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Abstract

The rooting zone water storage capacity (S0) extends from the soil surface to the
weathered bedrock (the Critical Zone) and determines land-atmosphere exchange during
dry periods. Despite its importance to land-surface modeling, variations of S0 across
space are largely unknown as they cannot be observed directly. We developed a method
to diagnose global variations of S0 from the relationship between vegetation activity
(measured by sun-induced fluorescence and by the evaporative fraction) and the
cumulative water deficit (CWD). We then show that spatial variations in S0 can be
predicted from the assumption that plants are adapted to sustain CWD extremes
occurring with a return period that is related to the life form of dominant plants and
the large-scale topographical setting. Predicted biome-level S0 distributions, translated
to an apparent rooting depth (zr) by accounting for soil texture, are consistent with
observations from a comprehensive zr dataset. Large spatial variations in S0 across the
globe reflect adaptation of zr to the hydroclimate and topography and implies large
heterogeneity in the sensitivity of vegetation activity to drought. The magnitude of S0

inferred for most of the Earth’s vegetated regions and particularly for those with a large
seasonality in their hydroclimate indicates an important role for plant access to water
stored at depth - beyond the soil layers commonly considered in land-surface models.

Introduction 1

Water availability to vegetation exerts a strong control on the terrestrial carbon 2

cycle [2, 30], surface-atmosphere exchanges [60], and the development of heat waves [46]. 3

Under dry conditions and increasing cumulative water deficits (CWD, defined as the 4
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difference between evapotranspiration, ET, and precipitation, P , summed over 5

continuous dry periods), water availability to vegetation becomes increasingly limiting, 6

leading to reduced CO2 assimilation and transpiration [10], to accelerated heating of 7

near-surface air [68], and - in extreme cases - to premature defoliation of water-stressed 8

vegetation [5] and enhanced tree mortality [9, 25]. 9

To sustain activity during dry periods and resist impacts of droughts, plants rely on 10

water stored below the surface [26,44]. The larger the rooting zone water storage 11

capacity (S0), the longer plants can withstand soil moisture limitation during dry 12

periods [66] and the lower their sensitivity to an increasing CWD. S0 is therefore a key 13

factor determining drought impacts, land-atmosphere exchanges, and runoff regimes, 14

particularly in climates with seasonal asynchrony in radiation and 15

precipitation [23,26,44]. In models, S0 is commonly conceived as a function of the soil 16

texture and the plants’ rooting depth (zr), limited to the soil depth [44,59]. Recent 17

research has revealed a substantial component of S0 and contributions to ET by water 18

stored beneath the soil [48], in weathered and fractured bedrock [12,43,53] or 19

groundwater [18,28,67]. Plant access to such deep moisture plays an important role in 20

controlling near-surface climate [42,57,65], runoff regimes [26], global patterns of 21

vegetation cover [37], and mitigating impacts of droughts [17]. 22

However, S0 is impossible to observe directly across large scales and its spatial 23

variations are poorly understood [39]. Gravimetric remote sensing provides information 24

of terrestrial water storage variations but only at ∼100 km spatial resolution [30]. 25

Information from microwave remote sensing is limited to the top few centimeters of the 26

soil, and derived root zone soil moisture estimates rely on extrapolations and 27

assumptions for zr [13]. Global compilations of local zr measurements [7, 55] have 28

resolved this observational challenge only partly because of their limited size (owing to 29

prohibitively laborious data collection efforts), the importance of the (often unknown) 30

groundwater table depth (WTD) in relation to zr [18], and large documented variations 31

in zr across multiple scales. zr varies across large-scale climatic gradients and the 32

Earth’s biomes [7, 55], along topographical gradients and catchment-scale variations of 33

the WTD [18], between individuals growing under different conditions [69], and among 34

different growth forms and species growing in close vicinity [8, 55]. Modelling 35

approaches for predicting zr have conceived their spatial variations as the result of 36

eco-evolutionary pressure and plants’ adaptation to the prevailing 37

hydro-climate [21,34,58,62,73]. Other approaches for estimating the global zr 38

distribution made use of empirical relationships between in-situ observations and 39

climatic factors [54]. Catchment-scale water balance analyses [23] have shown that the 40

seasonality of potential evapotranspiration and precipitation, its relative timing, and the 41

ensuing cumulative water deficit (CWD) are important driving factors for plants’ 42

