1	
2	
3	A machine learning model that emulates experts' decision making in vancomycin
4	initial dose planning
5	
6	Tetsuo Matsuzaki, Yoshiaki Kato, Hiroyuki Mizoguchi, and Kiyofumi Yamada *
7	
8	Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi,
9	466-8560, Japan
10	
11	Running title: A prediction model for vancomycin dosing
12	
13	
14	* Corresponding author: Kiyofumi Yamada
15	Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi,
16	466-8560, Japan
17	
18	E-mail: kyamada@med.nagoya-u.ac.jp
19	Phone: +81-052-744-2674
20	Fax: +81-052-744-2979
21	

22 Abstract

24	Vancomycin is a glycopeptide antibiotic that has been used primarily in the treatment of
25	methicillin-resistant Staphylococcus aureus infections. To enhance its clinical effectiveness
26	and prevent nephrotoxicity, therapeutic drug monitoring (TDM) of trough concentrations is
27	recommended.
28	Initial vancomycin dosing regimens are determined based on patient characteristics such as
29	age, body weight, and renal function, and dosing strategies to achieve therapeutic
30	concentration windows at initial TDM have been extensively studied. Although numerous
31	dosing nomograms for specific populations have been developed, no comprehensive
32	strategy exists for individually tailoring initial dosing regimens; therefore, decision making
33	regarding initial dosing largely depends on each clinician's experience and expertise.
34	In this study, we applied a machine-learning (ML) approach to integrate clinician
35	knowledge into a predictive model for initial vancomycin dosing. A dataset of vancomycin
36	initial dose plans defined by pharmacists experienced in vancomycin TDM (i.e., experts)
37	was used to build the ML model. The target trough concentration was attained at
38	comparable rates with the model- and expert-recommended dosing regimens, suggesting

- that the ML model successfully incorporated the experts' knowledge. The predictive model
- 40 developed here will contribute to improved decision making for initial vancomycin dosing
- 41 and early attainment of therapeutic windows.
- 42
- 43 Keywords: Machine learning, Vancomycin, Initial dosing regimen, TDM
- 44
- 45

46 Introduction

48	Vancomycin is a glycopeptide antibiotic that has been in clinical use for more than 50 years,
49	primarily for the treatment of methicillin-resistant Staphylococcus aureus (MRSA)
50	infections (1). To maximize its clinical effectiveness and avoid nephrotoxicity, therapeutic
51	drug monitoring (TDM) is recommended. The ratio of the vancomycin area under the
52	concentration-time curve (AUC) to the minimum inhibitory concentration (MIC),
53	AUC/MIC, is a primary predictor of vancomycin effectiveness. However, since it is
54	challenging to determine the AUC due to the need to obtain multiple serum vancomycin
55	concentrations, it is recommended to monitor the trough serum concentration, which is
56	considered to be the most accurate and practical surrogate marker for the AUC (1). The
57	trough concentration of vancomycin should be above 10 mg/L and below 20 mg/L to avoid
58	development of resistance and nephrotoxicity, respectively (1–3). Thus, the therapeutic
59	range for vancomycin trough levels is 10–20 mg/L, while several guidelines have
60	recommended vancomycin trough levels of 15–20 mg/L for serious invasive MRSA
61	infections such as sepsis (4, 5).

62	Initial vancomycin dosing consists of a single loading dose followed by a series of
63	maintenance doses; the usual loading dose and maintenance dose are 25-30 mg/kg and 15-
64	20 mg/kg, respectively (4). Loading and maintenance doses are adjusted for patient
65	characteristics such as age, gender, body weight (BW), and renal function. In clinical
66	practice, initial dosing is calculated using population pharmacokinetic parameters, and
67	numerous population pharmacokinetic studies of vancomycin have been conducted to
68	develop nomograms designed to achieve therapeutic trough concentrations at initial TDM
69	(6-8). However, because these nomograms were constructed and validated within specific
70	populations, their robustness to population change is limited. To date, there is no
71	comprehensive strategy for individually optimized initial dosing, and vancomycin dosing
72	decisions are often made based on clinicians' experience and expertise (hereafter, prior
73	knowledge) (7, 9, 10). In a recent survey in the United States and Canada, many healthcare
74	institutions indicated that institutional-level credentialing or training was important to
75	achieve appropriate vancomycin TDM (11). Indeed, several studies demonstrated that
76	initial dose planning by pharmacists engaged in vancomycin TDM could lead to higher
77	target attainment rates, emphasizing the importance of prior knowledge when conducting
78	vancomycin dose planning (12, 13).

