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Abstract 

 
Background: Genome-wide polygenic scores for educational attainment (PGS-EA) and 

socioeconomic factors, which are correlated with each other, have been consistently associated 

with academic achievement and general cognitive ability in children and adolescents. Yet, the 

independent associations of PGS-EA and socioeconomic factors with specific underlying factors 

at the neural and neurocognitive levels are not well understood. The goal of this study was to 

examine the unique contributions of PGS-EA and parental education to cortical thickness (CT), 

cortical surface area (SA), and neurocognitive skills in children and adolescents. Methods: 

Participants were typically developing children and adolescents (3-21 years of age; 53% male; N 

= 391). High-resolution, T1-weighted magnetic resonance imaging data were acquired. PGS-EA 

were computed based on the most recent genome-wide association study of educational 

attainment. Sustained attention, inhibitory control, working memory, vocabulary, and episodic 

memory were measured. Results: PGS-EA and parental education were independently and 

significantly associated with SA, vocabulary, and attention outcomes but were not associated 

with CT. Vertex-wise analyses indicated that higher PGS-EA was significantly associated with 

greater SA in the left medial orbitofrontal gyrus and inferior frontal gyrus after accounting for 

parental education. Higher parental education was significantly associated with greater SA in the 

left parahippocampal gyrus after accounting for PGS-EA. Conclusions: These findings suggest 

that education-linked genetics may influence SA, particularly in certain frontal regions, leading 

to variability in academic achievement. Results suggested genetic confounding in associations 

between parental education and SA in children and adolescents, with these associations 

remaining significant after controlling for PGS-EA.         
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Elucidating how genetic and environmental factors influence brain development in 

children and adolescents is an important task for researchers. Recent scientific advances allowing 

the computation of genome-wide polygenic scores have led to ground-breaking insights into 

genetic effects on cognitive and health outcomes (Armstrong‐Carter et al., 2021; Plomin & von 

Stumm, 2018). Polygenic scores are derived using genome-wide association studies (GWAS) by 

aggregating the contributions of all known genetic variants associated with the phenotype of 

interest (Plomin & von Stumm, 2018). GWAS have identified genetic variants robustly 

associated with educational attainment (years of education) and yielded genome-wide polygenic 

scores for educational attainment (PGS-EA) that significantly predict years of education (Lee et 

al., 2018; Okbay et al., 2016; Rietveld et al., 2013), academic achievement (Selzam et al., 2017; 

von Stumm et al., 2020; Ward et al., 2014), and general cognitive ability (Allegrini et al., 2019; 

Belsky et al., 2016; Judd et al., 2020; Wertz et al., 2018) in independent samples. However, the 

associations between PGS-EA and the underlying factors at the neural and neurocognitive levels 

in children and adolescents are not well understood.  

Building from decades of research demonstrating socioeconomic disparities in cognitive 

development (McLoyd, 1998), recent studies have shed light on the neural mechanisms 

underlying these associations (Farah, 2017). Socioeconomic factors, such as parental education 

and family income, have been repeatedly associated with brain structure in children and 

adolescents (Farah, 2017; McDermott et al., 2019; Noble et al., 2015; Noble & Giebler, 2020), 

with evidence pointing to the environmental factors involved in these associations (Merz et al., 

2020). Yet, the environments in which children are raised are associated with the genotypes they 

inherit from their parents (i.e., gene-environment correlation) (Plomin et al., 2016). In one 

example of a passive gene-environment correlation, more educated parents provide both a 
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genetic propensity for higher educational attainment and cognitively stimulating home 

environments to their children. Indeed, the associations between socioeconomic factors and 

children’s academic achievement may be partially attributable to genetic transmission (Belsky et 

al., 2016, 2018; Krapohl & Plomin, 2016; von Stumm et al., 2020). However, the unique role of 

socioeconomic factors in predicting the underlying neural and neurocognitive measures 

independent of genetic factors is not well understood. As such, the goal of this study was to 

examine the independent associations of PGS-EA and parental education with cortical structure 

and neurocognitive skills in children and adolescents.  

PGS-EA and Cortical Structure 

In recent years, researchers have leveraged GWAS techniques to investigate the genetics 

of educational attainment (Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013). 

Educational attainment is a demographic measure collected in most studies, allowing large 

studies to be conducted on this phenotype. The most recent GWAS (EA3) included data from 

over a million adults of European ancestry and identified 1,271 significant single-nucleotide 

polymorphisms (SNPs) (Lee et al., 2018). A polygenic score derived from the results explained 

up to 13% of the variance in educational attainment in independent samples (Lee et al., 2018). 

To our knowledge, only two neuroimaging studies to date have focused on PGS-EA and 

cortical structure in children and adolescents. In one study, PGS-EA were significantly positively 

associated with total brain volume in a large sample of 10-year-olds (Alemany et al., 2019). 

Cortical volume is a composite of cortical surface area (SA) and cortical thickness (CT), which 

are genetically, developmentally, and phenotypically independent (Panizzon et al., 2009; 

Raznahan et al., 2011; Winkler et al., 2010). In a study that examined SA and CT separately, 

PGS-EA were significantly positively associated with global SA but not significantly associated 
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with global CT in adolescents (Judd et al., 2020). In addition, PGS-EA were significantly 

associated with regional SA in the right intraparietal sulcus (Judd et al., 2020). 