genetic or phenotypic adaptation of zr and hence S0. 43

Despite its crucial role in controlling water and carbon fluxes and the scarcity of 44

observations, practically all land surface models, climate models, terrestrial biosphere 45

models, numerical weather prediction models, or hydrological models, and several 46

widely used remote sensing-based models of vegetation productivity and 47

evapotranspiration rely on a specification of S0 either directly as the depth of a “water 48

bucket” (a simple model for water storage along the rooting zone), or indirectly through 49

a prescribed rooting depth zr and soil texture across the profile, or the shape of an 50

empirical water stress function. Typically, water stored along the entire Critical Zone - 51

the Earth’s outermost layer of biota and rocks that interacts with the atmosphere, the 52

hydrosphere, and biogeochemical cycles - is not fully represented in models [28,53]. As a 53

consequence, spatial variations in zr and S0 arise in models predominantly from 54

prescribed variations in soil texture [38], from distinct parameter choices of zr for 55

different plant functional types (PFTs), and from the PFTs’ spatial distribution [14]. 56
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The evident plasticity of zr and S0 along climatic and topographic gradients is typically 57

ignored. Implications of this simplification may be substantial for the simulation of 58

land-atmosphere coupling and drought impacts [28,42,57]. 59

Here, we estimate the global distribution of effective S0 by fusing multiple time 60

series of Earth observation data streams at a resolution of 0.05◦ and validate global 61

patterns against a globally distributed dataset of zr, observed in the field. We 62

demonstrate that the sensitivity of vegetation activity to an increasing CWD is 63

correlated with the magnitude of local CWD extremes, and that this reflects adaptation 64

of the rooting depth to the local hydroclimate. 65

Methods 66

Cumulative water deficit estimation 67

The cumulative water deficit (CWD) is determined here from the cumulative difference 68

of actual evapotranspiration (ET) and the liquid water infiltration to the soil (Pin). ET 69

is based on thermal infrared remote sensing, provided by the global ALEXI data 70

product at daily and 0.05◦ resolution, covering years 2003-2018. Values in energy units 71

of the latent heat flux are converted to mass units accounting for the temperature and 72

air pressure dependence of the latent heat of vaporization following [11]. Pin is based on 73

daily reanalysis data of precipitation in the form of rain and snow from 74

WATCH-WFDEI [70]. A simple snow accumulation and melt model [50] is applied to 75

account for the effect of snowpack as a temporary water storage that supplies Pin 76

during spring and early summer. Snow melt is assumed to occur above 1◦C and with a 77

rate of 1 mm d−1 (◦C)−1. The CWD is derived by applying a running sum of (ET - 78

Pin) for days where (ET - Pin) is positive (net water loss from the soil), and terminating 79

the summation after rain has reduced the running sum to zero. All precipitation and 80

snowmelt (Pin) is assumed to contribute to reducing the CWD. This implicitly assumes 81

that no runoff occurs while the CWD is above zero. The period between the start and 82

end of accumulation is referred to as a CWD event. Within each event, data are 83

removed after rain has reduced the CWD to below 90% of its maximum value within 84

the same event. This concerns the analysis of SIF and EF (see below) and avoids effects 85

of relieved water stress by re-wetting topsoil layers before the CWD is fully 86

compensated. The algorithm to determine daily CWD values and events is implemented 87

by the R package cwd [63]. 88

Estimating S0 from SIF and EF 89

As the ecosystem-level CWD increases, both gross primary production (GPP, 90

ecosystem-level photosynthesis) and evapotranspiration (ET) are limited by the 91

availability of plant access to water. Below, we refer to GPP and ET as a generic 92

“vegetation activity” variable X(t). This principle can be formulated, in its simplest 93

form, as a model of X(t) being a linear function of the remaining water stored along the 94

rooting zone S(t), expressed as a fraction of the total rooting zone water storage 95

capacity S0 [40]: 96

X(t) = X0 · S(t)/S0 (1)

Following Eq. 1, S0 can be interpreted as the total rooting zone water storage 97

capacity, or the depth of a “water bucket” that supplies moisture for evapotranspiration. 98

Following [66] and with X(t) representing ET, the temporal dynamics during rain-free 99

periods (where runoff can be neglected), are described by the differential equation 100
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dS/dt = −X(t)⇒ dS/dt = −X0 · S(t)/S0 (2)

and solved by an exponential function with a characteristic decay time scale λ: 101

