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Abstract 22 

 23 

Vancomycin is a glycopeptide antibiotic that has been used primarily in the treatment of 24 

methicillin-resistant Staphylococcus aureus infections. To enhance its clinical effectiveness 25 

and prevent nephrotoxicity, therapeutic drug monitoring (TDM) of trough concentrations is 26 

recommended. 27 

Initial vancomycin dosing regimens are determined based on patient characteristics such as 28 

age, body weight, and renal function, and dosing strategies to achieve therapeutic 29 

concentration windows at initial TDM have been extensively studied. Although numerous 30 

dosing nomograms for specific populations have been developed, no comprehensive 31 

strategy exists for individually tailoring initial dosing regimens; therefore, decision making 32 

regarding initial dosing largely depends on each clinician’s experience and expertise. 33 

In this study, we applied a machine-learning (ML) approach to integrate clinician 34 

knowledge into a predictive model for initial vancomycin dosing. A dataset of vancomycin 35 

initial dose plans defined by pharmacists experienced in vancomycin TDM (i.e., experts) 36 

was used to build the ML model. The target trough concentration was attained at 37 

comparable rates with the model- and expert-recommended dosing regimens, suggesting 38 
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that the ML model successfully incorporated the experts’ knowledge. The predictive model 39 

developed here will contribute to improved decision making for initial vancomycin dosing 40 

and early attainment of therapeutic windows. 41 

 42 

Keywords: Machine learning, Vancomycin, Initial dosing regimen, TDM 43 
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Introduction 46 

 47 

Vancomycin is a glycopeptide antibiotic that has been in clinical use for more than 50 years, 48 

primarily for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) 49 

infections (1). To maximize its clinical effectiveness and avoid nephrotoxicity, therapeutic 50 

drug monitoring (TDM) is recommended. The ratio of the vancomycin area under the 51 

concentration-time curve (AUC) to the minimum inhibitory concentration (MIC), 52 

AUC/MIC, is a primary predictor of vancomycin effectiveness. However, since it is 53 

challenging to determine the AUC due to the need to obtain multiple serum vancomycin 54 

concentrations, it is recommended to monitor the trough serum concentration, which is 55 

considered to be the most accurate and practical surrogate marker for the AUC (1). The 56 

trough concentration of vancomycin should be above 10 mg/L and below 20 mg/L to avoid 57 

development of resistance and nephrotoxicity, respectively (1–3). Thus, the therapeutic 58 

range for vancomycin trough levels is 10–20 mg/L, while several guidelines have 59 

recommended vancomycin trough levels of 15–20 mg/L for serious invasive MRSA 60 

infections such as sepsis (4, 5). 61 
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Initial vancomycin dosing consists of a single loading dose followed by a series of 62 

maintenance doses; the usual loading dose and maintenance dose are 25–30 mg/kg and 15–63 

20 mg/kg, respectively (4). Loading and maintenance doses are adjusted for patient 64 

characteristics such as age, gender, body weight (BW), and renal function. In clinical 65 

practice, initial dosing is calculated using population pharmacokinetic parameters, and 66 

numerous population pharmacokinetic studies of vancomycin have been conducted to 67 

develop nomograms designed to achieve therapeutic trough concentrations at initial TDM 68 

(6–8). However, because these nomograms were constructed and validated within specific 69 

populations, their robustness to population change is limited. To date, there is no 70 

comprehensive strategy for individually optimized initial dosing, and vancomycin dosing 71 

decisions are often made based on clinicians’ experience and expertise (hereafter, prior 72 

knowledge) (7, 9, 10). In a recent survey in the United States and Canada, many healthcare 73 

institutions indicated that institutional-level credentialing or training was important to 74 

achieve appropriate vancomycin TDM (11). Indeed, several studies demonstrated that 75 

initial dose planning by pharmacists engaged in vancomycin TDM could lead to higher 76 

target attainment rates, emphasizing the importance of prior knowledge when conducting 77 

vancomycin dose planning (12, 13). 78 
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Machine learning (ML) algorithms promote the discovery of new techniques and improve 79 

decision making on specific questions involving abundant and multi-dimensional data, and 80 

they have emerged as a promising approach for medical research and clinical care. 81 