Socioeconomic Factors and Cortical Structure   

Numerous studies have revealed associations between socioeconomic factors and cortical 

structure in children and adolescents (Farah, 2017; Noble & Giebler, 2020). In these studies, 

higher parental education and family income have been significantly associated with greater SA 

(Judd et al., 2020; McDermott et al., 2019; Noble et al., 2015) and CT (Lawson et al., 2013; 

Mackey et al., 2015; McDermott et al., 2019; Romeo et al., 2017). These socioeconomic 

differences in cortical structure have been found to be most prominent in frontal and temporal 

regions crucial to language, executive function, and memory (McDermott et al., 2019; Noble et 

al., 2015). Yet, to our knowledge, only one study has examined associations between 

socioeconomic factors and cortical structure while controlling for PGS-EA in children and 

adolescents. In this study, parental education remained significantly positively associated with 

total SA after controlling for PGS-EA in adolescents (Judd et al., 2020).  

PGS-EA, Socioeconomic Factors, and Neurocognitive Measures  

Although multiple studies have demonstrated associations between PGS-EA and general 

cognitive ability (Plomin & von Stumm, 2018), a smaller body of work has shown associations 

between PGS-EA and specific neurocognitive skills that underlie general cognitive ability. PGS-

EA has been significantly associated with vocabulary, executive function (inhibitory control, 

working memory), and episodic memory in children and adolescents (Domingue et al., 2015; 

Judd et al., 2020; Loughnan et al., 2021; Rea-Sandin et al., 2021). In a largely separate literature, 

greater family income and parental education have been significantly associated with higher 

levels of these neurocognitive skills (Lawson et al., 2017; Merz et al., 2019; Noble et al., 2005, 
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2007). However, the independent associations of PGS-EA and socioeconomic factors with 

neurocognitive skills in children and adolescents are not well understood.  

Current Study 

The goal of this study was to examine the independent associations of PGS-EA and 

parental education with cortical structure and specific neurocognitive skills in children and 

adolescents. Participants were typically developing children and adolescents who ranged in age 

from 3-21 years (N = 391). High-resolution, T1-weighted MRI data were acquired, and attention, 

vocabulary, inhibitory control, working memory, and episodic memory were measured. PGS-EA 

were computed using results from the most recent GWAS of educational attainment (Lee et al., 

2018). We conducted analyses of global measures of CT and SA and vertex-wise analyses of 

regional CT and SA. Parental education and family income were examined separately (rather 

than combined into an SES composite) because they have been associated with distinct aspects 

of children’s environments and relate differentially to children’s development (Duncan & 

Magnuson, 2012). While the main analyses focus on parental education, results for family 

income are presented in the supplemental material. 

We hypothesized that PGS-EA and parental education would be independently associated 

with SA and possibly CT. Based on previous research (McDermott et al., 2019; Mitchell et al., 

2020; Noble et al., 2015), we expected these associations to be most pronounced in frontal and 

temporal cortical regions. We also hypothesized that both PGS-EA and parental education would 

be associated with a range of neurocognitive skills.  

Some research has suggested gene-by-SES interactions may predict cognitive ability such 

that the heritability of intelligence is lower in low-SES family environments and higher in high-
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SES family environments (Tucker-Drob & Bates, 2016). Thus, we also examined interactions 

between socioeconomic factors and PGS-EA in predicting cortical structure.  

Methods 

Participants 

Data were obtained from the Pediatric Imaging, Neurocognition and Genetics (PING) 

study (http://ping.chd.ucsd.edu/) (Jernigan et al., 2016). The PING study is a large-scale, 

publicly available data set for investigating neuroimaging, cognition and genetics in typically-

developing children and adolescents (Jernigan et al., 2016). Exclusionary criteria in the PING 

study included neurological disorders; history of head trauma; preterm birth; diagnosis of an 

autism spectrum disorder, bipolar disorder, schizophrenia, or significant intellectual disability; 

and contraindications for MRI (Jernigan et al., 2016).  

In total, the PING study included cross-sectional data collected from nine different sites 

across the United States. Participants in the current study ranged from 3-21 years of age (M = 

11.53, SD = 4.82) and were 53% male. Family income ranged from $4,500-$325,000 (M = 

121,290.35, SD = 76,743.49); parental education ranged from 8-18 years (M = 15.73; SD = 1.86).  

Written informed consent was provided by parents for all participants younger than 18 

years of age and by the participants themselves if they were 18 years or older. Child assent was 

obtained for 7- to 17-year-old participants. Each site's Institutional Review Board approved the 

study. 

Socioeconomic Factors 

Educational attainment was averaged across parents. Both education and income data 

were originally collected in bins, which were recoded as the means of the bins for analysis, 

following from previous work (Noble et al., 2015). Family income was log-transformed to 
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correct for positive skew. Family income and parental education were significantly correlated, r 

= .56, p < .0001.  

Genomic Data 

The PING dataset includes 550,000 SNPs genotyped from saliva samples using Illumina 

Human660W-Quad BeadChip. Computation of polygenic scores followed steps similar to that of 

our previous study (Khundrakpam, Vainik, et al., 2020). Steps included preparation of the data 

for imputation using the “imputePrepSanger” pipeline 

(https://hub.docker.com/r/eauforest/imputeprepsanger/) and implemented on CBRAIN (Sherif et 

al., 2014) using Human660W-Quad_v1_A-b37-strand chip as reference. The next step involved 

data imputation with Sanger Imputation Service (McCarthy et al., 2016) using default settings 

and the Haplotype Reference Consortium, HRC (http://www.haplotype-reference-

consortium.org/) as the reference panel. Using Plink 1.9 (Chang et al., 2015), the imputed SNPs 

were then filtered with the inclusion criteria: SNPs with unique names, only ACTG, and MAF > 

0.05. All SNPs that were included had INFO scores R2 > 0.9 with Plink 2.0. Next, using 

polygenic score software PRSice 2.1.2 (Euesden et al., 2015) additional ambiguous variants were 

excluded, resulting in 4,696,385 variants being available for polygenic scoring. We filtered 

individuals with 0.95 loadings to the European principal component (GAF_Europe variable 

provided with the PING data), resulting in 526 participants. These participants were then used to 

compute 10 principal components with Plink 1.9. Polygenic scores based on the EA3 GWAS 

(Lee et al., 2018) were used in analyses. We clumped the data as per PRSice default settings 

(clumping distance = 250 kb, threshold r2 = 0.1).  