79	Machine learning (ML) algorithms promote the discovery of new techniques and improve
80	decision making on specific questions involving abundant and multi-dimensional data, and
81	they have emerged as a promising approach for medical research and clinical care.
82	Advances in ML have facilitated the discovery of new biomarkers and mutations related to
83	prognosis, and also the development of automated diagnosis tools (14). Recently, ML
84	approaches have also been used in the field of TDM. Imai and colleagues utilized an ML
85	approach to build a nomogram for initial vancomycin dosing using a dataset of patients
86	treated with vancomycin (6). A study by Huang et al. applied variable engineering and ML
87	methods that enabled integration of high-dimensional data to build a predictive model for
88	maintenance dosing (15).
89	Given the importance of prior knowledge in vancomycin dose planning, here we sought to
90	integrate such knowledge into an ML model for initial vancomycin dosing. Toward this
91	goal, we used a dataset of vancomycin initial dosing regimens that were defined by
92	pharmacists experienced in TDM (hereafter, TDM experts). This straightforward approach
93	yielded a predictive model that reproduces regimens defined by TDM experts. Notably, a
94	therapeutic window was achieved at a similar rate using ML- and expert-recommended

95 dosing regimens, whereas a previously developed ML model failed to predict dosing

96 regimens that attained a therapeutic window (6).

97 Materials and methods

98

99 Study subjects

100

101 This was a single-center, retrospective, observational study of hospitalized patients who 102 received intravenous vancomycin from May 2017 to May 2021 at Nagoya University 103 Hospital. TDM experts were defined as pharmacists who were either (i) engaged in 104 vancomycin TDM or (ii) capable of conducting vancomycin initial dose planning with 105 similar success as the pharmacists defined in (i). Patients who commenced vancomycin 106 treatment with TDM expert-recommended dosing during the study period were included. 107 The exclusion criteria were as follows: under 18 years of age; undergoing peritoneal 108 dialysis or hemodialysis (including continuous hemodiafiltration); receiving multiple 109 loading doses; diagnosed with amyotrophic lateral sclerosis (ALS); and missing data on 110 gender, age, BW, body mass index (BMI), or serum creatinine. 111 Thirteen patients received two courses of vancomycin treatment with pharmacist-designed 112 initial dosing regimens. In this group, each regimen was independently designed based on 113 patient characteristics at start of vancomycin treatment, and therefore we included each of

114 these patients as two cases in the study dataset.

115

116 **Building of the ML model**

117

118 The dataset used in this study included clinical and routine laboratory data, initial dosing 119 regimens, and serum vancomycin concentrations at initial TDM (if measured). Age, gender, 120 BW, BMI, and creatinine clearance (CL_{CR}) calculated by the Cockcroft-Gault equation 121 were used as parameters to predict initial dosing regimens (including loading and 122 maintenance doses), because we routinely estimated individualized dosing regimens based 123 on these data, as recommended by previous studies (10, 16). The dataset (n = 106) was 124 divided into training and testing datasets in a ratio of 84:22 (approximately 80:20). 125 We developed an ML model by applying random forest (RF) classification to the dataset 126 (see the schematic diagram in Fig. 1). An RF is an ensemble of classification (decision) 127 trees that are generated by sampling data and features in the training dataset (17). 128 Prediction is based on a simple majority vote by decision trees. A hyperparameter is a 129 parameter that affects how well a model is trained, and it therefore controls the model 130 performance. In the RF technique, hyperparameters include the number of decision trees

131 (n_estimator) and the maximum depth of the trees (max_depth) (18).

132	K-fold cross-validation was applied on RF classification to select the most appropriate
133	value of each hyperparameter (n_estimator and max_depth) (19). In this process, the dataset
134	of a training group was further divided into two groups, a training-validation set and a
135	testing-validation set, in the ratio of 67:17 (approximately 80:20) using the five-fold
136	cross-validation method (Fig. 2). The models were then built, and the accuracy scores,
137	which were defined as the ratios of correct predictions to the total number of predictions,
138	were measured in each training-validation/testing-validation set, and the mean accuracy
139	score was recorded. This process was repeated with each pair of hyperparameters
140	(n_estimator: 10, 20, 40, 80, and 160; max_depth: 2, 4, 8, 16, and 32), resulting in
141	optimized hyperparameters that achieved the highest mean accuracy score.
142	Next, we developed the prediction model with optimized hyperparameters. Feature
143	importance, which represents relative importance in terms of the accuracy of the model,

- 144 was estimated during training phase (18).
- 145 Lastly, we evaluated the performance of the predictive model on the testing data. Accuracy
- 146 scores for loading doses and maintenance doses were used to evaluate the model.
- 147

148 Estimation of trough concentrations with the ML model-recommended dosing

149 regimen

150

151	Testing data that included serum vancomycin concentrations were used to estimate
152	vancomycin trough concentrations with the ML model-recommended dosing regimen. In
153	this analysis, we excluded cases in which dosing regimens were changed before initial
154	TDM or in which TDM was conducted after just a single loading dose. We also excluded
155	patients who developed vancomycin-associated acute kidney injury (AKI), which was
156	defined as an increase in the serum creatine level of 0.5 mg/dL or a 50% increase from
157	baseline in at least two consecutive measurements, as is consistent with other studies of
158	vancomycin TDM (20, 21). The trough concentration with the ML model-recommended
159	regimen was estimated using the following equation:

160

Estimated concentration

= Actual concentration $\times \frac{\text{Daily maintenance dose with model regimen}}{\text{Daily maintenance dose with expert regimen}}$

161

162 Comparison between the current ML model and the previous ML model reported by Imai

163 and colleagues was performed in patients with a $BW \ge 40$ kg and an estimated glomerular filtration rate (eGFR) \geq 50 mL/min, because the latter model was validated in this 164 165 population (6). 166 167 Statical analysis 168 We used the Mann-Whitney test for continuous data, and Fisher's exact test or the 169 170 chi-square test for categorical data. All statistical tests were two-tailed, and p values of less 171 than 0.05 were considered statistically significant except in multiple testing (Table 5), 172 where significance was adjusted by Bonferroni correction. Statistical analyses were 173 performed using the Python statistics module. 174 175 **Ethics** 176 177 This study was approved by the ethics committee of Nagoya University Hospital (Approval 178 No. 2021-0189).

```
179 Results
```

180

181 **Patient characteristics**

183	During the study period, there were 140 cases in 127 patients, with cases defined as
184	instances in which initial dosing regimens of vancomycin were determined by TDM experts.
185	Of these, 16 cases were in patients under 18 years of age, 14 were in patients undergoing
186	peritoneal dialysis or hemodialysis, and two were in patients who received multiple loading
187	doses; all of these cases were excluded from this study. One patient whose BMI value was
188	missing and one patient with ALS were also excluded. The remaining 106 cases in 97
189	patients were included.
190	The target attainment rate at initial TDM was 71.1% in the total population, which was
191	comparable to the rates reported in another study of expert (pharmacist)-managed
192	vancomycin TDM (64.3%) (12), thus validating our initial dose planning (Table 1). Eligible
193	cases were randomly assigned to a training group and a testing group in the ratio of 84:22
194	(approximately 80:20). Overall, patient characteristics in the training and testing groups
195	were well balanced (Table 1).

196

197 Building an ML model to determine the initial vancomycin dose

198

199	Next, we sought to build an ML model for predicting individually tailored vancomycin
200	dosing regimens to achieve the therapeutic window. To this end, we first optimized the
201	hyperparameters for RF classification, then built a predictive model with optimized
202	hyperparameters (Fig. 2). Individual features were ranked based on their relative
203	importance to the accuracy of the model. For loading doses, BW was ranked as the most
204	important feature, followed by CL_{CR} , BMI, age, and gender, while for maintenance doses,
205	CL _{CR} was the most important feature, followed by BW, BMI, age, and gender (Fig. 3).
206	
207	ML model evaluation
208	

Next, we examined whether the ML model generated the same dosing regimen as TDM experts. Table 2 summarizes the performance of the model on the testing dataset. The accuracy scores for loading and maintenance doses were both 63.6% (Table 3). For loading doses, the differences in doses between the expert- and ML model–recommended regimens

213 fell within the range of 50–150%. For maintenance doses, there were two cases in which 214 the differences in doses were larger than two-fold (cases no. 6 and no. 18). The rate of 215 achieving a therapeutic window with ML model-recommended regimens was estimated to 216 be 73.3%, which was comparable to that with expert-recommended regimens (80.0%, p = 217 1.0; Tables 2 and 4). 218 Lastly, we compared the target attainment rates of our predictive ML model and the ML 219 model developed by Imai and colleagues (6). Because the latter model was validated in 220 patients with a BW \ge 40 kg and eGFR \ge 50 mL/min, we compared cases that met these 221 criteria. In this group, the target attainment rates of the expert- and ML model-222 recommended regimens were 83.3% and 75.0%, respectively, again with no significant 223 difference (p = 1.0; Tables 2 and 5). Importantly, the target attainment rate of regimens 224 recommended by the previous ML model was much lower, at only 33.3%; this indicates the 225 poor ability of that model to predict appropriate dosing regimens, at least using the current 226 testing dataset. However, it should be noted that the differences in target attainment rates 227 compared to our expert- and ML model-recommended regimens did not reach statistical significance (p = 0.0361 and 0.0995, respectively. Note that significance was set at 0.0167 228 229 after Bonferroni correction).