X(t) = X0 · exp(−[t− t0]/λ) (3)

λ is related to S0 as S0 = λX0, where X0 is the initial ET at S(t0) = S0. In other 102

words, the apparent observed exponential ET decay time scale λ, together with X0, 103

reflects the total rooting zone water storage capacity S0. 104

Fitting exponentials from observational data is subject to assumptions regarding 105

stomatal responses to declines in S(t) and is relatively sensitive to data scatter. Hence, 106

resulting estimates of S0 may not be robust. With CWD= S0 − S(t) and Eq. 1, the 107

relationship of X(t) and CWD(t) can be expressed as a linear function 108

X(t) = X0 −X0/S0 · CWD(t) (4)

and observational data for X(t) can be used to fit a linear regression model. Its 109

intercept a and slope b can then be used as an alternative, and potentially more robust 110

estimate for S0: 111

S0 = −a/b (5)

This has the further advantage that estimates for S0 can be derived using any 112

observable quantity of vegetation activity X(t) (not just ET as in [66]) under the 113

assumption that activity attains zero at the point when the CWD reaches the total 114

rooting zone water storage capacity; i.e., X(t∗) = 0 for CWD(t∗) = S0. 115

Here, we use sun-induced fluorescence (SIF, [16]), normalised by incident shortwave 116

radiation (WATCH-WFDEI data [70]), and the evaporative fraction (EF), defined as 117

the ratio of evapotranspiration (ALEXI-ET data [27]) over net radiation (GLASS 118

data [32]), as two alternative proxies for water-constrained vegetation activity X. ET 119

and net radiation data are both provided at 0.05◦ and daily resolution. 120

SdSIF and SdEF were derived based on the linear relationship of SIF and EF versus 121

CWD by applying Eq. 5. The relationship was derived for each pixel with pooled data 122

belonging to the single largest CWD event of each year, and using the 90% quantile of 123

EF and normalised SIF within 50 evenly spaced bins along the CWD axis. Binning and 124

considering percentiles were chosen to reduce effects of vegetation activity reduction due 125

to factors other than water stress (CWD). We then tested for each pixel whether the 126

data support the model of a single linear decline of SIF (EF) with increasing CWD (Eq. 127

5), or, alternatively, a segmented regression model with one or two change points. The 128

R package segmented was used [47]. The model with the lowest BIC was chosen and 129

SdSIF and SdEF were quantified only for pixels where no significant change point was 130

detected and where the regression of EF (SIF) vs. CWD had a significantly negative 131

slope. “Flattening” EF (SIF) vs. CWD relationships were identified where a significant 132

change point was detected and where the slope of the second regression segment was 133

significantly less negative (p = 0.05 of t-test) compared to the slope of the first segment. 134

Rooting zone water storage capacity and rooting depth model 135

Following ref. [23], the rooting zone water storage capacity S0 is modelled based on the 136

assumption that plants size their rooting depth such that the corresponding S0 is just 137

large enough to maintain function under the expected maximum cumulative water 138

deficit (CWD) occurring with a return period of T years. Magnitudes of CWD extremes 139

are estimated by fitting an extreme value distribution (Gumbel) to the annual 140

maximum CWD values for each pixel separately, using the extRemes R package [24]. 141
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Magnitudes of extremes with a given return period T are derived and yield SCWDXT . 142

SCWDXT are translated into an effective depth zCWDXT using estimates of the 143

plant-available soil water holding capacity, based on soil texture data from a gridded 144

version of the Harmonized World Soil Database [20,71] and pedo-transfer functions 145

derived by [4]. A global map of zCWDX80 is provided in Fig. S13. 146

Estimating return periods 147

Diagnosed values of SdSIF and SdEF provide a constraint on the return period T . To 148

yield stable estimates of T and avoid effects of the strong non-linearity of the function 149

to derive T from the fitted extreme value distributions and magnitudes estimated by 150

SdSIF and SdEF, we pooled estimates SdSIF (SdEF) and SCWDXT values within 1◦ pixels 151

(≤400 values). A range of discrete values T was screened (10, 20, 30, 40, 50, 60, 70, 80, 152