PGS-EA were computed at different p-value thresholds and the most predictive one was 

chosen, following previous studies (Alemany et al., 2019; Du Rietz et al., 2018; Judd et al., 
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2020). The p-value threshold of p < 1 x 10-7 best explained variance in SA. Thus, this 

conservative p-value threshold was used for the main analyses. After matching with available 

variants in the data, this PGS-EA was based on 694 variants (see Table S1). Results for other p-

value thresholds were consistent with the results reported.  

Image Acquisition and Preprocessing 

Each site administered a standardized structural MRI protocol. Imaging data were 

collected using 3-Tesla scanners manufactured by General Electric, Siemens, and Philips. The 

imaging protocols and pulse sequence parameters used in the PING study have been published 

previously (Jernigan et al., 2016; Merz et al., 2018; Noble et al., 2015). T1-weighted images 

were acquired using a standardized high-resolution 3D RF-spoiled gradient echo sequence 

(Jernigan et al., 2016).  

The raw T1-weighted imaging data for the PING study are publicly shared 

(https://nda.nih.gov/) for a subset of the sample (n = 934). The only difference between the full 

PING sample and the subsample with raw T1-weighted imaging data was that the full PING 

sample was older on average than the subsample (Khundrakpam, Choudhury, et al., 2020). We 

used the CIVET processing pipeline (https://mcin.ca/technology/civet/) developed at the 

Montreal Neurological Institute to compute CT measurements at 81,924 regions covering the 

entire cortex. Processing steps included non-uniformity correction of the T1-weighted image and 

then linear registration to the Talairach-like MNI152 template (created with the ICBM152 

dataset). After repeating the non-uniformity correction using the template mask, the non-linear 

registration from the resultant volume to the MNI152 template is computed, and the transform 

used to provide priors to segment the image into gray matter, white matter, and cerebrospinal 

fluid. Inner and outer gray matter surfaces are then extracted using the Constrained Laplacian-
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based Automated Segmentation with Proximities (CLASP) algorithm. CT is then measured in 

native space using the linked distance between the two surfaces at 81,924 vertices. To impose a 

normal distribution on the corticometric data and increase the signal to noise ratio, each 

individual’s CT map was blurred using a 30-millimeter full width at half maximum surface-

based diffusion smoothing kernel. Two independent reviewers performed quality control (QC) of 

the data, and only scans with consensus of the two reviewers were used. Exclusion criteria for 

QC procedure included: data with motion artifacts, a low signal to noise ratio, artifacts due to 

hyperintensities from blood vessels, surface-surface intersections, or poor placement of the gray 

or white matter surface for any reason.  

Of the 934 participants with raw T1-weighted MRI data, 29 participants’ data failed the 

QC procedures. Of these 29, 13 participants’ data were excluded before any processing due to 

severe motion and slicing artifacts. The remaining 16 participants failed the CIVET pipeline for 

reasons including the presence of bright blood vessels and poor contrast. Thus, 905 participants 

passed the QC procedures. 

Sample sizes. Of the 526 participants with polygenic score data, 391 had T1-weighted 

neuroimaging data and 518 had neurocognitive measure data. Thus, 391 and 518 children and 

adolescents were included in the analyses of CT/SA and neurocognitive skills, respectively.    

Neurocognitive Measures 

Participants completed tasks from the NIH Toolbox Cognition Battery including the 

Flanker Inhibitory Control and Attention (Zelazo et al., 2013), List Sorting Working Memory 

(Tulsky et al., 2013), Picture Sequence Memory (Bauer et al., 2013; Dikmen et al., 2014), and 

Picture Vocabulary Tests (Gershon et al., 2013, 2014) (see Supplemental Materials). In addition, 

parents reported on children’s attention problems. Attention problems were measured using two 
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questionnaire items: parent report of a previous child diagnosis of ADHD and/or parent report of 

significant child attention problems.  

Statistical Analyses  

We first investigated whether PGS-EA and parental education were associated with the 

outcome of interest (e.g., total SA) in separate models. Then, if they were both significantly 

associated with the outcome of interest, we examined their unique contributions in regression 

models in which they were both included as predictors. 

To examine associations with global measures of SA (total SA) and CT (mean CT) and 

neurocognitive measures, multiple linear regression analyses in SAS (version 9.4) were 

conducted using the general linear model (GLM) procedure. Effect sizes (partial eta squared 

[ηp
2]) are presented, with values of .01, .06, and .14 indicating small, medium, and large effects, 

respectively (Cohen, 1988; Richardson, 2011). Given that interactions between socioeconomic 

factors and PGS-EA were not significant, they were not included in the final regression models. 

Logistic regression was used to examine associations of PGS-EA and parental education with 

attention problems.   