Advances in ML have facilitated the discovery of new biomarkers and mutations related to 82 

prognosis, and also the development of automated diagnosis tools (14). Recently, ML 83 

approaches have also been used in the field of TDM. Imai and colleagues utilized an ML 84 

approach to build a nomogram for initial vancomycin dosing using a dataset of patients 85 

treated with vancomycin (6). A study by Huang et al. applied variable engineering and ML 86 

methods that enabled integration of high-dimensional data to build a predictive model for 87 

maintenance dosing (15). 88 

Given the importance of prior knowledge in vancomycin dose planning, here we sought to 89 

integrate such knowledge into an ML model for initial vancomycin dosing. Toward this 90 

goal, we used a dataset of vancomycin initial dosing regimens that were defined by 91 

pharmacists experienced in TDM (hereafter, TDM experts). This straightforward approach 92 

yielded a predictive model that reproduces regimens defined by TDM experts. Notably, a 93 

therapeutic window was achieved at a similar rate using ML- and expert-recommended 94 

dosing regimens, whereas a previously developed ML model failed to predict dosing 95 
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regimens that attained a therapeutic window (6).  96 
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Materials and methods 97 

 98 

Study subjects 99 

 100 

This was a single-center, retrospective, observational study of hospitalized patients who 101 

received intravenous vancomycin from May 2017 to May 2021 at Nagoya University 102 

Hospital. TDM experts were defined as pharmacists who were either (i) engaged in 103 

vancomycin TDM or (ii) capable of conducting vancomycin initial dose planning with 104 

similar success as the pharmacists defined in (i). Patients who commenced vancomycin 105 

treatment with TDM expert–recommended dosing during the study period were included. 106 

The exclusion criteria were as follows: under 18 years of age; undergoing peritoneal 107 

dialysis or hemodialysis (including continuous hemodiafiltration); receiving multiple 108 

loading doses; diagnosed with amyotrophic lateral sclerosis (ALS); and missing data on 109 

gender, age, BW, body mass index (BMI), or serum creatinine. 110 

Thirteen patients received two courses of vancomycin treatment with pharmacist-designed 111 

initial dosing regimens. In this group, each regimen was independently designed based on 112 

patient characteristics at start of vancomycin treatment, and therefore we included each of 113 
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these patients as two cases in the study dataset. 114 

 115 

Building of the ML model 116 

 117 

The dataset used in this study included clinical and routine laboratory data, initial dosing 118 

regimens, and serum vancomycin concentrations at initial TDM (if measured). Age, gender, 119 

BW, BMI, and creatinine clearance (CLCR) calculated by the Cockcroft-Gault equation 120 

were used as parameters to predict initial dosing regimens (including loading and 121 

maintenance doses), because we routinely estimated individualized dosing regimens based 122 

on these data, as recommended by previous studies (10, 16). The dataset (n = 106) was 123 

divided into training and testing datasets in a ratio of 84:22 (approximately 80:20). 124 

We developed an ML model by applying random forest (RF) classification to the dataset 125 

(see the schematic diagram in Fig. 1). An RF is an ensemble of classification (decision) 126 

trees that are generated by sampling data and features in the training dataset (17). 127 

Prediction is based on a simple majority vote by decision trees. A hyperparameter is a 128 

parameter that affects how well a model is trained, and it therefore controls the model 129 

performance. In the RF technique, hyperparameters include the number of decision trees 130 
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(n_estimator) and the maximum depth of the trees (max_depth) (18). 131 

K-fold cross-validation was applied on RF classification to select the most appropriate 132 

value of each hyperparameter (n_estimator and max_depth) (19). In this process, the dataset 133 

of a training group was further divided into two groups, a training-validation set and a 134 

testing-validation set, in the ratio of 67:17 (approximately 80:20) using the five-fold 135 

cross-validation method (Fig. 2). The models were then built, and the accuracy scores, 136 

which were defined as the ratios of correct predictions to the total number of predictions, 137 

were measured in each training-validation/testing-validation set, and the mean accuracy 138 

score was recorded. This process was repeated with each pair of hyperparameters 139 

