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 23 

Abstract 24 

The copper biotic ligand model (BLM) has been used for environmental risk assessment by 25 

taking into account the bioavailability of copper in freshwater. However, the BLM-based 26 

environmental risk of copper has been assessed only in Europe and North America, with 27 

monitoring datasets containing all of the BLM input variables. For other areas, it is necessary to 28 

apply surrogate tools with reduced data requirements to estimate the BLM-based predicted no-29 

effect concentration (PNEC) from commonly available monitoring datasets. To develop an 30 

optimized PNEC estimation model based on an available monitoring dataset, an initial model 31 

that considers all BLM variables, a second model that requires variables excluding alkalinity, 32 

and a third model using electrical conductivity as a surrogate of the major cations and alkalinity 33 

have been proposed. Furthermore, deep neural network (DNN) models have been used to predict 34 

the nonlinear relationships between the PNEC (outcome variable) and the required input 35 

variables (explanatory variables). The predictive capacity of DNN models in this study was 36 

compared with the results of other existing PNEC estimation tools using a look-up table and 37 

multiple linear and multivariate polynomial regression methods. Three DNN models, using 38 

different input variables, provided better predictions of the copper PNECs compared with the 39 

existing tools for four test datasets, i.e., Korean, United States, Swedish, and Belgian 40 

freshwaters. The adjusted r2 values in all DNN models were higher than 0.95 in the test datasets, 41 

except for the Swedish dataset (adjusted r2 > 0.87). Consequently, the most applicable model 42 

among the three DNN models could be selected according to the data availability in the collected 43 

monitoring database. Because the most simplified DNN model required only three water quality 44 

variables (pH, dissolved organic carbon, and electrical conductivity) as input variables, it is 45 
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expected that the copper BLM-based risk assessment can be applied to monitoring datasets 46 

worldwide. 47 

 48 

Keywords: copper, bioavailability, biotic ligand model (BLM), predicted no�effect 49 

concentrations (PNEC), deep neural network (DNN) 50 
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 70 

1. Introduction 71 

The copper biotic ligand model (BLM) is used to assess environmental risks and toxicity for 72 

copper based on its bioavailability because the toxicity of copper in aquatic systems is highly 73 

dependent on site-specific water chemistry. The model assumes that the binding of free copper 74 

ions to biotic ligands, together with the competitive effects of major cations, determines copper 75 

toxicity [1, 2]. There are a number of essential input variables (pH, dissolved organic carbon 76 

(DOC), major cations, and alkalinity) required to derive the predicted no-effect concentration 77 

(PNEC) and an effective environmental quality standard based on the copper BLM. However, 78 

monitoring databases containing all BLM input variables are available only for a few regions, 79 

such as the United States and Europe. Regulatory monitoring databases, which are not intended 80 

for use in BLM-based risk assessments, contain only general water quality variables and 81 

hazardous substances as monitoring variables.  82 

Although existing PNEC estimation tools can produce uncertain results due to the use of only a 83 

few assessment parameters, a BLM-based risk assessment can be conducted in regions where not 84 

all of the data required as BLM input variables are available. The Bio-met look-up table, the 85 

Environment Agency metal-bioavailability assessment tool (mBAT), which uses a multivariate 86 

polynomial function, and PNEC-pro, which uses multiple linear regression (MLR), require pH, 87 

DOC, and Ca, as the most influential variables to determine BLM-based PNECs [3-5]. However, 88 

the use of Ca as a representative variable of the major cations and alkalinity in existing tools has 89 

not significantly broadened the ecoregion for which BLM-based risk assessments can be applied. 90 

The Ca content may or may not be included as a common regulatory monitoring variable in 91 
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different ecoregions. There is a need for new input variables that can act as a surrogate for the 92 

major cations and alkalinity within water quality variables while maintaining a good predictive 93 

capacity for the BLM-based PNECs. In this study, electrical conductivity was considered a 94 

surrogate variable and is one of the recommended variables used to estimate the values of a 95 

missing BLM variable [6, 7].  96 

New PNEC estimation models should be developed using a method that minimizes the 97 

remaining uncertainty by using the input variables from available monitoring datasets. In this 98 

study, a deep neural network (DNN) was used rather than the statistical methods that are applied 99 

in existing tools. The DNN was expected to provide an optimized predictive capacity for the 100 

nonlinear relationship between the BLM-based PNEC and the BLM input variables. The DNN is 101 

an approximator of universal function. It is an artificial neural network consisting of multiple 102 

hidden layers between the input and output layers, and therefore complex nonlinear relationships 103 

can be modeled by stacking more hidden layers [8].  104 

Another factor determining the predictive capacity of the PNEC estimation model is that the 105 

dataset used to develop it must be sufficiently representative of freshwater chemistry. In the 106 

dataset used for the development of Bio-met and mBAT, Peters et al. (2011) assumed that most 107 