Covariates included in the regression models were age, age2, gender, and scanner/site. In 

the PING study, 12 MRI scanners were used across the nine data collection sites. Thus, analyses 

predicting cortical structure included scanner as a covariate, and analyses predicting 

neurocognitive skills included site as a covariate. In addition, to minimize the chance of 

population structure explaining the polygenic score results, we extracted 10 first principal 

components (PC10) and used them as covariates. Without controlling for those principal 

components, random differences in population genomic signature can explain outcomes, if 

different populations also happen to differ in the outcome (Price et al., 2006).  
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Vertex-level neuroanatomical variables of interest included surface area and thickness at 

each of 81,924 cortical vertices. To examine associations with PGS-EA (or parental education), 

general linear models were conducted for each vertex for SA and CT using the SurfStat toolbox 

(http://www.math.mcgill.ca/keith/surfstat/). At every cortical point, the t-statistic for the 

association between brain structure (SA, CT) and PGS-EA (or parental education) was mapped 

onto a standard cortical surface. Correction for multiple comparisons using random field theory 

(RFT) (Worsley et al., 2004) was then applied to the resultant map to determine the regions of 

cortex significantly associated with PGS-EA (or parental education). To identify significant 

clusters, an initial height threshold of p < .001 was implemented at the vertex level, and a 

corrected family-wise error (p < .05) was then applied. In addition, vertex-level RFT 

thresholding was implemented using the vertex-wise RFT critical t-value (Worsley et al., 2004). 

Results focus on brain areas significant at the cluster level and include mention of brain areas 

significant at the vertex level. Vertex level correction is more stringent than cluster-based 

correction (Woo et al., 2014). 

In addition to the covariates mentioned above, the main vertex-wise analyses also 

controlled for total brain volume. Supplemental analyses not adjusting for total brain volume are 

also presented based on current recommendations (Mills et al., 2016; Vijayakumar et al., 2018) 

and to compare our results with those of previous studies that did not control for global measures 

(McDermott et al., 2019; Noble et al., 2015). 

Results 

Descriptive Statistics 
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Descriptive statistics and zero-order correlations are presented in Table 1. PGS-EA was 

significantly correlated with parental education (r = .21, p < .0001) and family income (r = .10, p 

= .03). PGS-EA data were normally distributed.  

PGS-EA, Parental Education, and SA 

PGS-EA. PGS-EA was significantly positively associated with total SA, β = .11, p = 

.0083, ηp
2 = .0187, and remained significantly associated with total SA after accounting for 

parental education, β = .09, p = .0279, ηp
2 = .0134. Vertex-wise analyses indicated that PGS-EA 

were significantly (p < .05, RFT-corrected) associated with SA in the left medial orbitofrontal 

gyrus and left inferior frontal gyrus (see Figure 1 and Table 2). These associations remained 

significant after controlling for parental education (see Figure 1 and Table 2). A consistent 

pattern of results was found when examining PGS-EA computed at different p-value thresholds.  

Parental education. Parental education was significantly positively associated with total 

SA, β = .13, p = .0022, ηp
2 = .0257, and remained significantly associated with total SA after 

accounting for PGS-EA, β = .12, p = .0076, ηp
2 = .0196. Vertex-wise analyses indicated that 

higher parental education was significantly (p < .05, RFT-corrected) associated with greater SA 

in the left fusiform gyrus and right superior temporal gyrus (see Figure 2 and Table 3). Parental 

education was significantly associated with SA in the left parahippocampal gyrus after 

controlling for PGS-EA (see Figure 2 and Table 3).  

PGS-EA, Parental Education, and CT  

PGS-EA was not significantly associated with global CT, β = .04, p = .2195, or regional 

CT. Parental education was not significantly associated with global CT, β = .05, p = .1003, or 

regional CT.  

PGS-EA, Parental Education, and Neurocognitive Measures 
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PGS-EA. PGS-EA was significantly positively associated with vocabulary, working 

memory, and episodic memory and negatively associated with attention problems (see Table S2). 

PGS-EA remained significantly associated with vocabulary, episodic memory, and attention 

problems after controlling for parental education (see Table S2). A similar pattern of results was 

found at different p-value thresholds with the exception that PGS-EA at other p-value thresholds 

was more strongly associated with sustained attention and working memory (see Table S4).   

Parental education. Higher parental education was significantly associated with greater 

inhibitory control, working memory, sustained attention, vocabulary, and episodic memory (see 

Table S2). Associations with all but episodic memory remained significant after controlling for 

PGS-EA (see Table S2).  

Supplemental Analyses 

A similar pattern of results emerged when not controlling for total brain volume but with 

significant associations between parental education and SA in more cortical regions (see Figures 

S1 and S2 and Tables S5 and S6).   

Discussion 

The goal of this study was to examine the independent associations of polygenic scores 

for educational attainment (PGS-EA) and parental education with cortical structure and 

neurocognitive measures in children and adolescents. Replicating previous findings (Belsky et 

al., 2016, 2018; Judd et al., 2020; Selzam et al., 2017), higher parental education was 

significantly correlated with higher PGS-EA in children and adolescents, which may indicate a 

gene-environment correlation. For example, passive gene-environment correlation may occur 

because parents create a family environment that corresponds to their genotypes and correlates 

with the genotypes of their children. These associations underscore the importance of accounting 
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for parental education when analyzing PGS-EA and vice versa. Results from our study, which 

took this approach, indicated that PGS-EA and parental education explained unique variability in 

cortical surface area (SA), vocabulary, and attention outcomes.  

PGS-EA and Parental Education are Independently Associated with SA   

PGS-EA. Higher genome-wide genetic predisposition to educational attainment was 

significantly associated with greater total SA in children and adolescents, consistent with 

previous research on adolescents and adults (Judd et al., 2020; Mitchell et al., 2020). 

Associations between PGS-EA and total SA were attenuated but remained significant after 

accounting for parental education. These findings suggest that associations between PGS-EA and 

total SA could arise, in part, from correlations between participants’ PGS-EA and environments 

associated with their socioeconomic background.   

