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Abstract3

A species that is distributed across heterogeneous environments may adapt to local condi-4

tions. Szep et al (Evolution, 2021) modelled this process in the infinite island model, finding5

the stationary distribution of allele frequencies and deme sizes. We extend this to ask how6

a metapopulation responds to changes in carrying capacity, selection strength, or migration7

rate, restricting attention to fixed deme size (“soft selection”). We develop a “fixed-state”8

approximation (accurate when migration is rare) which assumes that the loci are near fixa-9

tion. Under this approximation, polymorphism is only possible for a narrow range of habitat10

proportions when selection is weak compared to drift, but for a much wider range other-11

wise. When local conditions (Ns or Nm) change in a single deme of the metapopulation,12

it takes the population a time of order 1/m to reach the new equilibrium. However, even13

with many loci, there can be substantial fluctuations in net adaptation, due to the bimodal14

allele frequency distributions at each locus. Thus, in a finite metapopulation, variation may15

gradually be lost by chance, even if it would persist if there were infinitely many demes.16

When conditions change across the whole metapopulation, there can be rapid change, which17

is predicted well by the fixed-state approximation when Nm�1.18

Keywords: metapopulation, local adaptation, species’ range, diffusion, adaptive walk, chang-19

ing conditions, soft selection.20

Introduction21

Species must adapt to varied environments, whilst drawing on a common pool of genetic varia-22

tion. Thus, there is a tension between selection that favours different alleles in different places,23

and the maintenance of diversity across the whole species. Local populations can only sustain24

themselves if they are sufficiently well-adapted; conversely, adaptation to conditions beyond the25

current niche can extend the range of the species.26

These issues, which lie at the interface between ecology and evolution, have only quite recently27

attracted sustained theoretical attention. This ranges from studies of “evolutionary rescue”,28

typically of a single isolated deme [5, 6, 18], through to analyses of limits to a species’ range29

in one or two spatial dimensions [9, 11, 14]. Here, we consider an idealised metapopulation; in30

this island model, there is no explicit spatial structure. Nevertheless, we can ask whether the31

species’ range can extend over a variety of habitats, and examine how it responds dynamically32

to changing conditions – either in a single deme, or across the whole metapopulation.33

This paper is an extension of [16], which analysed the joint evolution of allele frequencies and34

deme sizes, in an island model with explicit density-dependent regulation; a diffusion approx-35

imation gave explicit formulae for the stationary distribution of an infinite metapopulation.36

Here, we extend this treatment to consider the evolution of individual demes, and of the whole37

metapopulation, as conditions change; we also consider fluctuations in a metapopulation with38
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a limited number of demes, where variation can be lost by chance. We simplify the problem by39

assuming that deme sizes are fixed, independent of adaptedness (“soft selection”), but believe40

that the methods we introduce can be extended to allow density regulation (“hard selection”).41

In principle, we can calculate the joint distribution of deme size and allele frequencies un-42

der the diffusion approximation. However, this is numerically challenging, since it involves a43

high dimensional partial differential equation; in any case, it can only be done for an infinite44

metapopulation, where the mean population size and allele frequencies across the population as45

a whole are fixed, even though population sizes and allele frequencies within any deme follow46

a distribution. In order to go beyond mere simulation, we use the approximation that loci are47

typically near fixation; this is accurate if the number of non-native alleles that enter per genera-48

tion is small. It allows us to follow the distribution of states of a finite metapopulation through49

time, which depends only on the rates of substitutions in either direction. This “fixed-state”50

approximation is an extension of models of “adaptive walks” (e.g. Orr [12], Trubenova et al51

[17]) to structured populations.52

We first consider an infinite metapopulation, and determine the accuracy of the fixed-state ap-53

proximation. We then apply the approximation to calculate the dynamics of a finite metapopu-54

lation, and to find how its equilibria depend on the number of demes. (In order for a non-trivial55

equilibrium to exist, we must allow a low rate of mutation to maintain variation in the long56

term). Finally, we show how metapopulations respond to changing conditions, focusing on57

changes that take the system between qualitatively different regimes.58

Model and Methods59

We simulate a haploid population, assuming linkage equilibrium. Provided that selection is60

weak, this is accurate, and allows us to efficiently simulate large numbers of loci and demes; Szep61