of the Mg, Na, and alkalinity could be determined from Ca concentrations [9]. This means that a 108 

dataset consisting of a combination of only three variables (pH, DOC, and Ca) would not cover 109 

the full range of BLM input variables. The dataset used for the development of PNEC-pro is 110 

from a monitoring database from the Netherlands. Further validation is therefore necessary to 111 

apply PNEC-pro to ecoregions with different water chemical properties. As a result, simulation 112 

data with full coverage of the domain of BLM input variables is needed for the development of 113 

the PNEC estimation model.  114 
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The aim of this study was to develop an optimized PNEC estimation model depending on the 115 

available monitoring dataset. For this purpose, a realistic training dataset with sufficiently 116 

representative freshwater chemistry was built to combine all the BLM input variables, and three 117 

different models with a different number of input variables were proposed by the DNN. The 118 

most simplified model required only general water quality parameters, such as pH, DOC, and 119 

electrical conductivity, and could be used for copper BLM-based risk assessments using various 120 

monitoring datasets that are available worldwide.  121 

 122 

2.  Materials and methods 123 

2.1. Calculation of the BLM-based PNECs for copper  124 

A general formula for a copper BLM (the Daphnia magna BLM) is shown in Eq 1 [10]. 125 

According to the European Union Risk Assessment Report (EU-RAR) [11], the acute D. magna 126 

BLM was used as the chronic fish BLM as follows: 127 
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            (1) 128 

where �����
��%  is the fraction of the total number of copper-binding sites occupied by copper at the 129 

50% toxic effect, and � represents biotic ligand constants, such as  ����� , �	
��, ����� , ���� , 130 

������� (������� / �����), and �����	�� (�����	�� / �����). The formula for the chronic D. 131 

magna BLM is shown in Eq 2 [12].  132 
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To calculate the BLM-based PNEC in the training and test datasets, site-specific chronic toxicity 134 

values were calculated from toxicity data for 27 aquatic organisms provided by the EU-RAR 135 

[11] . The biotic ligand and inorganic stability constants for each BLM were applied to three 136 

taxonomic groups, algae, invertebrates, and vertebrates, and are shown in S1 Table. The BLM-137 

based PNECs were derived by applying an assessment factor of one to the fifth percentile value 138 

(HC5) in the species sensitivity distribution.  139 

 140 

2.2. Training and test datasets 141 

The training data for DNN model development were built by simulating BLM-based PNECs 142 

based on the combination of BLM input variables, including various water chemistry parameters. 143 

A monitoring database of Korean freshwater parameters was used to establish the domain range 144 

of the training dataset, in which real correlations between BLM input variables were taken into 145 

account. The combination of BLM variables was generated from the linear regressions between 146 

each variable, and the extent of the domain range was determined by a factor of five of the linear 147 

regression results.  148 

Monitoring databases for four ecoregions were used as test datasets. The Korean dataset 149 

contained 764 individual samples from the Han River, Guem River, Yeongsan River, and 150 

Seomjin River collected from a search of the Environmental Digital Library of the Ministry of 151 

Environment from 2014 to 2016 (https://library.me.go.kr). The Swedish dataset contained 4,639 152 

individual samples (999 river samples, 1,914 Malar Lake samples, and 1,726 tributary samples) 153 

collected from the Swedish river monitoring program of the Swedish University of Agricultural 154 

Sciences from 1997 to 2020 (https://www.slu.se/vatten-miljo). The United States dataset 155 

included 279 samples collected in the water monitoring datasets of the Oregon Department of 156 
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Environmental Quality Water Monitoring Data Portal (https://www.oregon.gov/deq/Data-and-157 

Reports/Pages/default.aspx) and included 84 samples collected from the draft technical support 158 

document of the United States Environmental Protection Agency (US EPA, 2016). The Belgian 159 

dataset contained 3,187 individual samples reported by Nys et al. (2018) [13]. 160 

 161 

2.3. The DNN models 162 

To estimate the BLM-based PNECs in the available monitoring dataset, an initial model that 163 

considered all BLM variables, a second model that required variables excluding alkalinity, and a 164 

third model using pH, DOC, and electrical conductivity were developed by a DNN. Optimization 165 

of the architecture of the DNN models, which is an artificial neural network composed of several 166 

hidden layers between an input layer and an output layer, was performed empirically. The 167 

numbers of layers and nodes, which are the main hyperparameters that determine the DNN 168 

architecture, were established to minimize the training and validation losses during a fixed period 169 

within the search range of hyperparameters, as shown in Table 1. A DNN is generally considered 170 

to have at least two hidden layers, and generalization is better with a feedforward neural network 171 

with two hidden layers than with one layer according to Thomas et al. (2017) [8]. In this study, 172 

the training and validation losses converged to low values when the input layer had three, five, or 173 

six nodes, the three hidden layers had 20, 15, or 10 nodes, and the output layer had one node. In 174 

addition, these losses decreased stably at a learning rate of 0.005. If the learning rate was 0.1, the 175 

losses did not decrease, and if it was less than 0.0001, the losses decreased slowly. The loss 176 

values for training were calculated as follows:  177 

!�"#����$%& '(�_*�+&� ,���� 
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                 (3) 178 