90, 100, 150, 200, 250, 300, 350, 400, 450, 500 years) and the best estimate T was 153

chosen based on comparison to SdSIF (TSIF) and to SdEF (TEF), i.e., where the absolute 154

value of the median of the logarithm of the bias was minimal. 155

Rooting depth observations 156

The rooting depth data set (N = 5524) was compiled by combining and complementing 157

published datasets from [54] and [18]. The data includes observations of the maximum 158

rooting depth of plants taken from 361 published studies plus additional environmental 159

and climate data. zr was taken as the plant’s maximum rooting depth. Data were 160

aggregated by sites (N = 359) based on longitude and latitude information. Sites were 161

classified into biomes using maps of terrestrial ecoregions [49]. Quantiles (10%, 90%) 162

were determined for each biome. For a subset of the data, where parallel measurements 163

of the water table depth (WTD) was available, we conducted the same analysis, but 164

took the minimum of WTD and zr. 165

Results 166

Estimating ET 167

Unbiased estimates of ET during rain-free periods are essential for determining CWD 168

and estimating S0 and implied zr. We tested different remote sensing-based ET 169

products and found that the ALEXI-TIR product, which is based on thermal infrared 170

remote sensing [3, 27], exhibits no systematic bias during progressing droughts (Fig. S1). 171

The stability in ET estimates from ALEXI-TIR during drought are enabled by its 172

effective use of information about the surface energy partitioning, allowing inference of 173

ET rates without reliance on a priori specified and inherently uncertain surface 174

conductances [45] or shapes of empirical water stress functions [19], and without 175

assumptions of rooting depth or effective S0. ALEXI-TIR is thus well-suited for 176

estimating actual ET behaviour during drought without introducing circularity in 177

inferring S0. 178

Diagnosing S0 from SIF and EF 179

By employing first principles for the constraint of rooting zone water availability on ET 180

and photosynthesis [66], we developed a method to derive how the sensitivity of these 181

fluxes to increasing CWD relates to S0 and how this sensitivity can be used to reveal 182

effects of access to extensive deep water stores (see Methods). Following this method, 183

we determined the apparent S0 as the CWD at which vegetation “activity” ceases. The 184

parallel information of evapotranspiration, precipitation, and snow mass balance enables 185
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Figure 1. Rooting zone water storage capacity (mm) estimated from the sensitivity
of the evaporative fraction (SdEF, a) and sun-induced fluorescence (SdSIF, b) to the
cumulative water deficit (CWD). Data is aggregated to 0.1◦ resolution. The red box in
(a) shows the outline of the magnified map provided in Fig. 2. Blank cells mark areas
where all native cells at 0.05◦ resolution did not exhibit a significant and single, linearly
declining relationship with increasing CWD.
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a quantification of CWD over time. Vegetation activity was estimated from two 186

alternative approaches: from the evaporative fraction (EF, defined as ET over net 187

radiation), and from sun-induced fluorescence (SIF, normalised by incident shortwave 188

radiation). SIF is a proxy for ecosystem photosynthesis [74] and is taken here from a 189

spatially downscaled data product [16] based on GOME-2 data [33,36]. Since net 190

radiation and shortwave radiation are first-order controls on ET and SIF, respectively, 191

and to avoid effects by seasonally varying radiation inputs, we used EF instead of ET, 192

and considered the ecosystem-level fluorescence yield, quantified as SIF divided by 193

shortwave radiation (henceforth referred to as ‘SIF’) for all analyses. 194

Fig. 1 reveals large global variations in S0. Estimates based on EF and SIF agree 195

closely (R2=0.78, Fig. S2). The lowest sensitivity of vegetation activity to an increasing 196

CWD, and thus the largest apparent S0, is found in regions with a strong seasonality in 197

radiation and water availability and substantial vegetation cover - particularly in 198

monsoonal climates. In contrast, the lowest S0 values appear not only in regions where 199

seasonal water deficits are limited due to short inter-storm duration (e.g., inner tropics) 200

and/or low levels of potential evapotranspiration (e.g., high latitudes), but also in 201

deserts and arid grasslands. This reflects the limited water surplus accumulating during 202

rain events from which vegetation can draw during dry periods. A rapid decline of ET 203

and SIF with an increasing CWD is related to vegetation cover dynamics, governed by 204

greening after rain pulses and browning during dry periods [35]. 205

Figure 2. Rooting zone water storage capacity in Central Asia, estimated from the
evaporative fraction (SdEF). Mauve areas (“flattening”) show grid cells where a significant
reduction in the slope in EF vs. CWD was identified beyond a certain threshold. SdEF

values are not calculated for gridcells classified as ”Flattening”. Red lines show outlines
of major irrigated areas, i.e. where the irrigated land area fraction is above 30% [61].
Information about irrigated areas was used only for mapping here, but is not used for
other parts of the analysis. Blank grid cells indicate areas with a sustained imbalance of
ET being greater than P . Additional regional maps are provided by Figs. S3-S5.