et al (2021, SI C) examine the effects of linkage disequilibrium in this model, using individual-62

based simulations. We obtain analytical results by taking the diffusion limit, which also assumes63

weak selection, and then approximate this by assuming that demes are near fixation, which64

applies when there are few migrants (Nm<1). As is traditional in population genetics, we take65

the fundamental model to be the diffusion, since this captures the behaviour of a variety of66

particular life histories, and identifies the key dimensionless parameters.67

Simulations68

Our baseline island model assumes that demes each have carrying capacity N haploid indi-69

viduals, and contribute equally to the migrant pool. A deme of size N is expected to lose a70

fraction m of individuals by emigration, and receives a Poisson distributed number of migrants,71

Nm∗, with expectation Nm. There are L biallelic loci, with the two alternative alleles labelled72

Xi,k = 0 or 1; i labels the deme, and k the locus. Deme i is described by {ji,1, ji,2, . . . , ji,L},73

where 0≤ji,k≤N is the number of copies of the ‘1’ allele at the k′th locus. That allele is favoured74

by selection si, which we assume to be the same across loci; the marginal relative fitnesses are75

1:esi , and fitnesses multiply across loci. Under soft selection, loci evolve independently, and so76

it would be straightforward to extend to allow variation in selection across loci.77

We assume linkage equilibrium (LE), and apply the Wright-Fisher model to each locus indepen-78

dently. After selection, allele frequencies are p∗i,k=ji,k/ ((N−ji,k) e−si+ji,k), and after migration,79

p**
i,k=mp̄k+(1−m)p∗i,k where p̄k is the frequency averaged across all demes of the metapopula-80

tion. The new population in deme i consists of N individuals, the number of allele copies at81

locus k being binomially sampled with frequency p**
i,k. This procedure is accurate provided that82
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s is not too large (<0.2, say), so that recombination shuffles genes faster than selection, drift,83

or migration build up associations between them (Szep et al ., 2021, SI C).84

A Mathematica notebook containing the simulation code and result is provided as a supple-85

mentary material.86

Diffusion approximation87

The diffusion approximation to this model describes the evolution of the joint distribution88

of allele frequencies across different demes, conditional on the mean allele frequency across the89

metapopulation [2]. A single deme follows a stochastic path governed by this distribution, whilst90

an infinite metapopulation represents the whole distribution, which evolves deterministically at91

the level of the whole metapopulation. The diffusion depends only on scaled parameters Ns,92

Nm.93

Wright [19, 20] gave an explicit solution for the stationary distribution of allele frequencies:94

Ψ [p | p ]=
1

Z

L∏
k=1

p2N mp̄k−1
k q2N mq̄k−1

k e2Nspk (1)

where Z is a normalising constant. Under this simple model of directional selection, allele95

frequencies evolve independently across demes and across loci, conditional on the mean allele96

frequencies, p̄k. Equation (1) applies to a single deme; the subscript i was dropped for clarity.97

All demes that share the same parameters will follow the same distribution, in a given habitat,98

and so we can integrate over the distribution, and sum over habitats, to find the mean p̄k. This99

allows us to solve fully for the stationary state.100

Fixed-state approximation101

If the number of incoming alleles is small (Nm�1) then the distribution of allele frequencies will102

be sharply peaked around 0 and 1. To a good approximation, populations are near fixation for103

one or other allele, and their state is determined by the rates of substitution in either direction.104

Since we will later be considering the stationary state of a finite metapopulation, we must105

include mutation, which we assume to be symmetric at rate µ. Then, the rate at which demes106

currently fixed for allele 0 substitute allele 1, λ0→1 (or vice versa, λ1→0) is the product of the107

number of ‘1’ (or ‘0’) alleles entering the population, and their individual fixation probability.108

Thus:109

λ0→1 =
2s (Nµ+Nmp̄)

1−e−2N s
, λ1→0=

2s (Nµ+Nmq̄)

e2N s−1
(2)

Different loci evolve independently, conditional on the numbers of migrants coming into the110

deme (Nmp̄), (Nmq̄).111

For an infinite metapopulation, and two habitats with selection s1, s2, with deme sizes fixed at
N (i.e., soft selection), we can just follow the proportion of demes fixed for the ‘1’ allele in each
habitat. Neglecting mutation:

∂tP1=
2s1Nm

1−e−2N s1

(
p̄Q1−q̄e−2Ns1P1

)
∂tP2=

2s2Nm

1−e−2Ns2

(
p̄Q2−q̄e−2Ns2P2

)
(3)

p̄=ρP1+(1−ρ)P2
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The first two equations involve the difference in net rates of substitution in each direction. The112

fraction of loci near fixation for 0, 1 are Q, P; the fraction of migrants with allele 1 vs 0, which113

can contribute to a substitution, are p̄, q̄; and the fixation probabilities in each direction are in114

the ratio 1:e−2Ns1 . Finally, the mean allele frequencies are a weighted average across habitats,115

which are in the proportions ρ:1−ρ.116

These equations apply separately to each locus, but for simplicity, in numerical examples we117

will assume symmetric initial conditions, so that P1, P2 are the same for all loci, and correspond118

to the proportion of loci fixed for the ‘1’ allele in each deme.119

If the ‘1’ allele is favoured in habitat 1, but disfavoured in habitat 2 (i.e. s2<0<s1), and if120

neither habitat is too rare, then polymorphism is possible, with equilibrium frequency given by:121

p̄=
ρ
(
e2N(s1−s2)−1

)
−
(
e−2Ns2−1

)
(e2Ns1−1) (e−2Ns2−1)

,
e−2Ns2−1

e2N(s1−s2)−1
<ρ<

(
e−2Ns2−1

)
e2N(s1−s2)−1

e2Ns1 (4)

If selection is weak relative to drift, polymorphism is possible only for a very narrow range of122

habitat proportions (left of fig. 1), whereas if it is strong, polymorphism is possible over a wide123

range (right of fig. 1).124

0 1 2
Ns10

0.5

1

ρ

Figure 1: Bounds on the proportions of habitat 1, ρ, between which polymorphism is possible, as a function of
the strength of selection in that habitat, Ns1. The three sets of bounds correspond to Ns2/Ns1 = 0.5, 1, 2 (black,
blue and purple respectively). These results apply in the limit of low migration, and soft selection.

Suppose now that there are a finite number of demes, with di having habitat i. At any one125

locus, the state of the metapopulation is described by the number of demes fixed for the ‘1’126

allele, 0≤ki≤di. For example, with two habitats, there are (d1+1) (d2+1) possible values for the127

state {k1, k2}. The probability of transitions between these states depends on the mean allele128

frequency across the metapopulation. With soft selection, where all demes have the same size129

N , this mean is just p̄=(k1+k2) / (d1+d2). We can therefore calculate the transition matrix that130

governs the stochastic evolution of the metapopulation; the stationary state is given by the lead-131

ing eigenvector of this matrix. With soft selection, each locus evolves independently, governed132

by this matrix, and so we can easily calculate the stochastic evolution of the metapopulation.133

In the Appendix, we examine the accuracy of the fixed-state approximation under soft selection.134

This approximation applies in the limit of low migration, and identifies the failure of adaptation135

due to random drift.136
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Results137

Evolution of a single deme138

Suppose in a metapopulation containing two habitats we focus on the rare habitat so that the139

numbers and adaptedness of the whole metapopulation remains constant. Suppose also that the140

adaptive allele is favored in the rare habitat and disfavored in the common habitat with selective141

strength s1 and s2 respectively, we can look at how the mean allele frequency (averaged across142

loci) in the rare habitat responds to changes in local conditions such as Nm or local conditions143

such as changes in the population size or local selection pressure in a single deme (Ns) as shown144

below. We see in fig. 2a that with Nm too low, genetic variation is lost and with Nm too high,145

the adaptive allele is swamped. There is an intermediate value of Nm that maximizes the mean146

allele frequency of the adaptive allele in the rare habitat. In fig. 2b, with Ns1 too small, drift147

overwhelms selection and the adaptive allele is lost from the rare habitat.148

Consider a metapopulation, where Nm is small enough that populations are near fixation. If149