230 Discussion

231

246

232 Although considerable effort has been made to develop population-specific dosing 233 nomograms for vancomycin, strategies to determine individually optimized initial dosing 234 regimens remain controversial. In practice, decision making about initial dose planning 235 depends on each clinician's experience regarding the clinical assessment of renal function 236 and the determination of which dosing nomograms to use. 237 Here, we sought to build an ML model that emulates experts' decision making concerning 238 initial vancomycin dosing. Toward this end, subjects were limited to those who received an 239 initial dosing regimen defined by TDM experts. In contrast with the previous study of Imai 240 et al. (6), we did not exclude patients with a low BW (< 40 kg) or renal dysfunction (eGFR 241 < 50 mL/min) due to the prevalence of such patients and our desire to assess the robustness 242 of the model to changes in patient characteristics. 243 Feature importance was largely consistent with predictive covariates conventionally used to 244 determine appropriate dosing regimens: BW and CL_{CR} were the most important features for 245 loading and maintenance doses, respectively (10, 22). Although loading doses are generally

determined based on actual BW, our results indicate that CL_{CR} is also a key feature for

predicting loading dose (23). This reflects adjustment of loading doses based on renalfunction, which has been proposed in recent studies (7, 10).

249 Our ML model scored 63.6% in testing accuracy for both loading and maintenance doses.

- 250 These modest accuracy scores may have been due to the difficulty of multi-class
- 251 classification tasks (24); in the current dataset (n = 106), there were six and nine classes
- 252 (doses) of loading and maintenance doses, respectively (data not shown). In addition, the
- 253 fact that this study had a relatively small dataset (n = 106), which generally leads to
- 254 overfitting, may have further contributed to a decrease in predictive accuracy (25).

255 The target attainment rates were similar for our expert- and ML model-recommended 256 regimens (80.0% and 73.3%, respectively; Table 4). This result indicates that our ML model 257 can competently predict individually tailored vancomycin dosing regimens and thus 258 achieve a therapeutic window. Importantly, the target attainment rate of the ML model 259 developed by Imai et al. was 33.3% (6), which is much lower than that of our model (Table 260 5). This implies that our model has better predictability, but due to the small sample sizes in 261 this study, the differences in target attainment rates between the two models did not reach 262 statistical significance (p = 0.0995). The discrepant predictive accuracy of the two models 263 is largely attributed to the differences in the training datasets. Differences in ML algorithms

264	also likely played a role; the decision tree algorithm used in Imai et al. is a classification
265	tree (a nomogram), which is easy to comprehend but is more susceptible to overfitting than
266	the RF algorithm used in the present study (6, 17).
267	The limitations of this study are as follows. First, TDM results were lacking in many study
268	subjects due to the discontinuation of vancomycin treatment before TDM (mainly due to
269	de-escalation). This hindered the evaluation of ML model-recommended dosing regimens
270	regarding their ability to achieve therapeutic levels. Second, the majority of study subjects
271	were older adults, which may have influenced the model's predictive performance in
272	younger people. Third, our ML model was derived from a single-center, observational study,
273	potentially limiting external generalizability. In addition, it should be noted that the above
274	results are at least partially dependent on the current testing dataset, and thus further
275	evaluation in other populations is required. Lastly and most importantly, the dosing
276	regimens recorded in the dataset were designed to achieve target trough concentrations
277	rather than target AUC/MIC values, raising the concern that our model tends to predict
278	trough-guided dosing (that is, adjusting doses by considering trough concentrations only).
279	This is thought to increase the occurrence of vancomycin-associated AKI compared to
280	AUC-guided dosing, and recently published guidelines do not recommend this approach in

- 281 patients with serious, invasive MRSA infections (1, 26). A dataset of AUC-guided dosing
- regimens is needed to build a prediction model for AUC-guided dosing.
- 283 Collectively, we developed a novel ML model to predict individually tailored vancomycin
- initial dosing regimens, and this model had a high rate of achieving therapeutic
- concentration windows. Our predictive model will aid decision making for initial
- vancomycin dosing and contribute to early attainment of a therapeutic range, which is
- 287 crucial for clinical and microbiological success in treating serious infections due to MRSA.

288 Acknowledgments

289

- 290 This work was supported by JSPS KAKENHI (Grant Numbers JP 20H03428 and
- 291 JP19H03532).

- 293 Conflicts of Interest
- 294
- 295 The authors declare no conflicts of interests.

296 **References**

298	1.	Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, Mueller BA, Pai MP,
299		Wong-Beringer A, Rotschafer JC, Rodvold KA, Maples HD, Lomaestro BM. 2020.
300		Therapeutic monitoring of vancomycin for serious methicillin-resistant
301		Staphylococcus aureus infections: A revised consensus guideline and review by the
302		American Society of Health-System Pharmacists, the Infectious Diseases Society of
303		America, the Pediatr. Am J Heal Pharm. Oxford University Press.
304	2.	Suzuki Y, Kawasaki K, Sato Y, Tokimatsu I, Itoh H, Hiramatsu K, Takeyama M,
305		Kadota JI. 2012. Is peak concentration needed in therapeutic drug monitoring of
306		vancomycin? a pharmacokinetic-pharmacodynamic analysis in patients with
307		methicillin- resistant staphylococcus aureus pneumonia. Chemotherapy 58:308–312.
308	3.	Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM.
309		2006. Effects of prolonged vancomycin administration on methicillin-resistant
310		Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J
311		Antimicrob Chemother 57:699–704.
312	4.	Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M,