(n_estimator: 10, 20, 40, 80, and 160; max_depth: 2, 4, 8, 16, and 32), resulting in 140 

optimized hyperparameters that achieved the highest mean accuracy score. 141 

Next, we developed the prediction model with optimized hyperparameters. Feature 142 

importance, which represents relative importance in terms of the accuracy of the model, 143 

was estimated during training phase (18).  144 

Lastly, we evaluated the performance of the predictive model on the testing data. Accuracy 145 

scores for loading doses and maintenance doses were used to evaluate the model.  146 

 147 
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Estimation of trough concentrations with the ML model–recommended dosing 148 

regimen 149 

 150 

Testing data that included serum vancomycin concentrations were used to estimate 151 

vancomycin trough concentrations with the ML model–recommended dosing regimen. In 152 

this analysis, we excluded cases in which dosing regimens were changed before initial 153 

TDM or in which TDM was conducted after just a single loading dose. We also excluded 154 

patients who developed vancomycin-associated acute kidney injury (AKI), which was 155 

defined as an increase in the serum creatine level of 0.5 mg/dL or a 50% increase from 156 

baseline in at least two consecutive measurements, as is consistent with other studies of 157 

vancomycin TDM (20, 21). The trough concentration with the ML model–recommended 158 

regimen was estimated using the following equation: 159 

 160 

Estimated concentration

= Actual concentration ×
Daily maintenance dose with model regimen

Daily maintenance dose with expert regimen
 

 161 

Comparison between the current ML model and the previous ML model reported by Imai 162 
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and colleagues was performed in patients with a BW ≥ 40 kg and an estimated glomerular 163 

filtration rate (eGFR) ≥ 50 mL/min, because the latter model was validated in this 164 

population (6). 165 

 166 

Statical analysis 167 

 168 

We used the Mann-Whitney test for continuous data, and Fisher’s exact test or the 169 

chi-square test for categorical data. All statistical tests were two-tailed, and p values of less 170 

than 0.05 were considered statistically significant except in multiple testing (Table 5), 171 

where significance was adjusted by Bonferroni correction. Statistical analyses were 172 

performed using the Python statistics module. 173 

 174 

Ethics 175 

 176 

This study was approved by the ethics committee of Nagoya University Hospital (Approval 177 

No. 2021-0189).  178 
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Results 179 

 180 

Patient characteristics 181 

 182 

During the study period, there were 140 cases in 127 patients, with cases defined as 183 

instances in which initial dosing regimens of vancomycin were determined by TDM experts. 184 

Of these, 16 cases were in patients under 18 years of age, 14 were in patients undergoing 185 

peritoneal dialysis or hemodialysis, and two were in patients who received multiple loading 186 

doses; all of these cases were excluded from this study. One patient whose BMI value was 187 

missing and one patient with ALS were also excluded. The remaining 106 cases in 97 188 

patients were included.  189 

The target attainment rate at initial TDM was 71.1% in the total population, which was 190 

comparable to the rates reported in another study of expert (pharmacist)-managed 191 

vancomycin TDM (64.3%) (12), thus validating our initial dose planning (Table 1). Eligible 192 

cases were randomly assigned to a training group and a testing group in the ratio of 84:22 193 

(approximately 80:20). Overall, patient characteristics in the training and testing groups 194 

were well balanced (Table 1).  195 
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 196 

Building an ML model to determine the initial vancomycin dose 197 

 198 

Next, we sought to build an ML model for predicting individually tailored vancomycin 199 

dosing regimens to achieve the therapeutic window. To this end, we first optimized the 200 

hyperparameters for RF classification, then built a predictive model with optimized 201 

hyperparameters (Fig. 2). Individual features were ranked based on their relative 202 

importance to the accuracy of the model. For loading doses, BW was ranked as the most 203 

important feature, followed by CLCR, BMI, age, and gender, while for maintenance doses, 204 