Losses are reduced more by the AdaMax algorithm, which is a variant of the AdaM algorithm 179 

based on the infinity norm, than by the AdaM algorithm and the stochastic gradient descent 180 

method [14]. The AdaMax algorithm extends the part of the algorithm that adjusts the learning 181 

rate based on the L2 norm in the AdaM algorithm to the Lp norm.  182 

Two different types of activation functions were considered for the DNNs. The sigmoid 183 

activation function has traditionally been used as a bounded and monotonically increasing 184 

differentiable function. As a remedy for vanishing gradients, the rectified linear unit (ReLU) 185 

function [15] has computational advantages over the sigmoid activation function, according to 186 

Schmidt-Hieber (2020) [16]. The training and validation losses were reduced more reliably when 187 

using the sigmoid function for the first and second hidden layers, and ReLU for the last hidden 188 

layer, than when using ReLU for all layers. The epoch, which is the number of iterations of the 189 

process of updating the neural network parameters to the loss decreases, was 20,000. For training 190 

the dataset, 70% of the randomly shuffled data were used for training and the remaining 30% for 191 

validation. The DNN models were implemented using Pytorch version 1.8.1 in Python v3.7 192 

software. 193 

 194 

2.4. Data Treatment and Statistics 195 

The HC5 for the derivation of PNEC for copper was calculated assuming a log-normal 196 

distribution of species sensitivity in the ETX 2.0 software [17]. Normality tests, such as the 197 

Anderson–Darling, Kolmogorov–Smirnov, and Cramer von Mises tests, were performed using 198 

ETX 2.0 software. A speciation model, such as the Windermere Humic Aqueous Model 7 199 

(WHAM), is required to estimate the site-specific free ion activities for copper and the major 200 
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cations in training and test datasets [18]. Some element-specific parameters were changed from 201 

WHAM-provided values to copper BLM-provided constants (S1 Table). Humic acid and fulvic 202 

acid, as input variables of the WHAM, were assumed to be 0.001% and 50% of the DOC 203 

concentration, respectively, according to the EU-RAR [11]. The predictive capacity of PNEC 204 

estimation tools, including the newly developed DNN models, was compared using the Akaike 205 

information criterion (AIC), residual standard error (RSE), and adjusted r2 value. All statistics 206 

were calculated using Python v3.5 software.  207 

MLR was performed to determine the appropriate electrical conductivity in the training dataset 208 

from the combination of BLM variables, i.e., Ca, Mg, Na, pH, and DOC. The most relevant 209 

BLM variables were selected for inclusion in the MLR function for electrical conductivity. The 210 

general formula for MLR was as follows:  211 

Electrical Conductivity � a � �� ·  ���������  � �� ·  ����������  �   �  �� ·  ����������   

            (4) 212 

The calculation was completed using a function in R (The R Project for Statistical Computing). 213 

Whether the predictive capacity of the MLR model was dependent on the type of BLM variable 214 

considered was determined by the AIC [19].  215 

 216 

3. Results  217 

3.1. The development of DNN model for the estimation of the BLM-based PNECs  218 

The DNN models were developed using the training data for the simulated BLM-based PNECs 219 

with various combinations of BLM input variables, in which the domain ranges of input 220 

variables reflected water chemistry monitoring data from the northern hemisphere. The real 221 

correlations among the BLM variables shown in S1 Fig were taken into account to establish the 222 
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domain range of the training dataset. The extent of these domain ranges was determined by a 223 

factor of five of the linear regression results between each variable. The Mg, Na, and K 224 

concentrations and alkalinity were generated from the correlations with Ca (Fig 1A). From the 225 

combination of these generated variables, only combinations within the domain range were 226 

selected to calculate the BLM-based PNEC for copper (Fig 1B). The pH and DOC ranges were 227 

5.5–9.9 and 0.1–50 mg L−1, respectively.  228 

The electrical conductivity estimation model for generating electrical conductivity values from 229 

the training dataset was developed by MLR with simplified BLM input variables, using three 230 

monitoring datasets (n = 5,682) for Korean, Swedish, and the United States freshwaters. Each of 231 

the three models required a different number of BLM variables. The first model considered five 232 

BLM variables (Ca, Mg, Na, alkalinity, and pH), the second model excluded pH, and the third 233 

model excluded pH and alkalinity. The S2 Table shows good agreement between the measured 234 

electrical conductivity and the electrical conductivity calculated by the three models (adjusted r2 235 

= 0.959–0.959). As a result, electrical conductivity values in the training dataset were generated 236 

using a simplified three-variable (Ca, Mg, and Na) model (Fig 1C).  237 

To develop an optimized PNEC estimation model based on an available monitoring dataset, the 238 