Ns1=1 in a rare habitat, represented in ρ=0.2 of the demes, and Ns2=−2 in the common150

habitat, then polymorphism will be maintained with p̄=0.079 overall (eq. (4)). We begin by151

considering how a single deme responds to changes in its local conditions, for fixed p̄, and so in152

fact, all that matters is the value of p̄. In the focal deme, allele frequencies will be in the ratio153

q̄:p̄e2Ns1 when Nm�1, since that is the ratio of substitution rates in either direction; hence,154

the expected allele frequency in the rare habitat is 0.386 (fig. 2a, left). As Nm increases, the155

expected allele frequency decreases, approaching p̄=0.079 (fig. 2a, right). For given Nm, the156

expected allele frequency in the focal deme increases with Ns1 from p̄ to 1, as selection becomes157

more effective (fig. 2b).158

0.001 0.01 0.1 1 10 100
Nm

0.1

0.2

0.3

0.4

[p1]

(a)

0.1 1 10 100
Ns1

0.2

0.4

0.6

0.8

1.

[p1]

(b)

Figure 2: Left: Expected allele frequency vs Nm with p̄=0.079, Ns1=1. Right: Expected allele frequency vs.
Ns, for Nm=0.1, 1, 10 (black, blue, purple).

Figure 3a shows how the distribution of allele frequencies changes as Nm changes. If all loci start159

close to the frequency in the gene pool (p̄=0.079) then with a low migration rate (Nm=0.05),160

even weak selection (Ns=1) can raise the mean substantially, to 0.355. However, this increase161

is slow, taking ∼5000 generations, because it occurs through occasional substitutions, at a rate162

is proportional to m=5×10−4 (eq. (3)). The population does mostly flip between fixation of one163

or other allele, giving a U-shaped frequency distribution (e.g. grey trajectory in fig. 3), and so164

the fixed-state approximation is quite close to the exact mean (orange vs. red at left). However,165

the average across even 100 loci fluctuates substantially (blue), implying that population fitness166

will fluctuate randomly, even when adaptation is highly polygenic.167
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Figure 3: (a) Evolution of a single deme as Nm changes; Ns=1, p̄=0.079, L=100 loci. Initially, Nm=0.05, and
all loci are at p̄. After 20, 000 generations, Nm increases to 1, and after another 10, 000 generations, it returns
to Nm=0.05. The grey line shows allele frequency at a single locus, and the blue line shows the average over
100 loci. The red curve is the mean of the probability distribution, calculated exactly using the Wright-Fisher
transition matrix. The orange curve is the fixed-state approximation (eq. (3)), which is accurate only for Nm�1.
(b) The same, but for Ns changing from 1 to 10 at 20, 000 generations, and then to 0.1 at 30, 000 generations;
Nm=0.05 throughout.

At 20, 000 generations, the number of migrants increases to Nm=1, and the mean allele fre-168

quency is quickly pulled down towards that in the gene pool, to 0.155. The fixed-state approx-169

imation is the limit of low migration, and so is independent of Nm (see fig. A1). Indeed, allele170

frequencies are now often intermediate, and so this approximation fails (orange vs. red, fig. 3,171

middle). Nevertheless, it does give the important intuition that rates of change are proportional172

to migration, which is now m=0.01, implying a ∼100 generation timescale for response of the173

population mean. In this model, variance is maintained by migration, and so the response to174

selection is proportional to m. After Nm returns to the original low value at 30, 000 generations,175

there is a slow return to the original bimodal distribution, again captured by the fixed-state176

approximation (orange vs red at right of fig. 3).177

Figure 3b shows the response to changes in Ns, which could arise through changes in selection178

strength, and/or changes in effective local population size. In this example, Nm=0.05 through-179

out, and so the fixed-state approximation is accurate (orange vs red curves). The timescale is180

again set by m, which determines the rate at which variation is introduced into local demes.181

Since m=5×10−4, it takes thousands of generations for the proportion of loci fixed for the ‘1’182

allele to respond to changes in selection strength.183

Figure 4 shows the time taken for a population to respond to changes in Nm (fig. 4a) or Ns184

(fig. 4b), as a function of the other parameter. As we saw in fig. 3a, an increase in Nm causes185

a much faster response than a decrease, simply because high gene flow introduces more genetic186

variance. However, if selection is very strong, the response time becomes similar in either187

direction, and decreases in proportion to Ns (right of fig. 4a). The response to changes in Ns188

take somewhat longer for an increase than a decrease (fig. 4b), but the main pattern here is189

that the response time decreases in proportion to Nm.190
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Figure 4: The time to make half of the response to a change in parameters. For both plots, p̄=0.079. Values
were calculated using a transition matrix with N=100. (a) Nm shifts from 0.05 to 1 or from 1 to 0.05 (lower,
upper curves, resp.), for varying Ns. (b) Ns shifts from 0.1 to 1 or from 1 to 0.1 (upper, lower curves, resp.) for
varying Nm.