CLCR was the most important feature, followed by BW, BMI, age, and gender (Fig. 3). 205 

 206 

ML model evaluation 207 

 208 

Next, we examined whether the ML model generated the same dosing regimen as TDM 209 

experts. Table 2 summarizes the performance of the model on the testing dataset. The 210 

accuracy scores for loading and maintenance doses were both 63.6% (Table 3). For loading 211 

doses, the differences in doses between the expert- and ML model–recommended regimens 212 
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fell within the range of 50–150%. For maintenance doses, there were two cases in which 213 

the differences in doses were larger than two-fold (cases no. 6 and no. 18). The rate of 214 

achieving a therapeutic window with ML model–recommended regimens was estimated to 215 

be 73.3%, which was comparable to that with expert-recommended regimens (80.0%, p = 216 

1.0; Tables 2 and 4).  217 

Lastly, we compared the target attainment rates of our predictive ML model and the ML 218 

model developed by Imai and colleagues (6). Because the latter model was validated in 219 

patients with a BW ≥ 40 kg and eGFR ≥ 50 mL/min, we compared cases that met these 220 

criteria. In this group, the target attainment rates of the expert- and ML model–221 

recommended regimens were 83.3% and 75.0%, respectively, again with no significant 222 

difference (p = 1.0; Tables 2 and 5). Importantly, the target attainment rate of regimens 223 

recommended by the previous ML model was much lower, at only 33.3%; this indicates the 224 

poor ability of that model to predict appropriate dosing regimens, at least using the current 225 

testing dataset. However, it should be noted that the differences in target attainment rates 226 

compared to our expert- and ML model–recommended regimens did not reach statistical 227 

significance (p = 0.0361 and 0.0995, respectively. Note that significance was set at 0.0167 228 

after Bonferroni correction).  229 
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Discussion 230 

 231 

Although considerable effort has been made to develop population-specific dosing 232 

nomograms for vancomycin, strategies to determine individually optimized initial dosing 233 

regimens remain controversial. In practice, decision making about initial dose planning 234 

depends on each clinician’s experience regarding the clinical assessment of renal function 235 

and the determination of which dosing nomograms to use. 236 

Here, we sought to build an ML model that emulates experts’ decision making concerning 237 

initial vancomycin dosing. Toward this end, subjects were limited to those who received an 238 

initial dosing regimen defined by TDM experts. In contrast with the previous study of Imai 239 

et al. (6), we did not exclude patients with a low BW (< 40 kg) or renal dysfunction (eGFR 240 

< 50 mL/min) due to the prevalence of such patients and our desire to assess the robustness 241 

of the model to changes in patient characteristics.  242 

Feature importance was largely consistent with predictive covariates conventionally used to 243 

determine appropriate dosing regimens: BW and CLCR were the most important features for 244 

loading and maintenance doses, respectively (10, 22). Although loading doses are generally 245 

determined based on actual BW, our results indicate that CLCR is also a key feature for 246 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.09.16.460731doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460731
http://creativecommons.org/licenses/by-nc-nd/4.0/


predicting loading dose (23). This reflects adjustment of loading doses based on renal 247 

function, which has been proposed in recent studies (7, 10).  248 

Our ML model scored 63.6% in testing accuracy for both loading and maintenance doses. 249 

These modest accuracy scores may have been due to the difficulty of multi-class 250 

classification tasks (24); in the current dataset (n = 106), there were six and nine classes 251 

(doses) of loading and maintenance doses, respectively (data not shown). In addition, the 252 

fact that this study had a relatively small dataset (n = 106), which generally leads to 253 

overfitting, may have further contributed to a decrease in predictive accuracy (25).  254 

The target attainment rates were similar for our expert- and ML model–recommended 255 

regimens (80.0% and 73.3%, respectively; Table 4). This result indicates that our ML model 256 

can competently predict individually tailored vancomycin dosing regimens and thus 257 

achieve a therapeutic window. Importantly, the target attainment rate of the ML model 258 

developed by Imai et al. was 33.3% (6), which is much lower than that of our model (Table 259 