Clear patterns emerge also at smaller scales (Fig. 2). SdSIF and SdEF consistently 206

(Fig. S6) reveal how the sensitivity of photosynthesis and transpiration to drought 207

stress varies across different topographical settings, indicating generally larger S0 in 208

mountain regions and along rivers (Amu Darya) and deltas (Volga). We note however, 209

that ALEXI ET estimates over mountainous terrain may be biased high where low 210

incident net radiation and surface temperatures are caused not by high evaporative 211

fractions but rather by topography effects and local shading. The maps of SdSIF and 212
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SdEF also bear strong imprints of human land use. Major irrigated cropland areas are 213

congruent with some of the highest apparent S0 values recorded here. In these areas, 214

our analysis yields particularly high CWD values and a low sensitivity of SIF and EF to 215

CWD based on remotely sensed apparent ET and precipitation time series, without 216

using information about the location and magnitude of irrigation. Other major irrigated 217

areas appear as blank cells in Fig. 2 because the algorithm used to calculate CWD (see 218

Methods) fails due to a long-term imbalance between P and ET and a “runaway CWD”. 219

This indicates a sustained over-use of local water resources, caused by lateral water 220

redistribution at scales beyond ∼5 km, either via streamflow diversion or groundwater 221

flow and extraction. 222

Regressing vegetation activity against CWD also identifies locations where a 223

decoupling of the two variables appears, i.e., where the sensitivity EF or SIF 224

significantly decreases beyond a certain CWD threshold (“Flattening” in Fig. 2, see 225

Methods). Such areas are particularly common in the vicinity of mountain regions, in 226

areas with irrigated croplands, and in savannahs (Fig. S7). Related mechanisms may be 227

at play. A flattening of the EF (SIF) vs. CWD relationship is likely due to the different 228

portions of the vegetation having access to distinct water resources and respective 229

storage capacities. In areas with large topographic gradients, this may be due to 230

within-gridcell heterogeneity in plant access to the saturated zone. In savannahs, a shift 231

in ET contributions from grasses and trees and a related shift in transpiration occurs as 232

grasses, which are often more shallow-rooted than trees, senesce. In irrigated cropland 233

areas, the flattening likely reflects land use heterogeneity within ∼5 km grid cells and 234

the persistent water access of irrigated fields while EF and SIF are reduced more rapidly 235

in surrounding vegetation. 236

Inferring S0 and zr from CWD distributions 237

What controls spatial variations in S0 and zr and the sensitivity of vegetation activity 238

to water stress? Following ref. [23], we hypothesized that plants are adapted to the local 239

hydroclimate and size their zr to maintain transpiration and photosynthesis in the face 240

of water deficits during dry periods commonly experienced over the course of a plant’s 241

lifetime. Specifically, we hypothesized that S0 can be inferred from the distribution of 242

annual CWD maxima at a given location and that S0 corresponds to a CWD extreme 243

recurring with a return period of T years, where T is on the same order of magnitude as 244

the typical lifetime of dominant plants (see Methods). We start by using T = 80 years 245

for estimating S0 and zr here (termed SCWDX80 and zCWDX80) and fit CWD extreme 246

value distributions separately for each pixel. 247
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248

Figure 3. Spatial variations of (a) the rooting zone water storage capacity, estimated by SCWDX80 (mm), and (b) 249

the apparent plant rooting depth zCWDX80 (m). Values are remapped to a 0.1◦ resolution. Blank grid cells are either 250

permanent inland water bodies and ocean, or locations with long-term accumulation of water deficits. Values are removed 251

in gridcells where more than 80% is non-vegetation surface based on MODIS Landcover [22]. 252

Fig. 3a shows the global distribution of SCWDX80 and reveals patterns across 253

multiple scales - in close agreement with SdSIF and SdEF (R2 = 0.76 and R2 = 0.84, 254

respectively, Fig. S6). This indicates that the sensitivity of vegetation activity to an 255

increasing CWD is strongly controlled by the magnitude of local CWD extremes. 256