Evolution of a metapopulation191

We begin by considering the stationary state of a metapopulation, extending Szep et al [16]192

by allowing a finite number of demes – in which case, a low rate of mutation is required to193

maintain variation in the long term. We then give an example that shows how variation is lost,194

as loci fixed across the whole metapopulation. Finally, we give examples (analogous to fig. 3),195

showing the response when parameters change across the whole metapopulation.196

Stationary state of a finite metapopulation in the limit of small Nm197

Szep et al (2021, Fig. 2) show that with soft selection, polymorphism can be maintained198

in an infinite metapopulation, provided that selection is sufficiently strong. With symmetric199

selection (s1=s2), this requires Ns>Nscrit=1/2 log
[

1−ρ
ρ

]
+Nm(1−2ρ); the first term is derived200

from the fixed-state approximation, in the limit Nm�1, and the second from the deterministic201

model, which requires s>m(1−2ρ) for polymorphism. In a metapopulation with a finite number202

of demes, variation must ultimately be lost: we must include mutation to allow a non-trivial203

stationary state. In this section, we examine how the outcome depends on the relative rates204

of selection and drift (Ns) and on the relative rates of mutation and migration (µ/m). In205

particular, we show that with sufficiently many demes, the outcome is insensitive to the mutation206

rate.207

Figure 5 shows the stationary state in the limit of small Nm, derived using the fixed-state208

approximation. The top row of fig. 5 shows how the fraction of demes fixed at equilibrium209

depends on the strength of selection; the focal allele is favoured in 20% of demes (blue), and210

disfavored twice as strongly in 80% of demes (i.e. Ns2=−2Ns1; red). When mutation is211

appreciable (µ/m=0.05, fig. 5a), the allele is unlikely to be lost by chance, and so the equilibrium212

is insensitive to the number of demes, and close to the solution for an infinite population: results213

for 50, . . . , 400,∞ demes are superimposed, and almost indistinguishable. When selection is214

strong (right of fig. 5a and 5b), all demes are fixed for the favoured allele, whereas when215

selection is negligible, on average half of the demes are fixed for each allele. (Mutation is216

assumed symmetric). In-between (0.1<Ns<1), the allele favoured in the rare habitat becomes217

rare, being pulled to low frequency by migration from the commoner habitat, where it is more218
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strongly disfavoured. When mutation is weak relative to migration (as is likely in nature), this219

pattern is exaggerated (µ/m=0.0005; fig. 5b). Above a critical value, Nscrit∼(1/2) log
[

1−ρ
ρ

]
∼220

0.7, polymorphism can be maintained by divergent selection, despite drift and gene flow. The221

equilibrium for an infinite population (purple) gives an upper bound, but stochastic loss from a222

finite set of demes reduces the expected frequency, and increases the critical Nscrit (dashed lines223

around Ns∼1, for 50, 100, . . . demes). There is a wide region (0.03<Ns<0.7) where the allele224

is almost absent, being swamped by gene flow. However, for very weak selection, the frequency225

of the allele increases towards the symmetric neutral equilibrium at 0.5. (In this regime, the226

frequencies in the two habitats are almost identical, and cannot be distinguished in the figure).227

In this regime (left of fig. 5a), although selection is negligible within demes (Ns<0.1), migration228

is much faster than mutation, and so selection over the whole metapopulation is effective in229

eliminating the allele that is deleterious in most demes. When µ�m, Ns<0.1 (left of fig. 5a),230

selection is more effective at the level of the whole metapopulation in the habitat which has231

more demes.232
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Figure 5: The fraction of demes fixed in the two habitats (blue, red), as a function of selection strength (Ns, top
row) and the rate of mutation, relative to migration (µ/m, bottom row). The focal allele is favoured by selection
Ns1 in 20% of demes (blue), and disfavoured by selection Ns2=−2Ns1 in 80% of demes. In each plot, equilibria
for 50, 100, 200 and 400 demes are superimposed (solid, dashed,. . . dotted lines), together with the limit for an
infinite metapopulation (purple, orange).