Vertex-wise analyses revealed that PGS-EA were significantly associated with SA in left 

medial orbitofrontal and inferior frontal regions, and these associations were attenuated but 

remained significant after additionally controlling for parental education. A previous study of 

adults (Mitchell et al., 2020) also found PGS-EA to be significantly associated with SA in these 

frontal regions. Both cognitive and “non-cognitive” skills (e.g., motivation, persistence, grit) are 

necessary for academic success (Heckman, 2006). PGS-EA have been significantly associated 

with cognitive (Allegrini et al., 2019; Plomin & von Stumm, 2018; Wertz et al., 2018) and non-

cognitive skills (Belsky et al., 2016; Smith-Woolley et al., 2019). The medial orbitofrontal cortex 

(OFC) has been associated with inhibitory control in emotionally- or motivationally-salient 

contexts (Rolls, 2019). Genotypes linked to higher educational attainment may impact SA in the 

medial OFC, leading to greater impulse control and/or academic motivation and in turn school 

performance. Associations between PGS-EA and SA in the left inferior frontal gyrus, which has 
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been associated with language skills (Friederici, 2011), are consistent with the robust 

associations found between PGS-EA and language skills (Loughnan et al., 2021; von Stumm et 

al., 2020). 

Genetic variants associated with educational attainment have been linked with genes 

showing elevated expression in neural tissue (Okbay et al., 2016). Genetic propensity to higher 

educational attainment may include variants that promote optimal cortical development. The 

cellular processes underlying developmental changes in SA, including synaptic function, have 

been associated with genes linked with the significant SNPs identified in GWAS of educational 

attainment (Deary et al., 2021; Okbay et al., 2016).   

Parental education. Higher parental education was significantly associated with greater 

total SA, replicating previous findings using the PING dataset (Noble et al., 2015) and other 

large-scale datasets (Judd et al., 2020; McDermott et al., 2019). Extending previous work, our 

findings indicated that this association was attenuated after adjusting for PGS-EA, suggesting 

genetic confounding (Wertz et al., 2020). The fact that parental education remained significantly 

associated with total SA after accounting for PGS-EA leaves open the possibility of 

environmental transmission. 

Vertex-wise analyses indicated that associations between parental education and SA were 

most prominent in the left parahippocampal/fusiform gyrus and right superior temporal gyrus. 

Parental education was significantly associated with SA in the left parahippocampal gyrus after 

adjusting for PGS-EA. The parahippocampal gyrus, as part of the medial temporal lobe, has been 

strongly associated with episodic memory (Eichenbaum, 2006), which varies significantly across 

socioeconomic gradients (Noble et al., 2005, 2007; Noble & Giebler, 2020). When not adjusting 

for total brain volume, similar to analytic approaches used in previous work (McDermott et al., 
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2019; Noble et al., 2015), parental education was significantly associated with SA in more 

cortical regions, including larger portions of the bilateral parahippocampal gyrus, left fusiform 

gyrus, and right superior temporal gyrus (see Figure S2).  

These findings are consistent with the notion that socioeconomic differences in SA are 

partially driven by environmental transmission, although inferences about environmental 

transmission cannot be made. Socioeconomic factors may impact SA in children and adolescents 

via multiple proximal environmental factors. For example, socioeconomic disadvantage has been 

consistently associated with exposure to chronic stressors (e.g., household chaos and 

unpredictability, neighborhood violence, crowding/noise, family conflict) and reduced quantity 

and quality of language input to children (Duncan et al., 2017; Evans & Kim, 2013; Merz et al., 

2019; Pace et al., 2017). Evidence from randomized trials of poverty reduction and animal 

models of chronic stress and environmental enrichment suggests that at least part of the 

association between socioeconomic factors and children’s cognitive development may be 

environmentally mediated (Davidson & McEwen, 2012; Duncan et al., 2017; van Praag et al., 

2000). In the current study, associations between parental education and SA in children and 

adolescents, even after accounting for PGS-EA, cannot be interpreted as environmental effects. 

Other sources of genetic confounding may play a role in those associations (Wertz et al., 2020).     

PGS-EA and parental education were not significantly associated with global or regional 

CT, consistent with a previous study of adolescents (Judd et al., 2020). Similarly, findings 

linking family SES with CT have been variable, with some studies indicating significant 

correlations, but others reporting no links (Noble & Giebler, 2020). These findings may suggest 

differential associations of parental education and PGS-EA with SA and CT, which would 
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suggest that these associations may rely more heavily on certain underlying cellular mechanisms 

than others (Panizzon et al., 2009; Rakic, 1988; Raznahan et al., 2011). 

PGS-EA and Parental Education are Independently Associated with Neurocognitive 

Measures  

PGS-EA. Associations of PGS-EA with vocabulary, episodic memory, and reduced 

attention problems were attenuated but remained significant after controlling for parental 

education. Associations between educational attainment polygenic scores and these 

neurocognitive skills may partially explain associations of PGS-EA with general cognitive 

ability and academic achievement (von Stumm et al., 2020). Results linking higher PGS-EA with 

lower risk for attention problems are consistent with associations between PGS-EA and SA in 

the medial OFC. In addition, associations between higher PGS-EA and higher vocabulary are 

consistent with links between PGS-EA and SA in the left inferior frontal gyrus (Friederici, 

2011).   

Parental education. Higher parental education was significantly associated with higher 

inhibitory control, working memory, sustained attention, and vocabulary. These associations 

were attenuated after accounting for genetic predisposition to educational attainment. These 

results are consistent with prior work indicating socioeconomic disparities in language and 

executive function in children (Lawson et al., 2017; Noble et al., 2005, 2007). The current 

findings extend this work by showing that such associations remain significant even after 

controlling for children’s education-linked genetics. These results are consistent with the notion 

that SES-related environmental factors (e.g., language input) may be associated with language 

and executive function above and beyond genetic factors (Duncan et al., 2017). 
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 Several limitations of this study must be taken into account when interpreting the 

findings. First, due to the cross-sectional, correlational design of this study, causal inferences 

cannot be made. Second, as in most studies that use polygenic scores (Elliott et al., 2019; von 

Stumm et al., 2020), analyses included only participants of European ancestry. Large-scale 

GWAS, which are required for identifying genetic variants that are reliably associated with a 

phenotype, are currently not available in populations with other ancestries. Thus, findings from 

this study are not generalizable to other ethnicities.   