Perennially moist tropical regions around the Equator (northwestern Amazon, Congo, 257

southeast Asia) where persistent cloud cover prohibits the derivation of SdSIF and SdEF, 258

emerge here as characterised by particularly low SCWDX80. Fine granularity and large 259

spatial heterogeneity of SCWDX80 at regional scales, particularly in arid and semi-arid 260

regions, reveal the importance of the local topographical setting (and irrigation, see Fig. 261

2) for determining plant-available water storage capacities (Figs. S8-S11). Variations 262

are likely to extend to even smaller scales along the hillslope topography [18] and within 263

individual forest stands [1]. These scales lie beyond the resolution of the satellite remote 264

sensing data used here to calculate CWD. 265
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Validation with rooting depth observations 266

Next, we investigate whether the strong control of CWD extremes on the sensitivity of 267

vegetation activity to water deficits reflects the adaptation of plant rooting depth to the 268

hydroclimate. For this, we compare SCWDX80 against (fully independent) field 269

observations of zr from a novel compilation of tree-level data with global coverage, 270

extended from previous work [18,56], now encompassing 5524 observations (see also 271

Methods). Data was aggregated by taking the mean of individual observations for 1705 272

globally distributed sites (SI Fig. S12). To avoid the inevitable scale mis-match between 273

in situ ecosystem observations and global remote sensing [39], we focused our evaluation 274

against observed rooting depth at the scale of biomes. We converted estimates of 275

SCWDX80 into a corresponding depth (zCWDX80) by accounting for soil texture along the 276

rooting profile (see Methods, Fig. 3b). 277

278

Figure 4. Modelled and observed rooting depth by biomes. (a) Kernel density estimates of observed and 279

predicted (zCWDX80) rooting depth by biomes, based on data aggregated by sites, shown by vertical colored tick marks. 280

10% and 90% quantiles of observed vs. predicted (zCWDX80) rooting depth by biome of all data (b,c), and of a subset of 281

the data where water table depth was measured along with rooting depth (d,e). Classification of sites into biomes was 282

done based on [49]. Dotted lines in b-e represent the 1:1 line. 283

Our rooting depth estimates zCWDX80 capture general differences in rooting depth 284

across biomes (Fig. 4). Predicted and observed biome-level maximum rooting depth 285

(90% quantiles) are in good agreement (Fig. 4c), while the lower (10%) quantiles appear 286
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to be overestimated by zCWDX80 (Fig. 4b). Using a subset of the data where 287

information about the water table depth (WTD) is provided (490 entries from 359 sites), 288

we limited predicted zCWDX80 to the value of the observed local WTD (53% of all 289

observations). This yields an improved agreement (Fig. 4d) and suggests that our 290

predictive model for zr overestimates values where the roots access groundwater. While 291

acting as a constraint on the rooting depth [18], plant access to groundwater implies 292

sustained transpiration during dry periods, correspondingly large cumulative water 293

deficits and, by implication of the model design, large SCWDX80 and zCWDX80. In other 294

words, large inferred SCWDX80 and zCWDX80 reflect sustained transpiration, enabled not 295

by the exceptional depth of roots, but by roots tapping into the groundwater, and CWD 296

is limited not by the supply of water, but by the demand (effectively radiation-limited 297

ET). This highlights that estimates of S0 and zr presented here are to be interpreted as 298

apparent quantities, subject to groundwater influence (and irrigation, as shown above). 299

It also demonstrates that knowledge about the groundwater depth and whether 300

vegetation taps into it is key for explaining ET during dry periods at a large proportion 301

of sites investigated here. 302

Estimating return periods 303

Underlying the estimates of SCWDX80 is the assumption that plant rooting strategies are 304

adapted to sustain CWD extremes with a return period T = 80 years. SdSIF and SdEF 305

provide an independent constraint to test this assumption. Fig. 3 suggests that T is not 306

a global constant and that a general pattern emerges, largely in consistency between the 307

independent estimates TEF and TSIF. A clear tendency towards higher T emerges with 308

an increasing gridcell average forest cover fraction (Fig. 3d). S0 appears to be adapted 309

to 500-year and even rarer events in forested regions but to lower T outside. A return 310

period on the order of multiple centuries is consistent with the typical lifetime of 311

trees [6] and suggests that optimal plant adaptation of life history strategies to a 312

stochastic environment may be understood as being governed by frequencies of climate 313

extremes in relation to the lifetime of affected organisms. Interestingly, substantial 314

variations in T remain even within land cover types (e.g. the boreal forests of Russia). 315