The bottom row of fig. 5 shows the dependence on the relative rates of mutation versus233
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migration, µ/m. With high mutation rates, the equilibrium approaches a fraction E[k/n]=234

1/(1+e−2Ns), given by the fixed-state approximation. There is strong divergence when Ns1=1235

(right of fig. 5c), and weaker divergence when selection is weak (fig. 5d, Ns1=0.1). With mod-236

erately strong selection (fig. 5c), the allele that is less favoured overall is lost from the common237

habitat, independent of the number of demes and mutation rate (orange line). In the rare238

habitat, with weak mutation (left of fig. 5c), the locally favoured allele can be fixed in nearly239

half the demes in an infinite metapopulation (purple), but tends to be lost by chance from finite240

metapopulations, even with several hundred demes (blue). When selection is weak relative to241

local deme size (fig. 5d), selection can still be effective over the whole metapopulation, elimi-242

nating the allele that is disfavoured overall (left of fig. 5d). However, when mutation becomes243

comparable with migration, polymorphism is maintained by mutation pressure, with some bias244

between habitats caused by weak selection (right of fig. 5d).245

We focus on the regime with moderately strong selection, comparable to drift (Ns1∼1), and246

weak mutation. This corresponds to the right half of fig. 5b (0.1<Ns1), and the middle of247

fig. 5c (10−4<µ/m<0.1). Then, as long as mutation is not extremely small, and there are248

enough demes, the stationary state is close to that in an infinite metapopulation (compare blue249

dashed with purple lines in fig. 5c). However, note that with weak mutation (µ/m ∼ 10−4−10−3,250

say), the locally favoured allele tends to be lost even when there are several hundred demes.251

Loss of diversity in a finite metapopulation252

When deme sizes are fixed, and numbers of migrants are low enough that loci are typically fixed253

for one or other allele, the state of the metapopulation at each locus can be described by the254

number of demes, ki, in each habitat, i, that are fixed for the ‘1’ allele. The distribution of ki255

evolves according to a transition matrix, and each locus follows an independent realisation of the256

same stochastic process. Figure 6 compares the dynamics of this fixed-state approximation with257

simulations, to illustrate the accuracy of the fixed-state approximation. For the low migration258

rate Nm=0.05 assumed here, there is reasonable agreement; with Nm=0.01, agreement is very259

close (fig. A2). Variation is lost faster than predicted by the fixed-state approximation, because260

migration tends to swamp adaptive divergence. The timescale is inversely proportional to m,261

and is therefore slow. Here, we are focussing on the slow loss of adaptation through random262

drift in small populations; with higher migration rates, swamping by gene flow causes additional,263

faster, degradation.264

Note that because the number of demes is limited, and because each deme flips between fixation265

for alternative alleles, there is substantial variability in average allele frequency between loci266

(grey lines). Therefore, adaptation is lost slightly faster in a finite than in an infinite metapop-267

ulation (compare black and magenta lines in fig. 6, which both derive from the fixed-state268

approximation). Nevertheless, the overall mean, averaged over 40 loci, changes smoothly and269

predictably (red curves in fig. 6). We assume no mutation, and so all variation will inevitably be270

lost. However, because the total population is large (100×50 = 5000 individuals), and because271

the very low migration rate increases the effective size of the whole metapopulation, loss across272

the whole metapopulation is extremely slow: none of the 40 loci fix during the 104 generations273

shown here.274
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Figure 6: Loss of diversity in a metapopulation of 100 demes, which is initially perfectly adapted. Mean allele
frequency is plotted against time, in the 20 demes where the focal allele is favoured (top), and the 80 demes
where it is not (bottom). Thin grey lines show allele frequencies at 40 loci, averaged over demes; the red line
shows the overall mean. The black curve shows the fixed-state approximation, for a finite metapopulation, and
the magenta line, for an infinite metapopulation. Simulations are for N = 50, Nm = 0.05, s1,2 = {0.02,−0.04};
thus, Ns1,2 = {1,−2}, so that selection and drift are of similar magnitude.