Findings from this study indicated that education-associated genetics and parental 

education accounted for unique variance in SA in children and adolescents. PGS-EA and 

parental education were most prominently associated with SA in frontal and temporal regions. 

These results shed light on the role of education-linked genetics in contributing to brain structure 

and neurocognitive skills in children and adolescents.  
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Table 1. Descriptive statistics and zero-order correlations  

 

  1 2 3 4 5 6 7 8 9 10 

1 PGS-EA -          

2 

Parental 

education 

(years) .21*** -         

3 

Total SA 

(mm2) .09+ .05 -        

4 

Global 

(average) 

CT (mm) .04 .10+ .22*** -       

5 Vocabulary .03 .03 .10* -.52*** -      

6 

Inhibitory 

control -.03 -.03 .17*** -.48*** .72*** -     

7 

Working 

memory .001 -.003 .16** -.43*** .77*** .77*** -    

8 

Sustained 

attention -.02 -.01 .18*** -.46*** .67*** .96*** .71*** -   

9 

Episodic 

memory .03 -.01 .04 -.49*** .70*** .70*** .76*** .65*** -  

10 

Attention 

problems -.12** -.04 .02 -.005 -.01 .04 .03 .06 -.05 - 

 N 526 503 391 391 518 513 516 515 519 510 

 M (SD) 

.000043 

(.000193) 

15.73 

(1.86) 

200523.00 

(16564.94) 

3.11 

(.17) 

.89 

(1.40) 

7.63 

(1.84) 

17.95 

(5.34) 

8.08 

(1.75) 

26.22 

(11.08) 

47a 

(9.22b) 

Note. PGS-EA, polygenic score for educational attainment; SA, cortical surface area; CT, 

cortical thickness. *p < .05; **p < .01; ***p < .001; + p < .10 
a Number of children with attention problems 
b Percentage of children with attention problems  
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Table 2. Clusters for significant associations between polygenic scores for educational 

attainment (PGS-EA) and cortical surface area (SA)   

 

Without adjusting for parental education 

Cluster 

# 

Cluster-

corrected p 

Cluster size  

(number of vertices) Cluster brain label 

1 .005 909 Left medial orbitofrontal gyrus (BA 11) 

2 .01 799 Left inferior frontal gyrus (BA 47) 

After adjusting for parental education 

Cluster 

# 

Cluster-

corrected p 

Cluster size  

(number of vertices) Cluster brain label 

1 .009 565 Left medial orbitofrontal gyrus (BA 11) 

2 .04 482 Left inferior frontal gyrus (BA 47) 

 

Note. Associations between PGS-EA and SA in the left medial orbitofrontal gyrus also survived 

vertex-level RFT correction. The MNI coordinates of the peak vertex was -6, 26, -11. Covariates 

were age, age2, gender, scanner, principal components 1-10, and total brain volume.  
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Table 3. Clusters for significant associations between parental education and cortical 

surface area (SA)  

 

Without adjusting for PGS-EA 

Cluster 

# 

Cluster-

corrected p 

Cluster size  

(number of vertices) Cluster brain label 

1 .015 574 Left fusiform gyrus (BA 37) 

2 .044 493 Right superior temporal gyrus (BA 21) 

After adjusting for PGS-EA 

Cluster 

# 

Cluster-

corrected p 

Cluster size  

(number of vertices) Cluster brain label 

1 .024 503 Left parahippocampal gyrus (BA 36) 

 

Note. Covariates were age, age2, gender, scanner, total brain volume, and principal components 

1-10. 

PGS-EA, polygenic score for educational attainment 
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[See Figure 1 file] 

 

Figure 1. Higher polygenic scores for educational attainment (PGS-EA) were associated with 

greater cortical surface area (SA) in children and adolescents (a) without adjusting for parental 

education and (b) while adjusting for parental education. The left and right panels show t-

statistics and p values (p < .05 after correcting for multiple comparisons using random field 

theory), respectively. Covariates were age, age2, gender, scanner, principal components 1-10, and 

total brain volume. On the right panel, cool colors correspond to areas significant at the cluster 

level and warm colors correspond to areas significant at the vertex level. RFT, random field 

theory 
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[See Figure 2 file] 

 

Figure 2. Higher parental education was associated with greater cortical surface area (SA) in 

children and adolescents (a) without adjusting for polygenic score for educational attainment 

(PGS-EA) and (b) while adjusting for PGS-EA. The left and right panels show t-statistics and p 

values (p < .05 after correcting for multiple comparisons using random field theory), 

respectively. Covariates were age, age2, gender, scanner, and total brain volume. Models 

including PGS-EA also adjusted for principal components 1-10. On the right panel, cool colors 

correspond to areas significant at the cluster level and warm colors correspond to areas 

significant at the vertex level. RFT, random field theory 
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Supplemental Materials 

NIH Toolbox Cognition Battery Tasks 

Vocabulary. During the Picture Vocabulary Test (Gershon et al., 2013, 2014), 

participants listened to an audio recording of a word on each trial, while viewing four images on 

a computer screen. Participants were asked to select the image on the computer screen that best 

matched the meaning of the spoken word. Through computer adaptive testing, the difficulty of 

the words presented was tailored to the ability of the participant. Test difficulty is adapted such 

that participants have a 50% chance of answering correctly on each trial. 