This variation may be related to the large-scale topographical setting and the tendency 316

towards shallow groundwater table depths, as measured by the Compound Topographic 317

Index ( [41], Fig. 3c). In such areas, vegetation appears to sustain particularly rare 318

CWD extremes (diagnosed here from its low sensitivity to CWD during the observation 319

period), possibly enabled by roots’ access to a relatively shallow saturated zone. 320

Discussion and conclusion 321

S0 is a central quantity in determining land-atmosphere exchange and vegetation 322

resistance to drought, but its spatial variations cannot be observed directly and have 323

largely been ignored in models. Using first-principles modelling and integrating multiple 324

data streams at daily and ∼5 km resolution, we diagnosed a hydrologically effective 325

ecosystem-level S0 from the sensitivity of vegetation activity to CWD. Our analysis 326

revealed extensive spatial heterogeneity of plant-available moisture storage in the 327

Critical Zone, with apparent variations extending from the continental to the regional 328

scale. While large-scale variations in S0 are mainly driven by the hydroclimate, more 329

fine-grained variations within regions are linked to topography and how vegetation and 330

land use is distributed across the landscape and determines actual ET. 331

By detecting where the sensitivity of vegetation activity to an increasing CWD 332

declines beyond a certain CWD threshold, we identified locations where a portion of the 333

vegetation may have access to deep water stores and where groundwater may contribute 334
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Figure 3. Return periods T (yr), diagnosed from EF (a) and SIF (b). To diagnose T ,
a range of alternative values of T are screened and the corresponding range of values
SCWDXT are compared to SdEF (SdSIF) within 1◦ grid cells (resolution of maps shown
here). The best matching T was retained for each gridcell, yielding a global distribution
of TEF (TSIF). The lower panel shows the distribution of diagnosed return periods T
(mean of TEF and TSIF) within bins of the Compound Topographical Index [41] (c) and
forest cover fractions (MOD44B [29]) (d).
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to land-atmosphere coupling [42]. Traditional land surface models, which typically 335

employ the assumption of free drainage out of the bottom soil layer and simulate 336

continuously increasing water stress effects as CWD increases, may not be suitable for 337

reliably simulating land-atmosphere exchange during prolonged dry periods in these 338

regions. 339

Diagnosed values of S0 are representative of water stored across the entire rooting 340

zone - from the soil surface to the weathered bedrock and groundwater. Particularly in 341

regions with pronounced dry seasons, magnitudes of SCWDX80 greatly exceed typical 342

values of the total soil water holding capacity when considering the top 1 or 2 meters of 343

the soil column and texture information from global databases ( [20], Fig. S13) - as 344

commonly done in models [11,28,44]. The discrepancy in magnitude and spatial 345

patterns underlines the critical role of plant access to deep water and the need to extend 346

the focus beyond soil moisture for simulating land-atmosphere exchange [12]. We note 347

that using SCWDX80 (zCWDX80) for directly parameterizing S0 (zr) in global models 348

may be misleading in forested areas with particularly small SCWDX80. Additional effects 349

of how zr determines access to belowground resources and function (e.g., nutrients, 350

mechanical stability) should be considered. 351

Our estimate of S0 implicitly includes water intercepted by leaf and branch surfaces, 352

internal plant water storage, and moisture stored in the topsoil and supplied to 353

evaporation. These components are generally smaller in magnitude compared to 354

moisture storage supplied to transpiration [64], and their contribution to ET declines 355

rapidly as CWD increases. (Moreover, readily available global evaporation data is 356

lacking [39]). Hence, spatial variations in S0 primarily reflect variations mediated by 357

moisture stored across the root zone. 358

Our analysis identified mountain regions as “water towers” with particularly high S0, 359

in spite of shallow soil and regolith depths along upland hillslopes [51]. This could be 360

due to hillslope-scale variations in groundwater depth where lateral flow pushes the 361

saturated zone closer to the surface in valley bottoms and enables sustained 362

transpiration during prolonged rain-free periods. Lateral subsurface flow is not explicitly 363

accounted for, but can be considered relatively small at the scale investigated here (∼5 364

km). Nevertheless, local convergence (divergence) acts to supply (remove) moisture and 365

sustain (reduce) ET, leading to larger (smaller) CWD values. This effect should be 366

captured by the relatively accurate remote sensing of ET by TIR (Fig. S1), and likely 367

contributes to the strong contrast in SCWDX80 along topographic gradients (Figs. 368