Response to changing conditions across the metapopulation275

Figure 7 shows some examples of the response to a change in conditions across the whole276

metapopulation. We use the same baseline case as above, with the rarer habitat in ρ=0.2277

of the demes. We consider global changes across the whole metapopulation; however, for the278

parameters we consider, the allele favoured in the rare habitat is always rare in the common279

habitat, and so results would be essentially the same if parameters changed only in the rarer280

habitat.281

Figure 7a shows the consequences of a change in Nm from 0.05, to 1, and then back to 0.05, as in282

fig. 3a. Initially, conditions are the same as in fig. 6, except that we start with a fraction of demes283

fixed for the locally favoured allele, in the proportions predicted for an infinite metapopulation.284

This allele gradually declines, somewhat faster than predicted in the limit of small Nm (compare285

red vs black lines at left). After 104 generations, Nm increases to 1, and the rarer allele is rapidly286

swamped, over a timescale of ∼1/m=50 generations. After 500 generations, variation persists287

at only 6 of the 40 loci, so that when Nm then decreases back to its original level, only those288

loci can recover. The dynamics at the remaining polymorphic loci are the same as before, with289

recovery over ∼1/m=1000 generations, but there has been a drastic loss of variation during the290

brief period of swamping. This contrasts with fig. 3a, where variation could be restored at all291

loci, because only one deme had been swamped.292

Figure 7b shows the response to changes in Ns, with Nm=0.05 throughout. The initial 104
293

generations have the same parameters as in fig. 7a, and so again, diversity is gradually lost,294

somewhat faster than predicted in the limit Nm→0. After 104 generations, selection increases295

by a factor 10, and all loci quickly shift to near-perfect adaptation. Despite the strong selec-296

tion, there is still considerable variation in the rates of increase across loci, though the overall297

equilibrium is approached quite smoothly (red curve, 104 − 1.5×104 generations). After 15, 000298

generations, selection weakens by a factor 100, to near-neutrality, and the rarer allele is lost. In299

the two later stages, the dynamics are closely predicted by the small Nm limit (black curves),300
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which is based simply on the rates of substitutions in either direction.301

Figure 7c shows a similar scenario, but with strong migration, Nm=1, which couples evolution302

in the different demes. We double the initial selection strength (i.e., Ns1=2, Ns2=−4), to303

ensure that polymorphism is maintained, despite high Nm. Mean allele frequencies fluctuate304

around the deterministic equilibrium, but there is sufficient drift that, occasionally, the allele is305

lost from all the demes (grey lines). Thus, after 104 generations, only 11 of the 40 loci are still306

polymorphic. Selection then strengthens ten-fold, and these polymorphic loci rapidly approach307

fixation, over a timescale of just a few generations (∼1/s=2.5). However, because only 11/40308

loci remain polymorphic, the overall mean is ∼0.25 (red, middle). After 5, 000 generations,309

selection returns to its initial value; as before, loci fluctuate around a metastable equilibrium,310

but occasionally fix. Thus, after 20, 000 generations, only one locus remains polymorphic.311

10 000 20 000
time

0.5

p

(a)

10 000 20 000
time

0.5

p

(b)

10 000 20 000
time

0.5

p

(c)

Figure 7: Response of a metapopulation to changing conditions. Grey lines show the allele frequencies, averaged
over the 20 demes in the rare habitat, at each of 40 loci; the red line shows the overall mean in the rare habitat.
The black line shows the prediction in the limit of small Nm. (a) Changing Nm, with Ns1=1, Ns2=−2. Initially,
Nm=0.05; it increases to 1 after 10000 generations, and after a further 500 generations, returns to its initial
value. (b) Changing Ns, with Nm=0.05. Initially, Ns1=1, Ns2=−2; after 104 generations, selection increases
by a factor 10, and after a further 5000 generations, it decreases by a factor 100, to Ns1=0.1, Ns2=−0.2. (c)
Changing Ns, with Nm=1. Initially, Ns1=2, Ns2=−4; after 104 generations, selection increases by a factor 10,
and after a further 5000 generations, it decreases to the initial value, Ns1=2, Ns2=−4. As in fig. 6, simulations
are for 100 demes of N=50, with 20 occupying one habitat, and 80 another.
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If we compare the first 104 generations in fig. 7b and 7c, we see two effects of migration.312