313		Dalovisio JR, Levine DP, Reilly C. 2009. Therapeutic monitoring of vancomycin in
314		adult patients: A consensus review of the American Society of Health-System
315		Pharmacists, the Infectious Diseases Society of America, and the Society of
316		Infectious Diseases Pharmacists. Am J Heal Pharm. American Society of
317		Health-Systems Pharmacy.
318	5.	2005. Guidelines for the management of adults with hospital-acquired,
319		ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care
320		Med.
321	6.	Imai S, Takekuma Y, Miyai T, Sugawara M. 2020. A new algorithm optimized for
322		initial dose settings of vancomycin using machine learning. Biol Pharm Bull 43:188-
323		193.
324	7.	Oda K, Katanoda T, Hashiguchi Y, Kondo S, Narita Y, Iwamura K, Nosaka K, Jono
325		H, Saito H. 2020. Development and evaluation of a vancomycin dosing nomogram
326		to achieve the target area under the concentration-time curve. A retrospective study.
327		J Infect Chemother 26:444–450.
328	8.	Marqués-Miñana MR, Saadeddin A, Peris JE. 2010. Population pharmacokinetic
329		analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J

330		Clin Pharmacol 70:713–720.
331	9.	Thalakada R, Legal M, Lau TTY, Luey T, Batterink J, Ensom MHH. 2012.
332		Development and validation of a novel vancomycin dosing nomogram for achieving
333		high-target trough levels at 2 Canadian teaching hospitals. Can J Hosp Pharm
334		65:180–187.
335	10.	Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriott DJ, Carland
336		JE, Stocker SL, Wicha SG. 2019. Towards precision dosing of vancomycin: a
337		systematic evaluation of pharmacometric models for Bayesian forecasting. Clin
338		Microbiol Infect 25:1286.e1-1286.e7.
339	11.	Kufel WD, Seabury RW, Mogle BT, Beccari M V., Probst LA, Steele JM. 2019.
340		Readiness to implement vancomycin monitoring based on area under the
341		concentration-time curve: A cross-sectional survey of a national health consortium.
342		Am J Heal Pharm 76:889–894.
343	12.	Komoto A, Maiguma T, Teshima D, Sugiyama T, Haruki Y. 2018. Effects of
344		pharmacist intervention in Vancomycin treatment for patients with bacteremia due to
345		Methicillin-resistant Staphylococcus aureus. PLoS One 13.
346	13.	Momattin H, Zogheib M, Homoud A, Al-Tawfiq JA. 2015. Safety and outcome of

347		pharmacy-led vancomycin dosing and monitoring. Chemotherapy 61:3–7.
348	14.	Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, Ringel M, Schork N. 2019.
349		Artificial intelligence and machine learning in clinical development: a translational
350		perspective. npj Digit Med 2.
351	15.	Huang X, Yu Z, Wei X, Shi J, Wang Y, Wang Z, Chen J, Bu S, Li L, Gao F, Zhang J,
352		Xu A. 2021. Prediction of vancomycin dose on high-dimensional data using machine
353		learning techniques. Expert Rev Clin Pharmacol 1–11.
354	16.	Crass RL, Dunn R, Hong J, Krop LC, Pai MP. 2018. Dosing vancomycin in the
355		super obese: Less is more. J Antimicrob Chemother. Oxford University Press.
356	17.	Pavlov YL. 2001. Random forests. Mach Learn 45:5–32.
357	18.	Probst P, Boulesteix AL, Bischl B. 2019. Tunability: Importance of hyperparameters
358		of machine learning algorithms. J Mach Learn Res 20:1–32.
359	19.	Kohavi R. 1995. A Study of Cross-Validation and Bootstrap for Accuracy
360		Estimation and Model Selection. Proc 14th Int Jt Conf Artif Intell 338–345.
361	20.	Lodise TP, Lomaestro B, Graves J, Drusano GL. 2008. Larger vancomycin doses (at
362		least four grams per day) are associated with an increased incidence of
363		nephrotoxicity. Antimicrob Agents Chemother 52:1330–1336.