S8-S11). However, further research should assess the accuracy of spatial variations in 369

annual mean ET and potential effects of terrain, where lower temperature rise signals 370

on shaded slopes may be mis-interpreted by the ALEXI algorithm as signatures of 371

higher ET. Since ET data are used both in SCWDX80 and in SdEF and SdSIF, these 372

quantities are not entirely independent, potentially leading to an overestimation of their 373

correlation strengths (Fig. S7). Nevertheless, our predictions of continental-scale 374

variations in S0 and implied zr agree well with patterns derived from an extended 375

dataset of tree-level zr observations - an entirely independent observational constraint. 376

In contrast to earlier studies [18,34,39,54,73], here we mainly focused on S0, instead 377

of zr. This makes our quantification independent of large variations in porosity along 378

depths extending beneath the soil and focuses on the quantity relevant for the surface 379

water balance. Nevertheless, where vegetation accesses the saturated zone, effective S0 380

may be even larger than numbers derived here based on past CWD time series. 381

Similarly, the concept of a constrained water storage capacity is inappropriate where 382

irrigation supplies water to ET. For comparison to observations and to earlier studies, 383

we converted S0 into zr using soil texture information provided for the top 1 m of the 384

soil profile [20,71]. This was chosen due to a lack of information about porosity of the 385

subsoil. 386
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Our zr map (Fig. S13) yields patterns that are mostly consistent with previous 387

estimates of the global distribution of zr [18, 34,39,54,73], but differ in important 388

aspects. Deepest roots are predicted here in monsoonal climates with substantial 389

vegetation cover, particularly in south and southeast Asia, but are predicted along the 390

arid edges of vegetated zones elsewhere [18, 73]. This may be due to differences between 391

TIR-derived ET versus ET derived from other approaches used in [18,73]. Our 392

evaluation against observations suggests that the distribution of zr is reliably predicted 393

by zCWDX80 for deserts and xeric shrublands and in tropical and subtropical broadleaf 394

forests (Fig. 4). Suggested deep rooting in dry steppe regions of Kazakhstan [18,73] and 395

further east [39,54] are not corroborated here. Mismatches may be due to the rapid 396

dynamics of green foliage cover and ensuing water losses in these regions. In contrast to 397

other studies [73], the ET and P time series used here capture these dynamics at a daily 398

resolution. Common to most [18,34,54,73], but not all [39], global zr estimates, 399

including the present one, is the characteristic contrast between zr in the northwestern 400

and northeastern Amazon. Taken together, constraints available from local zr 401

observations and from global remote sensing of vegetation activity converge on 402

consistent patterns across multiple spatial scales and suggest that belowground 403

vegetation structure can be sensed from space. 404

Using methods developed here, combined with emerging data from recently launched 405

satellite missions for thermal infrared remote sensing (e.g., ECOSTRESS) [72] bears 406

promise for resolving S0 variations at the hillslope scale (100 m - 1 km). This will 407

provide critical information for reliably estimating water deficits and spatial 408

heterogeneity of ET across the landscape at scales relevant to multiple stakeholders. 409

Contrasting future CWD extremes with their past distribution will yield insight into the 410

severity of droughts with respect to levels to which zr is adapted today. Our study 411

revealed a tight control of the climatology of water deficits on vegetation sensitivity to 412

drought stress, and demonstrated how land-atmosphere interactions and the Critical 413

Zone water storage capacity are governed by vegetation and its adaptation to the 414

hydroclimate and topography across the globe. It remains to be shown whether 415

plasticity in zr is sufficiently rapid to keep pace with a changing climate with strong 416

and wide-spread increases in rainfall variability [52], and to what degree rising CO2 417

alters plant water use and their carbon economy and thereby the costs and benefits of 418

deep roots [15,31]. 419
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Goulden, T. J. Griffis, T. Grünwald, M. S. Johnson, M. Kang, D. Kelbe,
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36. P. Köhler, L. Guanter, and J. Joiner. A linear method for the retrieval of
sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data.
Atmospheric Measurement Techniques, 8(6):2589–2608, 2015.

37. S. Koirala, M. Jung, M. Reichstein, I. E. M. de Graaf, G. Camps-Valls, K. Ichii,
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