DNN(a) model that considered all BLM variables, the DNN(b) model that required all variables 239 

excluding alkalinity, and the DNN(c) model that used electrical conductivity as a surrogate of the 240 

major cations and alkalinity, were proposed. All of the different DNN models showed a sharp 241 

decrease in validation loss after approximately 1,000 epochs without overfitting and flattened out 242 

after 10,000 epochs (Fig 2). When the PNECs predicted by the DNN(a), DNN(b), and DNN(c) 243 

models within the training dataset were compared with the BLM-based PNECs, the adjusted r2 244 
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values were 0.994, 0.990, and 0.965, respectively. As a result, all of the DNN models used in this 245 

study were considered sufficiently trained until two constant losses occurred.  246 

 247 

3.2. Comparison of PNEC estimation tools with newly developed DNN models 248 

The four test datasets, Korean, United States, Belgian, and Swedish freshwaters, were used to 249 

evaluate the predictive capacity of the DNN models and the existing PNEC estimation tools. The 250 

differences in water chemistry properties among these four test datasets are shown in S2 Fig as a 251 

histogram of the frequency versus concentration of each variable. Korean freshwater had the 252 

lowest Ca and DOC concentrations (95th percentile: 16 mg Ca L−1 and 8.5 mg DOC L−1) and the 253 

highest pH (95th percentile: 8.9). Swedish freshwater had the lowest sodium concentration (95th 254 

percentile: 26 mg Na L−1), and Belgian freshwater had the lowest alkalinity (95th percentile: 13 255 

mg CaCO3 L−1). United States freshwater had the highest alkalinity (95th percentile: 169 mg 256 

CaCO3 L
−1). The application coverage of the DNN model for various water chemistry conditions 257 

was dependent on the range of variables in the simulated training dataset. This dataset was 258 

considered to be more broadly representative of the water chemistry range compared with the 259 

test datasets, and these results affected the predictive capacity of the DNN models (Fig 3).  260 

Evaluation of the predictive capacity of the three DNN models in this study and comparison of 261 

the results with those obtained by existing tools were performed for four ecoregions (test 262 

datasets), and the results are shown in Table 2. For Korean freshwater, comparison of the 263 

predictive capacity among the PNEC estimation models is shown in Fig 4. The DNN(a) model 264 

provided good predictions (adjusted r2 = 0.987, p < 0.01). The DNN(b) and DNN(c) models 265 

provided predictions similar to those of DNN(a) (adjusted r2 = 0.968 and 0.978, respectively, p < 266 

0.01). Among the existing models, PNEC-pro provided less reliable predictions (adjusted r2 = 267 
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0.537, p < 0.05), whereas Bio-met and mBAT provided good predictions (adjusted r2 = 0.904 and 268 

0.937, p < 0.01).  269 

For Swedish freshwater, a comparison of the predictive capacity between the PNEC estimation 270 

models is shown in Fig 5. The DNN(a) model also provided good predictions (adjusted r2 = 271 

0.974, p < 0.01). The coefficients of determination of the DNN(b) and DNN(c) models were 272 

similar (adjusted r2 = 0.872 and 0.885, respectively, p < 0.01), and were lower than those of 273 

DNN(a). For the existing models, the coefficients of determination were lower than 0.7 (adjusted 274 

r2 = 0.670 for Bio-met, 0.529 for PNEC-pro, and 0.516 for mBAT, p < 0.05).  275 

For United States freshwater, a comparison of the predictive capacity among the PNEC 276 

estimation models is shown in Fig 6. The three DNN models provided good predictions (adjusted 277 

r2 = 0.989 for DNN(a), 0.974 for DNN(b), and 0.975 for DNN(c), p < 0.01). Among the existing 278 

tools, Bio-met and mBAT provided good predictions (adjusted r2 = 0.929 and 0.926, respectively, 279 

p < 0.01), whereas PNEC-pro provided less reliable predictions (adjusted r2 = 0.421, p < 0.05).  280 

For Belgian freshwater, a comparison of the predictive capacity among the PNEC estimation 281 

models is shown in Fig 7. The coefficients of determination of the three DNN models and Bio-282 

met were > 0.9 (adjusted r2 = 0.972 for DNN(a), 0.95 for DNN(b), 0.954 for DNN(c), and 0.93 283 

for Bio-met, p < 0.01). The mBAT also provided good predictions (adjusted r2 = 0.873, p < 0.01), 284 

whereas PNEC-pro provided less reliable predictions (adjusted r2 = 0.273, p < 0.05).  285 

Consequently, all PNEC estimation models based on the DNN method provided good 286 

predictions in the four ecoregions (Table 2). The DNN(a) model using all BLM input variables 287 

had the lowest AIC and RSE values and the highest adjusted r2. The DNN(c) model using the 288 

variables of electrical conductivity, pH, and DOC had the second lowest AIC and RSE values 289 
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and the second highest adjusted r2. The DNN(b) model using five BLM variables (excluding 290 

alkalinity) also provided good predictions, which were very similar to those of DNN(c).  291 