364	21.	Neely MN, Kato L, Youn G, Kraler L, Bayard D, Van Guilder M, Schumitzky A,
365		Yamada W, Jones B, Minejima E. 2018. Prospective trial on the use of trough
366		concentration versus area under the curve to determine therapeutic vancomycin
367		dosing. Antimicrob Agents Chemother 62.
368	22.	Vandecasteele SJ, De Vriese AS. 2010. Recent changes in vancomycin use in renal
369		failure. Kidney Int.
370	23.	Li J, Udy AA, Kirkpatrick CMJ, Lipman J, Roberts JA. 2012. Improving
371		vancomycin prescription in critical illness through a drug use evaluation process: A
372		weight-based dosing intervention study. Int J Antimicrob Agents 39:69–72.
373	24.	Sebban M, Nock R, Chauchat JH, Rakotomalala R. 2000. Impact of Learning Set
374		Quality and Size. Int J Comput Syst Signal 1:85–105.
375	25.	D'souza RN, Huang PY, Yeh FC. 2020. Structural Analysis and Optimization of
376		Convolutional Neural Networks with a Small Sample Size. Sci Rep 10.
377	26.	Oda K, Jono H, Nosaka K, Saito H. 2020. Reduced nephrotoxicity with vancomycin
378		therapeutic drug monitoring guided by area under the concentration-time curve
379		against a trough 15–20 µg/mL concentration. Int J Antimicrob Agents 56.
380		

382 Figure legends

384	Fig. 1 Schematic diagram of RF classification. (A) Training samples and features are
385	randomly sampled; then, classification (decision) trees are constructed with each set of
386	samples and features. The n_estimator is defined as the number of trees. (B) Each decision
387	tree classifies the test sample. The class of the test sample is predicted by majority vote (in
388	this case, the test sample is assigned to class B)
389	
390	Fig. 2 Schematic diagram of steps in the optimization of hyperparameters. Step 1: The
391	dataset is first split into a training set and a testing set in a ratio of 84:22. Step 2: The
392	training set is further split into five partitions, that is, 67:17. Then four partitions and the
393	remaining partition were used as the training and testing sets, respectively, and prediction
394	accuracy was evaluated. The same procedure was repeated for each subset of the dataset,
395	and the mean accuracy score was recorded. Step 3: Step 2 was repeated with different sets
396	of hyperparameters (n_estimators and max_depth), and mean accuracy scores were
397	recorded in each iteration. The set of hyperparameters with the highest mean accuracy
398	scores in Step 2 was obtained as the optimized parameters and used for model construction.

399

400 **Fig. 3** Feature importance in the ML-based prediction model.

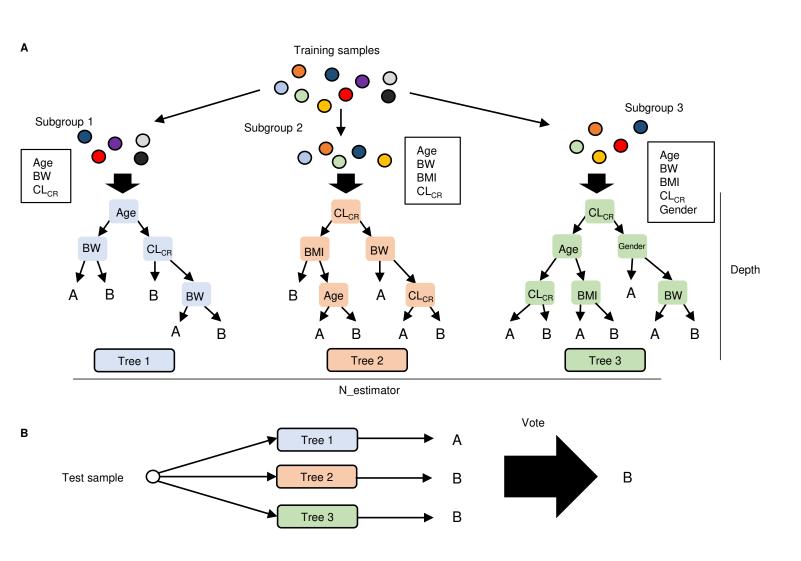


Fig. 1 Schematic diagram of RF classification. (A) Training samples and features are randomly sampled; then, classification (decision) trees are constructed with each set of samples and features. The n_estimator is defined as the number of trees. (B) Each decision tree classifies the test sample. The class of the test sample is predicted by majority vote (in this case, the test sample is assigned to class B)