Working memory. On the List Sorting Working Memory test (Tulsky et al., 2013), a 

series of pictures of different foods and animals were presented on a computer screen visually 

and aurally, one at a time. In the one-list condition, participants were told to remember stimuli 

from one category (food or animals) and repeat them in size order, from smallest to largest. In 

the two-list condition, participants were told to remember stimuli from two categories (food and 

animals, intermixed) and then report the food in size order, followed by the animals in size order. 

Working memory scores consisted of the total items correct across the one- and two-list 

conditions. 

Inhibitory control. On the Flanker Inhibitory Control and Attention test (Zelazo et al., 

2013), participants were asked to focus on the central stimulus while inhibiting attention to the 

flanker (surrounding) stimuli. The test consisted of a block of 25 fish trials followed by a block 

of 25 arrow trials, with 16 congruent and 9 incongruent trials in each block, presented in 

pseudorandom order. On congruent trials, all the stimuli were pointing in the same direction 

(right or left). On incongruent trials, the central stimulus was pointing in the opposite direction of 

the flanker stimuli. Congruent and incongruent trials were intermixed in each block of test trials. 

Performance on both congruent and incongruent trials was recorded. A two-vector scoring 
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method was used that incorporated both accuracy and reaction time for participants who 

maintained a high level of accuracy (>80% correct), and accuracy only for those who did not 

meet this criterion. 

Attention. Attention was measured through participants’ performance on the Flanker 

Inhibitory Control and Attention test (Zelazo et al., 2013) and parent-reported attention 

problems. Performance on congruent trials of the Flanker task was used as an index of sustained 

attention (Akshoomoff et al., 2014).  

Episodic memory. On the Picture Sequence Memory Test (Bauer et al., 2013; Dikmen et 

al., 2014), participants viewed a sequence of thematically related pictures that appeared one at a 

time in the center of the computer screen (2 s each). As each picture appeared, an audio 

recording described the content of the picture. After each picture was presented, it was moved to 

a unique spatial position on the computer screen that matched the temporal order in which the 

pictures were presented. After all the pictures had been presented and moved to their unique 

spatial position, they disappeared from the screen. Three seconds later, all the pictures re-

appeared on the computer screen in a scrambled order, and participants were asked to move each 

picture back to its correct spatial position. Picture sequence length varied from 6 to 15 pictures 

depending on the age of the participant. 
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Results for Family Income  
 

Family Income, PGS-EA, and SA. Higher family income was significantly associated 

with greater total SA, β = .10, p = .0173, ηp
2 = .0156. This association remained significant after 

controlling for PGS-EA, β = .09, p = .0306, ηp
2 = .0129. Vertex-wise analyses revealed that 

higher family income was significantly (p < .05, RFT-corrected) associated with greater SA in 

the right inferior temporal gyrus and fusiform gyrus.    

Family Income, PGS-EA, and CT. Family income was significantly positively 

associated with average CT, β = .07, p = .0183, ηp
2 = .0149. Vertex-wise analyses indicated that 

family income was not associated with CT in any specific cortical regions. 

Family Income, PGS-EA, and Neurocognitive Measures. Higher family income was 

significantly associated with higher inhibitory control, working memory, sustained attention, 

vocabulary, and episodic memory (see Table S3). Higher family income was significantly 

associated with inhibitory control, sustained attention, and vocabulary after controlling for PGS-

EA (see Table S3). 
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Table S1. The number of SNPs from the Lee et al. (2018) (EA3) GWAS included in each 
PGS-EA p-value threshold. 
 

p-value threshold 
Number of SNPs from Lee et al. (2018) 
included 

p < 5 x 10-8   604 
p < 1 x 10-7 694 
p < 1 x 10-6 1067 
p < 1 x 10-5 1795 
p < .0001 3241 
p < .001 6395 
p < .01 14426 
p < .05 28535 
p < .1 38875 
p < .5 80125 
p < 1 99493 
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Table S2. Associations of PGS-EA and parental education with neurocognitive measures  

 

 PGS-EA  

PGS-EA controlling for parental 

education 

 β p ηp2  β p ηp2 

Inhibitory control .03 .2266 .003  .02 .4389 .001 

Working memory .05 .0452 .01  .03 .2054 .003 

Sustained attention .04 .1474 .004  .03 .3403 .002 

Vocabulary .06 .0069 .01  .06 .0149 .01 

Episodic memory  .08 .0057 .02  .07 .0215 .01 

 OR p 95% CI  OR p 95% CI 

Attention problems .68 .0143 .50, .93  .67 .0136 .49, .92 

 Parental education  

Parental education controlling 

for PGS-EA 

 β p ηp2  β p ηp2 

Inhibitory control .07 .0048 .02  .07 .0079 .01 

Working memory .10 .0002 .03  .09 .0005 .03 

Sustained attention .08 .0051 .02  .08 .0091 .01 

Vocabulary .09 <.0001 .03  .08 .0006 .02 

Episodic memory  .07 .0299 .01  .05 .0800 .01 

 OR p 95% CI  OR p 95% CI 

Attention problems .91 .5512 .67, 1.24  .99 .9489 .72, 1.36 

Note. PGS-EA, polygenic score for educational attainment; OR, odds ratio; CI, confidence 
interval 
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Table S3. Associations between family income and neurocognitive measures   
 

 Family income  
Family income controlling for 

PGS-EA 
 β p ηp2  β p ηp2 
Inhibitory control .06 .0143 .01  .06 .0184 .01 
Working memory .05 .0468 .01  .05 .0687 .01 
Sustained attention .06 .0337 .01  .06 .0442 .01 
Vocabulary .06 .0069 .02  .06 .0118 .01 
Episodic memory  .06 .0389 .01  .05 .0637 .01 
 OR p 95% CI  OR p 95% CI 
Attention problems .92 .60 .69, 1.24  .96 .77 .71, 1.29 
Note. PGS-EA, polygenic score for educational attainment; OR, odds ratio; CI, confidence 
interval 
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Table S4. Associations of PGS-EA computed at different p-value thresholds with 
neurocognitive skills 