Among the existing PNEC estimation tools, the lowest AIC and highest adjusted r2 values were 292 

obtained for Bio-met, based on the look-up table method, while the second lowest AIC and 293 

second highest adjusted r2 were obtained for mBAT, based on a multivariate polynomial function 294 

with interaction terms. Compared with the other models, PNEC-pro, based on MLR, had a less 295 

reliable predictive capacity for the test datasets.  296 

 297 

4. Discussion 298 

4.1. The development of DNN model for the estimation of the BLM-based PNECs  299 

To develop an optimized PNEC estimation model based on available monitoring datasets, the 300 

DNN(a) model that considered all BLM variables, the DNN(b) model that required all variables 301 

excluding alkalinity, and the DNN(c) model that used electrical conductivity as a surrogate of the 302 

major cations and alkalinity were proposed. These three types of BLM-based PNEC estimation 303 

models, using training dataset with various water chemistries, were developed by a DNN to 304 

optimize the prediction of nonlinear relationships between input variables (explanatory variables) 305 

and BLM-based PNECs (dependent variables). The learning result of the DNN(a) model was 306 

predicted to be within a factor of two of that of the BLM-based PNEC for 100% of the data in 307 

the training dataset (n = 107,712) (Fig 2). This was an expected result because the DNN used for 308 

model development was a universal approximation function and was the result of the excellent 309 

learning of nonlinear relationships based on large amounts of simulated data. Because simulation 310 

data with full coverage of the domain of input variables were used as the training dataset, there 311 

was no need to use additional validation and test datasets. The learning results of the DNN(b) 312 
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and DNN(c) models were predicted to be within a factor of two of the BLM-based PNECs for 313 

98.5% and 88.3% of the data, respectively.  314 

Among the existing PNEC estimation tools, mBAT was developed using a multivariate 315 

polynomial function to predict the nonlinear relationships between input variables (pH, DOC, 316 

and Ca) and the BLM-based PNECs for copper [4]. Although two functions were proposed for 317 

Ca (> and < 6 mg L−1) to counteract low Ca concentrations, the validation results of the 318 

prediction accuracy for PNECs within the dataset used for development have not been described. 319 

PNEC-pro was developed by a simple MLR using monitoring data (n = 241) from the 320 

Netherlands and provides validation results for the prediction accuracy (adjusted r2 = 0.882) [5]. 321 

After determining the MLR function from the learning data of this study, the validation results 322 

are shown in S3 Fig. The adjusted r2 value was 0.838, which was lower than that of the DNN 323 

models (adjusted r2 = 0.965 for DNN(c) using three variables, Fig 2C). As a result, the DNN 324 

models including the most simplified model can be considered the most appropriate method to 325 

optimize the prediction of the nonlinear relationship between the required input variables and the 326 

BLM-based PNECs in a large training dataset reflecting water chemistry monitoring data from 327 

the northern hemisphere.  328 

 329 

4.2. Comparison of existing PNEC estimation tools with newly developed DNN models 330 

A copper BLM-based PNEC has been proposed in Europe and the United States for 331 

environmental risk assessment, taking into account the site-specific bioavailability of copper [11, 332 

19]. To derive the BLM-based PNEC, monitoring datasets including all BLM input variables (pH, 333 

DOC, major cations, and alkalinity) are essential for estimating water chemistry speciation, such 334 

as the activity of free copper ions, copper speciation, and major cations. However, these datasets 335 
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are available only in a few regions, such as the United States and Europe. Because some BLM 336 

variables may be missing from available datasets, several methods have been proposed to 337 

estimate the values of the missing variables [6, 9].  338 

To simulate the derivation of BLM-based PNECs that require all of these input variables, 339 

simplified and user-friendly PNEC estimation tools using a reduced number of variables (e.g., 340 

Bio-met, mBAT, and PNEC-pro) have been proposed [3-5]. Among these tools, the minimum 341 

data requirements for Bio-met and mBAT are pH, DOC, and Ca. pH affects copper toxicity in 342 

aquatic organisms and is routinely measured in field samples using a variety of water quality 343 

measurement instruments. DOC in freshwater can bind copper and reduce the interaction 344 

between free copper ions and aquatic organisms. Non-linear relationships among pH, copper 345 

toxicity, and the binding properties of DOC have been reported in EU-RARs [11]. Although the 346 

Ca concentration or hardness is a less influential variable than pH and DOC, it is a more 347 

statistically effective variable for PNEC than other cations and alkalinity [5]. In addition, it has 348 

been reported that an increase in the Ca concentration does not result in an increase in PNEC [9]. 349 