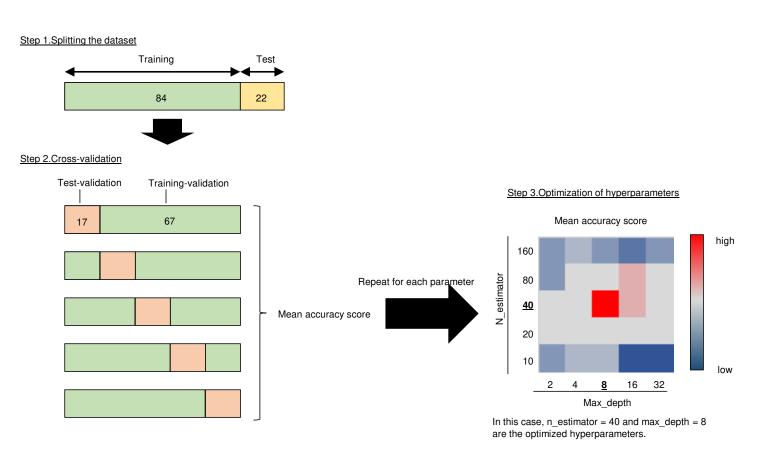


Fig. 2 Schematic diagram of steps in the optimization of hyperparameters. Step 1: The dataset is first split into a training set and a testing set in a ratio of 84:22. Step 2: The training set is further split into five partitions, that is, 67:17. Then four partitions and the remaining partition were used as the training and testing sets, respectively, and prediction accuracy was evaluated. The same procedure was repeated for each subset of the dataset, and the mean accuracy score was recorded. Step 3: Step 2 was repeated with different sets of hyperparameters (n_estimators and max_depth), and mean accuracy scores were recorded in each iteration. The set of hyperparameters with the highest mean accuracy scores in Step 2 was obtained as the optimized parameters and used for model construction.

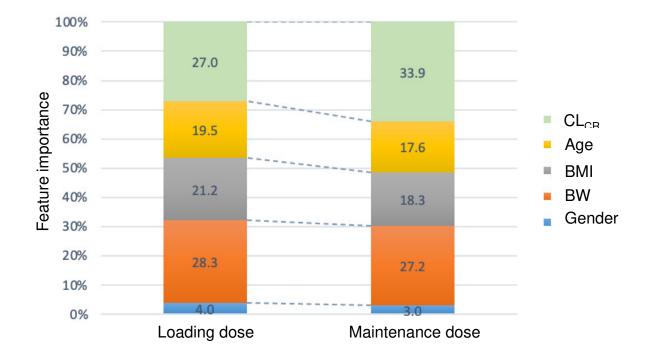


Fig. 3 Feature importance in the ML-based prediction model.

				P value
Characteristics	Total population	Training group	Testing group	(training vs
	(n = 106)	(n = 84)	(n = 22)	testing)
Age (year) [median (IQR)]	70.0 (20.3)	68.5 (21.5)	73.0 (15.8)	0.227 ^a
Gender				
Male [n (%)]	69 (65.1)	57 (67.9)	12 (54.5)	0.244^{b}
Female [n (%)]	37 (34.9)	27 (32.1)	10 (45.5)	
BW (kg) [mean ± SD]	56.3 ± 13.8	55.8 ± 13.9	58.3 ± 13.5	0.391 ^a
BMI [mean ± SD]	21.6 ± 5.1	21.2 ± 4.7	23.1 ± 6.2	0.160 ^a
CL _{CR} (mL/min) [mean ± SD]	85.5 ± 59.2	88.5 ± 63.5	74.1 ± 37.8	0.654 ^a
Target attainment at initial TDM	54/76 (71.1%)	42/61 (68.9%)	12/15 (80.0%)	0.532 ^c
[achieved/total (%)]	יו וויט (11.170)	T2/01 (00.970)	12/13 (00.070)	0.332

TABLE 1 Clinical characteristics of the study subjects

Abbreviations: IQR, interquartile range; BW, body weight; SD, standard deviation; BMI, body mass index; CL_{CR}, creatinine clearance;

TDM, therapeutic drug monitoring.