5). This implies that our model has better predictability, but due to the small sample sizes in 260 

this study, the differences in target attainment rates between the two models did not reach 261 

statistical significance (p = 0.0995). The discrepant predictive accuracy of the two models 262 

is largely attributed to the differences in the training datasets. Differences in ML algorithms 263 
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also likely played a role; the decision tree algorithm used in Imai et al. is a classification 264 

tree (a nomogram), which is easy to comprehend but is more susceptible to overfitting than 265 

the RF algorithm used in the present study (6, 17).  266 

The limitations of this study are as follows. First, TDM results were lacking in many study 267 

subjects due to the discontinuation of vancomycin treatment before TDM (mainly due to 268 

de-escalation). This hindered the evaluation of ML model–recommended dosing regimens 269 

regarding their ability to achieve therapeutic levels. Second, the majority of study subjects 270 

were older adults, which may have influenced the model’s predictive performance in 271 

younger people. Third, our ML model was derived from a single-center, observational study, 272 

potentially limiting external generalizability. In addition, it should be noted that the above 273 

results are at least partially dependent on the current testing dataset, and thus further 274 

evaluation in other populations is required. Lastly and most importantly, the dosing 275 

regimens recorded in the dataset were designed to achieve target trough concentrations 276 

rather than target AUC/MIC values, raising the concern that our model tends to predict 277 

trough-guided dosing (that is, adjusting doses by considering trough concentrations only). 278 

This is thought to increase the occurrence of vancomycin-associated AKI compared to 279 

AUC-guided dosing, and recently published guidelines do not recommend this approach in 280 
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patients with serious, invasive MRSA infections (1, 26). A dataset of AUC-guided dosing 281 

regimens is needed to build a prediction model for AUC-guided dosing.  282 

Collectively, we developed a novel ML model to predict individually tailored vancomycin 283 

initial dosing regimens, and this model had a high rate of achieving therapeutic 284 

concentration windows. Our predictive model will aid decision making for initial 285 

vancomycin dosing and contribute to early attainment of a therapeutic range, which is 286 

crucial for clinical and microbiological success in treating serious infections due to MRSA.  287 
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Figure legends 382 

 383 

Fig. 1 Schematic diagram of RF classification. (A) Training samples and features are 384 

randomly sampled; then, classification (decision) trees are constructed with each set of 385 

samples and features. The n_estimator is defined as the number of trees. (B) Each decision 386 

tree classifies the test sample. The class of the test sample is predicted by majority vote (in 387 

this case, the test sample is assigned to class B) 388 

 389 

Fig. 2 Schematic diagram of steps in the optimization of hyperparameters. Step 1: The 390 

dataset is first split into a training set and a testing set in a ratio of 84:22. Step 2: The 391 

training set is further split into five partitions, that is, 67:17. Then four partitions and the 392 

remaining partition were used as the training and testing sets, respectively, and prediction 393 

accuracy was evaluated. The same procedure was repeated for each subset of the dataset, 394 

and the mean accuracy score was recorded. Step 3: Step 2 was repeated with different sets 395 

of hyperparameters (n_estimators and max_depth), and mean accuracy scores were 396 

recorded in each iteration. The set of hyperparameters with the highest mean accuracy 397 

scores in Step 2 was obtained as the optimized parameters and used for model construction. 398 
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 399 

Fig. 3 Feature importance in the ML-based prediction model. 400 
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Fig. 2 Schematic diagram of steps in the optimization of hyperparameters. Step 1: The

dataset is first split into a training set and a testing set in a ratio of 84:22. Step 2: The

training set is further split into five partitions, that is, 67:17. Then four partitions and the

remaining partition were used as the training and testing sets, respectively, and prediction

accuracy was evaluated. The same procedure was repeated for each subset of the dataset,

and the mean accuracy score was recorded. Step 3: Step 2 was repeated with different sets

of hyperparameters (n_estimators and max_depth), and mean accuracy scores were

recorded in each iteration. The set of hyperparameters with the highest mean accuracy

scores in Step 2 was obtained as the optimized parameters and used for model construction.
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TABLE 1 Clinical characteristics of the study subjects 