However, it may or may not be included as a general water quality variable in regulatory 350 

monitoring databases. Therefore, Bio-met and mBAT, which only require the concentration of Ca 351 

among the major cations, do not significantly broaden the ecoregion where a BLM-based risk 352 

assessment can be applied. Because Ca, Mg, and Na are monitoring variables that can be 353 

measured by the same analyzer in one sample, it may be more efficient to improve the predictive 354 

capacity by using the concentrations of all available major cations. In PNEC-pro, if Ca is not 355 

considered an input variable, the accuracy (adjusted r2) is less than 0.8 [5].  356 

As a result, to apply a BLM-based risk assessment over a wider ecoregion, the major cations 357 

should be excluded from the minimum data requirements, and surrogate variables contributing to 358 
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the good predictions for the BLM-based PNEC are required. In this study, electrical conductivity 359 

was considered a surrogate of the major cations and alkalinity. Electrical conductivity is typically 360 

included as a water quality variable in general regulatory water quality-monitoring databases. 361 

Electrical conductivity is one of the variables recommended for estimating the concentrations of 362 

missing BLM variables via its linear relationships with BLM variables [6, 7].   363 

In the test datasets (four ecoregions), PNEC predictions were less reliable by the existing PNEC 364 

estimation tools than by the three different DNN models (Table 2). This was likely because the 365 

training datasets used for the development of each existing tool were not sufficiently 366 

representative of the different water chemistries, and the statistical and look-up table methods 367 

used for PNEC estimation provided limited predictive capacities for the nonlinear relationships 368 

between PNEC and BLM variables. Therefore, in this study, a training dataset representative of 369 

various freshwater chemistries was built for the DNN models. Its subsequent use resulted in a 370 

wide range of applications and good predictive capacity.  371 

To design a representative training dataset, the frequencies of each BLM input variable and their 372 

relationships were investigated in the Korean freshwater monitoring database (S1 Fig). The 373 

domain ranges for water chemistry variables were determined from the abovementioned results 374 

(Fig 1). The pH conditions were generated as continuous values rather than multiple level 375 

conditions with intervals because pH was the only variable that had a non-linear relationship 376 

with PNEC. Another 9,792 combinations of Ca, Mg, Na, K, alkalinity, and DOC were generated 377 

assuming the same pH. Then 9,792 continuous pH variations were generated within the pH 378 

condition interval. These values were randomly arranged and added to the combined data of 379 

other variables.  380 
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The datasets used to develop the existing tools did not cover the full domain range of BLM input 381 

variables. For the mBAT training dataset, the Mg and Na concentrations and alkalinity were 382 

determined by Ca according to Peters et al. (2011) [9] and therefore consisted of a combination 383 

of only three variables: pH, DOC, and Ca. For the Bio-met training dataset, the Mg concentration 384 

was considered to be Ca-dependent, the Na concentration was considered to be dependent on 385 

four other factors, and alkalinity was determined to be dependent on pH as well as three other 386 

factors. The pH conditions of Bio-met were determined at 21 levels ranging from 6.0 to 8.5, 387 

while mBAT did not describe the pH conditions in detail. PNEC-pro, which was developed using 388 

monitoring data rather than simulation data, requires data from a wider ecoregion than just the 389 

Netherlands, the basis of its development.  390 

To generate electrical conductivity data for the training dataset in this study, the use of MLR-391 

based models to estimate electrical conductivity from BLM input variables has been proposed. 392 

To develop these models, the monitoring datasets from Korea, the United States, and Sweden 393 

were used because they included all BLM input variables and electrical conductivity. The final 394 

estimation model for electrical conductivity using Ca, Mg, and Na in Table 2 had a good 395 

predictive capacity, within a factor of two for 99.2% of the electrical conductivity data measured 396 

in the three ecoregions (n = 5,682) (S4 Fig). As a result, because the range of water chemistry 397 

data in the final training dataset with electrical conductivity covered the ranges of BLM input 398 

variables in the four test datasets (Korean, Swedish, United States, and Belgian freshwaters), it 399 

was considered to be sufficiently representative of the freshwater chemistry (Fig 3).  400 

Better predictions of the copper PNECs were obtained from the three different types of DNN 401 

models trained and validated using the representative simulation training dataset than from the 402 

existing tools in the four test datasets (Korean, United States, Swedish, and Belgian freshwaters). 403 
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The adjusted r2 values were higher than 0.95 in all but the Swedish freshwater dataset. Although 404 

the minimum adjusted r2 value in Swedish freshwater was 0.87, it was higher than the results 405 

obtained using the existing tools. The use of reduced input variables for the DNN(b) and DNN(c) 406 

models in Swedish freshwater, which had a lower pH and major cation concentration compared 407 

with the other regions, was probably why the adjusted r2 values (0.87 and 0.89, respectively) 408 

were lower than the value of 0.97 obtained with the DNN(a) model using all BLM variables (S2 409 