^aMann-Whitney U test, ^bChi-square test, ^cFisher's exact test

Case no.	Gender	BW	BMI	Age	0	c	CL _{CR}	eGFR	Loa	iding dose		Maintenan	ce dose	T	rough concentratio	on	AKI
		(kg)		(year)	(mL/min)	(mL/min)	Expert	(mg) Current ML model	Expert (mg/day)	Current ML model (mg/day)	Previous ML model [mg/day (mg/kg/day)] ^a	Expert (actual concentration)	(mg/L) Current ML model ^b	Previous ML model ^{b, c}	-		
1	Male	46.0	21.3	76	60.1	67.3	1000	1000	1500	1500	1297 (28.2)	10.77	10.77	9.31	No		
2	Female	52.6	20.5	70	71.3	64.5	1000	1500	2000	1500	1483 (28.2)	12.76	9.57	9.46	No		
3	Female	62.0	26.0	77	69.9	60.2	1500	1000	2000	2000	1748 (28.2)	11.92	11.92	10.42	No		
4	Male	58.3	20.0	38	103.2	84.7	1250	1500	2000	2000	ND	NA	ND	ND	No		
5	Female	49.3	24.7	88	32.9	34.2	1000	1000	500	500	ND	NA	ND	ND	No		
6	Male	54.2	20.7	82	21.4	22.7	1000	1000	500	1000	ND	19.80	ND	ND	AKI		
7	Male	58.9	22.2	80	75.4	83.2	1000	1500	2000	2000	1630 (27.7)	11.70	11.70	9.54	No		
8	Male	47.5	16.4	78	56.0	69.7	1000	1000	1000	1000	1340 (28.2)	19.00	19.00	25.45	No		
9	Male	58.8	22.5	82	20.3	20.3	1000	1000	400	500	ND	NA	ND	ND	No		
10	Female	48.3	19.7	79	30.5	29.8	1000	1000	750	750	ND	16.91	16.91	ND	No		
11	Male	65.2	21.4	65	97.0	89.5	1500	1500	2000	2000	ND	NA	ND	ND	No		
12	Male	69.5	24.5	71	96.5	88.7	1500	1500	2000	2000	2537 (36.5)	7.19	7.19	9.12	No		
13	Male	55.7	21.4	47	71.2	58.1	1500	1500	2000	1500	ND	NA	ND	ND	No		
14	Female	103.0	46.4	43	190.2	92.1	2000	2000	3000	2000	3729 (36.2)	17.60	11.73	21.87	No		
15	Female	71.0	29.2	72	74.0	55.3	1000	1000	2000	2000	1420 (20.0)	15.42	15.42	10.95	No		
16	Male	66.0	23.7	74	68.0	64.5	1500	1000	2000	2000	1861 (28.2)	13.52	13.52	12.58	No		
17	Female	37.1	17.2	75	73.0	83.6	1000	1000	1500	1500	ND	16.37	16.37	ND	No		
18	Female	45.5	17.1	63	137.9	137.7	1000	1250	750	1500	ND	NA	ND	ND	No		
19	Female	63.5	26.1	61	56.4	39.4	1500	1000	1500	2000	ND	25.27	33.69	ND	No		
20	Male	48.2	18.8	68	68.9	72.9	1250	750	2000	1500	1759 (36.5)	13.70	10.28	12.05	No		
21	Female	70.3	28.1	46	90.7	56.1	1500	1500	2000	2000	1863 (26.5)	33.00	33.00	30.74	No		
22	Male	51.0	19.4	77	65.6	75.1	1000	1000	1500	1500	1413 (27.7)	10.03	10.03	9.45	No		

TABLE 2 Model-recommended dosing regimens and estimated trough concentrations in the testing dataset

Abbreviations: BW, body weight; BMI, body mass index; CL_{CR}, creatinine clearance; eGFR, estimated glomerular filtration rate; ML, machine learning; ND, data not determined; NA, data not available; AKI, acute kidney injury.

^aDose per body weight (mg/kg/day) is also described, because a previous ML model predicted doses in this format.

^bConcentrations were not determined if patients developed AKI before TDM.

 cPatients with a BW $\geq 40~kg$ and an eGFR $\geq 50~mL/min$ were included.

Ratio of ML- to expert-recommended dose	Loading dose	Maintenance dose
-	(n = 22)	(n = 22)
> 150% [n (%)]	0 (0.0)	2 (9.1)
> 125% and \leq 150% [n (%)]	2 (9.1)	1 (4.5)
> 100% and \leq 125% [n (%)]	2 (9.1)	1 (4.5)
100% (identical)	14 (63.6)	14 (63.6)
\geq 75% and < 100% [n (%)]	0 (0.0)	3 (13.6)
\geq 50% and < 75% [n (%)]	4 (18.2)	1 (4.5)
< 50% [n (%)]	0 (0.0)	0 (0.0)

TABLE 3 Relative ML-recommended doses

Abbreviation: ML, machine learning.

	0 0	1	6 6
Trough concentration	Expert	Current ML model	P value
Trough concentration	(n = 15)	(n = 15)	(Fisher's exact test)
< 10 mg/L [n (%)]	1 (6.7)	2 (13.3)	
10–20 mg/L [n (%)]	12 (80.0)	11 (73.3)	1.0
> 20 mg/L [n (%)]	2 (13.3)	2 (13.3)	

TABLE 4 Rates of achieving targeted trough levels with the expert- and current ML model-driven dosing regimens

Abbreviation: ML, machine learning.

Turnella en antra d'an	Expert	Current ML model	Previous ML model * (n = 12)	
Trough concentration	(n = 12)	(n = 12)		
< 10 mg/L [n (%)]	1 (8.3)	2 (16.7)	5 (41.7)	
10–20 mg/L [n (%)]	10 (83.3)	9 (75.0)	4 (33.3)	
> 20 mg/L [n (%)]	1 (8.3)	1 (8.3)	3 (25.0)	
P value (Fisher's exa	ct test, vs. expert)	1.0	0.0361	
P value (Fisher's exact test,	current vs. previous ML)	0.0)995	

TABLE 5 Rates of achieving targeted trough levels with the current and previous ML model–driven dosing regimens

Abbreviation: ML, machine learning.

* Imai S et al. 2020 (6)