retrained CEVIChE using only the genes measured 

in the high-throughput screen. This retrained CEVIChE model showed comparable performance (Pearson 

correlation between predicted and observed cell viability: 0.31) to the original method. 

Plate-based viability measurements to validate hits from microfluidic screen 

Drug-plates were prepared in advance in a 4x4 checkerboard for each combination, such that after 

addition of cells, each drug was present at its GR35 concentration and a four-fold dilution series thereof. 

Each plate also contained media and DMSO negative controls and monotherapies for each drug. K562 

cells were passaged the day before each experiment. On the day of the experiment, cells were washed 

once with PBS, then resuspended in FreeStyle 293 media (ThermoFisher), containing 1% FBS. Cells were 

added using the multistep function of a multichannel pipette to each pre-prepared drug-plate, such that 

each well had 200 µL final volume and approximately 2x104 cells. The reservoir from which to aspirate 

cells was frequently refilled with freshly resuspended stock solution to ensure that cells remained in 

suspension. Plates were sealed with a gas-permeable foil (Sigma) and incubated for 48 hours. To prevent 

evaporation, plates were kept in the incubator within a box with ~1 cm water, within the box the plates 

rested on tip boxes. After incubation, 22 µL PrestoBlue (ThermoFisher) cell viability reagent was added to 

each well and plates were resealed and returned to the incubator for 1 hour. Plates were then read using 

a Tecan microplate reader with excitation/emission wavelengths of 535/615 nm (20 and 10 nm 

wavelength bandwidth respectively). Based on the measured cell viability for monotherapies, we 

calculated expected cell viabilities using the Bliss independence model21 for each combination, for each 

concentration pair. The difference between expected and measured cell viability for combinations was 

averaged across all concentrations and was given as synergy score.  

Data and software availability: 

The datasets of the RNA-Sequencing experiments are available through GEO (accession GSE174696). 

Microfluidic control software and CAD designs of the chips can be downloaded from 
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www.epfl.ch/labs/lbmm/downloads/mathur. The code used to analyze the transcriptomic data can be 

downloaded from https://github.com/bence-szalai/Combi-Seq-analysis.  
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