Characteristics Total population  

(n = 106) 

Training group  

(n = 84) 

Testing group  

(n = 22) 

P value 

(training vs 

testing) 

Age (year) [median (IQR)] 70.0 (20.3) 68.5 (21.5) 73.0 (15.8) 0.227
a
 

    

Gender     

    Male [n (%)] 69 (65.1) 57 (67.9) 12 (54.5) 
0.244

b
 

    Female [n (%)] 37 (34.9) 27 (32.1) 10 (45.5) 

    

BW (kg) [mean ± SD] 56.3 ± 13.8 55.8 ± 13.9 58.3 ± 13.5 0.391
a
 

BMI [mean ± SD] 21.6 ± 5.1 21.2 ± 4.7 23.1 ± 6.2 0.160
a
 

CLCR (mL/min) [mean ± SD] 85.5 ± 59.2 88.5 ± 63.5 74.1 ± 37.8 0.654
a
 

Target attainment at initial TDM  

[achieved/total (%)] 
 54/76 (71.1%) 42/61 (68.9%) 12/15 (80.0%) 0.532

c
 

Abbreviations: IQR, interquartile range; BW, body weight; SD, standard deviation; BMI, body mass index; CLCR, creatinine clearance; 

 TDM, therapeutic drug monitoring. 

a
Mann-Whitney U test, 

b
Chi-square test, 

c
Fisher’s exact test 
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TABLE 2 Model-recommended dosing regimens and estimated trough concentrations in the testing dataset 

Case no. Gender 
BW  

(kg) 
BMI 

Age  

(year) 

CLCR 

(mL/min) 

eGFR 

(mL/min) 

Loading dose 

(mg) 
 Maintenance dose   

Trough concentration  

(mg/L) 
AKI 

  

            Expert 
Current ML 

model 
 

Expert 

 (mg/day) 

Current ML 

model  

(mg/day) 

Previous ML model 

[mg/day (mg/kg/day)]
a
 

 
Expert (actual 

concentration) 

Current ML 

model
b
 

Previous ML 

model
b, c

 
  