Fig).  410 

The mBAT and PNEC-pro predictions were less accurate than those of the DNN models, 411 

indicating that general statistical methods (multivariate polynomial regression and MLR) were 412 

not sufficient for predicting the nonlinear relationships between input variables and PNECs. A 413 

look-up table method, such as Bio-met, was expected to have a higher predictive capacity when 414 

used as the training dataset in this study, while the PNEC calculation performed in Excel 415 

required a considerable amount of time. The water chemistry conditions did not match the 416 

conditions in the training dataset, and its prediction accuracy was expected to be lower than that 417 

calculated by the DNN.  418 

An important finding was the similar prediction accuracy in the test datasets of the three DNN 419 

models using different types of input variables to develop optimized PNEC estimation models 420 

depending on the available monitoring datasets. This means that even with reduced input 421 

variables, a good prediction capacity can be expected by a DNN model that includes the key 422 

input variables for a BLM. In particular, the DNN(c) model, which was selected as the most 423 

simplified surrogate tool, was shown to have a predictive capacity similar to that of the DNN(a) 424 

model, which provided the best prediction. Electrical conductivity played an important role as a 425 

variable acting as a surrogate for the major cations and alkalinity. Although there is further scope 426 
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to reduce the uncertainty in the predicted PNECs by the DNN(c) model at a low pH and Ca 427 

concentration, such as in the Swedish freshwater, it is necessary to assess the environmental risk 428 

for copper using DNN(a) from all measured input variables. Consequently, according to the 429 

variables in the available monitoring databases, the most applicable model could be selected 430 

from among the three DNN models.  431 

It is possible to reduce the uncertainty in the BLM-based PNECs estimated by the final surrogate 432 

tool in a specific region using a monitoring database containing the concentration of total organic 433 

carbon (TOC) rather than DOC. Both electrical conductivity and pH can be measured in field 434 

samples using commonly available water quality instruments and are included in most regulatory 435 

monitoring databases. The organic carbon concentration in freshwater is usually measured as 436 

TOC in monitoring databases unless the database is used for the purpose of bioavailability-based 437 

risk assessments. Among the test datasets in this study, the datasets from Korea, the United States, 438 

and Belgium included DOC concentrations for bioavailability-based risk assessments. The DOC 439 

concentration in the Swedish dataset was estimated by applying the 0.8 ratio, which is the 440 

simplest method of estimating DOC from TOC concentrations [11, 20]. However, the DOC 441 

concentration in Korean rivers is 64.3–79% of the TOC concentration, according to Kim et al. 442 

(2007) [21]. For surface waters in Poland and Germany, the DOC concentration range was 80–92% 443 

of the TOC concentration [22]. Thus, the observed DOC may be used to reduce the uncertainty 444 

of the BLM-based PNEC estimated using a surrogate tool.  445 

 446 

5. Conclusion 447 

This study developed three different types of DNN models, each requiring different input 448 

variables, which provide better predictions of the BLM-based PNECs for copper than existing 449 
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PNEC tools in various ecoregions. The most applicable model among the three DNN models can 450 

be selected according to the available variables in monitoring databases. Furthermore, it is 451 

expected that the most simplified DNN model, using only general water quality variables (pH, 452 

DOC, and electrical conductivity), will enable the copper BLM-based risk assessment to be 453 

applied to monitoring datasets worldwide.  454 

 455 
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List of figures: 568 

Fig 1. Domain range of input variables in the training dataset used for the development of DNN 569 

(deep neural network-based) models as PNEC estimation tools. The dashed lines indicate a factor 570 

of five from the linear relationships between variables in Korean freshwaters. The first generated 571 

data (cross) are shown in Panel A. The selected data (cross) from the generated data and with the 572 

data removed (triangles) outside the domain range are shown in Panel B. The generated electrical 573 

conductivity data (cross) added to the selected data are shown in Panel C.  574 

Fig 2. The training and validation results for the DNN(a) model with all BLM variables (A), 575 

DNN(b) with all BLM variables except alkalinity (B), and DNN(c) with the three variables of 576 

pH, DOC, and electrical conductivity (C). The average loss per epoch for the training and 577 

validation steps is shown in the right panels. The validation for the three different types of DNN 578 

models within the training dataset is shown in the left panels. The blue solid line indicates loss 579 

per epoch for training steps, and the red dashed line indicates loss per epoch for validation steps. 580 

The black solid line indicates a perfect match between the simulated and predicted BLM-based 581 
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PNECs. The black dotted line indicates an error of a factor of two between simulated and 582 

predicted BLM-based PNECs. Adj. r2 = adjusted r2 value. 583 

Fig 3. Radar chart showing the ratios of pH and log10 values (different BLM input variables) of 584 

four different test datasets to those of the training dataset. The BLM input variables in the 585 

training dataset are marked by light shading. The BLM variable ratios in the test datasets are 586 

marked as the 95th percentile within the test datasets by dark shading. Train = training dataset; 587 

KR = Korean freshwater; BEL = Belgian freshwater; US = United States freshwater; SWE = 588 