PGS-EA p-value 
threshold Neurocognitive skill β p 

p < 5 x 10-8 

Inhibitory control .05 .0329 
Working memory .10 .0003 
Sustained attention .08 .0043 
Vocabulary .14 <.0001 
Episodic memory  .13 <.0001 

p < 1 x 10-6 

Inhibitory control .04 .1354 
Working memory .06 .0116 
Sustained attention .05 .1128 
Vocabulary .07 .0009 
Episodic memory  .11 .0002 

p < 1 x 10-5 

Inhibitory control .04 .0944 
Working memory .08 .0028 
Sustained attention .04 .1393 
Vocabulary .09 .0001 
Episodic memory  .10 .0003 

p < .0001 

Inhibitory control .06 .0240 
Working memory .08 .0027 
Sustained attention .06 .0281 
Vocabulary .10 <.0001 
Episodic memory  .12 <.0001 

p < .001 

Inhibitory control .06 .0248 
Working memory .08 .0022 
Sustained attention .06 .0282 
Vocabulary .11 <.0001 
Episodic memory  .12 <.0001 

p < .01 

Inhibitory control .05 .0417 
Working memory .08 .0013 
Sustained attention .07 .0243 
Vocabulary .12 <.0001 
Episodic memory  .13 <.0001 

p < .05 

Inhibitory control .05 .0512 
Working memory .10 .0002 
Sustained attention .07 .0275 
Vocabulary .13 <.0001 
Episodic memory  .13 <.0001 

p < .1 

Inhibitory control .05 .0360 
Working memory .09 .0007 
Sustained attention .08 .0095 
Vocabulary .13 <.0001 
Episodic memory  .12 .0001 
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p < 1 

Inhibitory control .05 .0342 
Working memory .10 .0003 
Sustained attention .08 .0048 
Vocabulary .14 <.0001 
Episodic memory  .13 <.0001 

Note. Results for p < 1 x 10-7 are presented in the main manuscript file. Covariates were age, 
age2, gender, site, and principal components 1-10. 
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Table S5. Clusters for significant associations between polygenic scores for educational 
attainment (PGS-EA) and cortical surface area (SA)  

Without adjusting for parental education 
Cluster 

# 
Cluster-

corrected p 
Cluster size  

(number of vertices) Cluster brain label 
1 .004 1501 Left medial orbitofrontal gyrus (BA 11) 
2 .023 1369 Left middle frontal gyrus (BA 47) 
3 .031 526 Left postcentral gyrus (BA 3) 

After adjusting for parental education 
Cluster 

# 
Cluster-

corrected p 
Cluster size  

(number of vertices) Cluster brain label 
1 .023 636 Left medial orbitofrontal gyrus (BA 11) 
2 .033 635 Left middle frontal gyrus (BA 47) 

 
Note. Associations between PGS-EA and SA in the left medial orbitofrontal gyrus, middle 
frontal gyrus, and postcentral gyrus (without adjusting for parental education) also survived 
vertex-level RFT correction. The MNI coordinates of the peak vertices were -7, 27, -12; -45, 34, 
-7; and -54, -14, 46, respectively. Associations between PGS-EA and SA in the left medial 
orbitofrontal gyrus (after adjusting for parental education) also survived vertex-level RFT 
correction. The MNI coordinates of the peak vertex were -7, 27, -12. 
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Table S6. Clusters for significant associations between parental education and cortical 
surface area (SA)  

 
Without adjusting for PGS-EA 

Cluster 
# 

Cluster-
corrected p 

Cluster size  
(number of vertices) Cluster brain label 

1 .003 1612 Left parahippocampal, fusiform and 
lingual 

2 .003 3116 Right superior temporal, supramarginal, 
postcentral 

3 .008 1592 Right parahippocampal, fusiform 
4 .003 953 Left superior frontal gyrus (BA 10) 

After adjusting for PGS-EA 
Cluster 

# 
Cluster-

corrected p 
Cluster size  

(number of vertices) Cluster brain label 
1 .011 1277 Left parahippocampal, fusiform and 

lingual 
2 .026 852 Right superior temporal 
3 .046 948 Right parahippocampal 
4 .034 683 Right postcentral gyrus (BA 3) 

 
Note. Associations of parental education with the first three clusters (without adjusting for PGS-
EA) also survived vertex-level RFT correction. The MNI coordinates of the peak vertices were -
30, -47, -10; 63, -6, -3; and 29, -26, -21, respectively. Associations of parental education with the 
first three clusters (after adjusting for PGS-EA) also survived vertex-level RFT correction. The 
MNI coordinates of the peak vertices were -32, -40, -7; 63, -9, -3; and 28, -29, -18, respectively. 
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Figure S1. Higher polygenic scores for educational attainment (PGS-EA) were associated with 
greater cortical surface area (SA) in children and adolescents (a) without adjusting for parental 
education and (b) while adjusting for parental education. The left and right panels show t-
statistics and p values (p < .05 after correcting for multiple comparisons using random field 
theory), respectively. Covariates were age, age2, gender, scanner, and principal components 1-10. 
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Figure S2. Higher parental education was associated with greater cortical surface area (SA) in 
children and adolescents (a) without adjusting for polygenic score for educational attainment 
(PGS-EA) and (b) while adjusting for PGS-EA. The left and right panels show t-statistics and p 
values (p < .05 after correcting for multiple comparisons using random field theory), 
respectively. Covariates were age, age2, gender, scanner, and principal components 1-10. 
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