Abstract
RNA degradation plays a major role in cellular function, but current methods for measuring RNA degradation require RNA purification or are low throughput. Here we show how a flow-FISH assay can be used for high-throughput, in situ measurement of RNA degradation without RNA purification. We demonstrate how this approach can be used to simultaneously measure RNA degradation rates of different RNA sequences in a single assay and explore how the assay can be used to examine the effect of cellular context on RNA degradation rates. This assay will be generally useful to quantitatively measure how natural and engineered biological function depends on RNA half-life.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.