1 Male 46.0  21.3  76 60.1  67.3  1000 1000  1500 1500 1297 (28.2) 
 

10.77  10.77  9.31  No 

2 Female 52.6  20.5  70 71.3  64.5  1000 1500  2000 1500 1483 (28.2) 
 

12.76  9.57  9.46  No 

3 Female 62.0  26.0  77 69.9  60.2  1500 1000  2000 2000 1748 (28.2) 
 

11.92  11.92  10.42  No 

4 Male 58.3  20.0  38 103.2  84.7  1250 1500  2000 2000 ND 
 

NA ND ND No 

5 Female 49.3  24.7  88 32.9  34.2  1000 1000  500 500 ND 
 

NA ND ND No 

6 Male 54.2  20.7  82 21.4  22.7  1000 1000  500 1000 ND 
 

19.80  ND ND AKI 

7 Male 58.9  22.2  80 75.4  83.2  1000 1500  2000 2000 1630 (27.7) 
 

11.70  11.70  9.54  No 

8 Male 47.5  16.4  78 56.0  69.7  1000 1000  1000 1000 1340 (28.2) 
 

19.00  19.00  25.45  No 

9 Male 58.8  22.5  82 20.3  20.3  1000 1000  400 500 ND 
 

NA ND ND No 

10 Female 48.3  19.7  79 30.5  29.8  1000 1000  750 750 ND 
 

16.91  16.91 ND No 

11 Male 65.2  21.4  65 97.0  89.5  1500 1500  2000 2000 ND 
 

NA ND ND No 

12 Male 69.5  24.5  71 96.5  88.7  1500 1500  2000 2000 2537 (36.5) 
 

7.19  7.19  9.12  No 

13 Male 55.7  21.4  47 71.2  58.1  1500 1500  2000 1500 ND 
 

NA ND ND No 

14 Female 103.0  46.4  43 190.2  92.1  2000 2000  3000 2000 3729 (36.2) 
 

17.60  11.73  21.87  No 

15 Female 71.0  29.2  72 74.0  55.3  1000 1000  2000 2000 1420 (20.0) 
 

15.42  15.42  10.95  No 

16 Male 66.0  23.7  74 68.0  64.5  1500 1000  2000 2000 1861 (28.2) 
 

13.52  13.52  12.58  No 

17 Female 37.1  17.2  75 73.0  83.6  1000 1000  1500 1500 ND 
 

16.37  16.37  ND No 

18 Female 45.5  17.1  63 137.9  137.7  1000 1250  750 1500 ND 
 

NA ND ND No 

19 Female 63.5  26.1  61 56.4  39.4  1500 1000  1500 2000 ND 
 

25.27  33.69 ND No 

20 Male 48.2  18.8  68 68.9  72.9  1250 750  2000 1500 1759 (36.5) 
 

13.70  10.28  12.05  No 

21 Female 70.3  28.1  46 90.7  56.1  1500 1500  2000 2000 1863 (26.5) 
 

33.00  33.00  30.74  No 

22 Male 51.0  19.4  77 65.6  75.1  1000 1000  1500 1500 1413 (27.7)  10.03  10.03  9.45  No 

Abbreviations: BW, body weight; BMI, body mass index; CLCR, creatinine clearance; eGFR, estimated glomerular filtration rate; ML, machine learning; ND, data not determined; NA, data not available; AKI, acute kidney injury. 

a
Dose per body weight (mg/kg/day) is also described, because a previous ML model predicted doses in this format.

 

b
Concentrations were not determined if patients developed AKI before TDM. 

c
Patients with a BW ≥ 40 kg and an eGFR ≥ 50 mL/min were included.
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TABLE 3 Relative ML-recommended doses 

Ratio of ML- to expert-recommended dose  
Loading dose  

(n = 22) 

Maintenance dose  

 (n = 22) 

> 150% [n (%)] 0 (0.0) 2 (9.1) 

> 125% and ≤ 150% [n (%)] 2 (9.1) 1 (4.5) 

> 100% and ≤ 125% [n (%)] 2 (9.1) 1 (4.5) 

100% (identical) 14 (63.6) 14 (63.6) 

≥ 75% and < 100% [n (%)] 0 (0.0) 3 (13.6) 

≥ 50% and < 75% [n (%)] 4 (18.2) 1 (4.5) 

< 50% [n (%)] 0 (0.0) 0 (0.0) 

Abbreviation: ML, machine learning. 

 

TABLE 4 Rates of achieving targeted trough levels with the expert- and current ML model–driven dosing regimens 

Trough concentration 
Expert  

(n = 15) 

Current ML model  

(n = 15) 

P value 

(Fisher's exact test) 

< 10 mg/L [n (%)] 1 (6.7) 2 (13.3) 

1.0  10–20 mg/L [n (%)] 12 (80.0) 11 (73.3) 

> 20 mg/L [n (%)] 2 (13.3) 2 (13.3) 

Abbreviation: ML, machine learning.  
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TABLE 5 Rates of achieving targeted trough levels with the current and previous ML model–driven dosing regimens 

Trough concentration 
Expert  

 (n = 12) 

Current ML model   

(n = 12) 

Previous ML model * 

(n = 12) 

< 10 mg/L [n (%)] 1 (8.3) 2 (16.7) 5 (41.7) 

10–20 mg/L [n (%)] 10 (83.3) 9 (75.0) 4 (33.3) 

> 20 mg/L [n (%)] 1 (8.3) 1 (8.3) 3 (25.0) 

P value (Fisher's exact test, vs. expert) 1.0  0.0361 

P value (Fisher's exact test, current vs. previous ML) 0.0995 

Abbreviation: ML, machine learning. 

* Imai S et al. 2020 (6) 
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