Swedish freshwater. 589 

Fig 4. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 590 

Korean freshwater. The BLM-based PNECs were derived from 764 individual samples collected 591 

in 2014, 2015, and 2016. Panels A, B, and C show PNECs (plus) estimated by the deep neural 592 

network-based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, and F show 593 

PNECs (open circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = 594 

adjusted r2 value. 595 

Fig 5. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 596 

Swedish freshwater. The BLM-based PNECs were derived from 4,639 individual samples (999 597 

river samples, 1,914 Malar Lake samples, and 1,726 tributary samples) collected in the Swedish 598 

river monitoring program of the Swedish University of Agricultural Sciences from 1997 to 2020. 599 

Panels A, B, and C show PNECs (plus) estimated by deep neural network-based DNN(a), 600 

DNN(b), and DNN(c), respectively. Panels D, E, and F show PNECs (open circle) estimated by 601 

Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = adjusted r2 value. 602 

Fig 6. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 603 

United States freshwater. The BLM-based PNECs were derived from 363 samples collected by 604 
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the Oregon Department of Environmental Quality Water Monitoring Data Portal and the 605 

National Waters Information System. Panels A, B, and C show PNECs (plus) estimated by the 606 

deep neural network-based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, 607 

and F show PNECs (open circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. 608 

Adj. r2 = adjusted r2 value. 609 

Fig 7. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 610 

Belgian freshwater. The BLM-based PNECs were derived from 3,187 individual samples 611 

collected by Nys et al. (2018). Panels A, B, and C show PNECs (plus) estimated by the deep 612 

neural network-based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, and F 613 

show PNECs (open circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = 614 

adjusted r2 value. 615 
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Fig 4  661 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460690
http://creativecommons.org/licenses/by/4.0/


33 

 

 662 

 663 

 664 

 665 

 666 

Fig 5 667 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460690
http://creativecommons.org/licenses/by/4.0/


34 

 

 668 

 669 

 670 

 671 

 672 
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Fig 7 679 
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Table 1. Ranges for deep learning hyperparameter optimization and hyperparameter 685 

configuration.  686 
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Hyperparameter Value 
Search range 
 

Learning rate 0.005 0.1, 0.01, 0.005, 0.001, 0.0005 

Optimization method AdaMax AdaM, AdaMax, SGD 

Number of hidden layers 3 1, 2, 3, 5 

Number of hidden units {20, 15, 10} {20, 15, 10}, {64, 128, 32} 

Activation functions of 
hidden layers 

{sigmoid, sigmoid, ReLU} 

{Sigmoid, Sigmoid, Sigmoid},  
{Sigmoid, Sigmoid, ReLU}, 
{ReLU, ReLU, Sigmoid},  
{ReLU, ReLU, ReLU} 

Batch size Maximum Maximum 

Number of epochs 20,000 500–40,000 

SGD = stochastic gradient descent; ReLU = rectified linear unit 687 
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Table 2. Comparison of newly developed deep neural network models with the existing 701 

predicted no-effect concentration estimation tools  702 
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Model Method Training 
dataset 

Input variable Test 
dataset 

Adj. r2 AIC RSE 

DNN(a) Deep  Simulation  pH, Ca, Mg,  Korea 0.987 −1419 0.056 

 neural  data Na, DOC, US 0.988 −690 0.044 

 network (n = 107,712) Alkalinity Sweden 0.974 −7315 0.035 

    Belgium 0.972 −4924 0.053 

DNN(b)   pH, Ca, Mg,  Korea 0.968 −1125 0.078 

   Na, DOC US 0.974 −565 0.065 

    Sweden 0.872 −4133 0.070 

    Belgium 0.950 −4138 0.086 

DNN(c)   pH, DOC,  Korea 0.978 −1255 0.069 

   EC US 0.975 −573 0.090 

    Sweden 0.885 −4348 0.073 

    Belgium 0.954 −4257 0.068 

Bio-met Look-up Simulation  pH, DOC,  Korea 0.903 −766 0.125 

 table data Ca US 0.928 −408 0.109 

  (n = 23,054)  Sweden 0.670 −2228 0.125 

    Belgium 0.930 −3674 0.082 

mBAT Multivariate  Simulation  pH, DOC,  Korea 0.937 −909 0.107 

 polynomial  data Ca US 0.925 −402 0.119 

 function (n = 8,400)  Sweden 0.516 −1456 0.159 

    Belgium 0.873 −2848 0.110 

PNEC Multiple  Measured DOC Korea 0.534 −243 0.346 

-pro linear  data in (pH, Ca,  US 0.413 −74 0.407 
 regression Netherland Mg, Na) Sweden 0.528 −1504 0.138 
  (n = 241)  Belgium 0.271 −428 0.261 

EC = electrical conductivity; Adj. r2 = adjusted r2 value; AIC = Akaike information criterion; 703 

RSE = residual standard error. 704 
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