Increasing migration from Nm=0.05 to Nm=1 somewhat reduces the mean allele frequency,313

because migration is now comparable to selection, and swamps local adaptation. It also couples314

together the allele frequencies in different demes, which makes it more likely that the allele is315

lost by chance form all the demes. These two effects increase the rate of stochastic loss, but the316

stronger selection in fig. 7c counters this loss. fig. A3 compares these distributions.317

Discussion318

Our analysis uses simulation, the diffusion approximation and the “fixed-state” approximation319

to understand how a finite metapopulation changes through time, as it responds to changes320

in both local and global conditions. The “fixed state” approximation applies either where321

variation is due to mutation (when it is plausible that Nµ<1 within local demes, or even for322

the whole populations), or when variation is maintained by divergent selection across the whole323

metapopulation, but migration is low relative to drift Nm<1.324

When selection is weaker than drift (i.e. Ns�1), polymorphism can only be maintained for325

a very narrow range of habitat proportions (fig. 1). However with strong selection, this range326

becomes much wider. When conditions in a single deme of the metapopulation change, the327

population responds on a short time scale of order 1/m, simply because in the regime we328

study, local genetic variance is maintained by migration. Variation may be temporarily lost329

as local conditions change, but can quickly be recovered. On the other hand, when conditions330

change across the metapopulation, variation that was maintained by divergent selection can be331

permanently lost, and is only slowly recovered by mutation. Even under constant conditions,332

variation at a locus can be lost by chance, unless there are a very large number of demes.333

To simplify our analysis, we assumed an island model, with a large number of spatially equivalent334

demes. This is unlikely to be the case in nature, but may nevertheless capture the behaviour335

of spatially extended populations if there is long-range migration, which can introduce locally336

adaptive alleles from a distant habitat. It may be that a leptokurtic dispersal distribution can337

allow efficient adaptation, if locally favoured alleles are not swamped, and yet can be recovered338

by occasional long-range migration [1, 10].339

Our analysis can be further extended to hard selection, by including explicit density regulation;340

Szep et al [16] show that one can still apply the diffusion approximation, provided that growth341

rates are not too high. With hard selection, substitution rates depend on deme size through342

Ns, and through the number of immigrant alleles, mNp, mNq. This dependence can be ap-343

proximated by assuming that the population size is determined by the genetic load. Sachdeva344

et al [15] and Szep et al [16] refer to this as the “semi-deterministic” approximation which345

is accurate when demographic stochasticity is weak. One can apply the “fixed-state” approx-346

imation by further assuming that there are enough loci that the mean load is proportional to347

the mean across loci of the number of demes fixed for one or the other allele. The transition348

matrix can then be calculated as before, but is now a function of the population sizes in the two349

habitats, {N1, N2} which both depend on the current state via the load. The key assumption350

here is that with enough loci, the population sizes change almost deterministically, following351

the distribution of states across loci. One complication with hard selection is the existence of352

multiple stable equilibria: changing conditions would not just cause equilibria to shift but also353

changes the rates of transitions between equilibria.354

A key assumption in our analysis is that selection is directional: in a given environment, alleles355

experience a fixed selection pressure, which tends to drive out variation. More often, selection356
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may favour an intermediate optimum for a quantitative trait, such that when the mean is well-357

adapted, alleles are close to neutral. Our modelling framework can describe this case, but it is358

much more complex, since many different allele combinations can achieve the same optimum.359

However, if selection on each allele is weak (Ns<1), then the infinitesimal model [3] applies,360

and can also describe the population dynamics [4]. Local adaptation may be possible under361

higher migration rates in such a regime.362

In this work, we have introduced a novel approach to understanding the dynamical evolution of363

metapopulations. Although the full behaviour requires simulation, the diffusion approximation364

allows the stationary state to be calculated, and identifies the key dimensionless parameters.365

Moreover, when migration is rare, we can use a fixed state approximation that connects popu-366

lation genetics with models of adaptive walks [12].367
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[17] Trubenová, B., Krejca, M.S., Lehre, P.K., Kötzing, T. “Surfing on the Seascape: Adap-420

tation in a Changing Environment.” Evolution, vol. 73, no. 7, July 2019, pp. 1356–74.421

DOI.org (Crossref), https://doi.org/10.1111/evo.13784.422

[18] Uecker, H., Otto, S.P, Hermisson, J. “Evolutionary Rescue in Structured Populations.”423

The American Naturalist, vol. 183, no. 1, Jan. 2014, pp. E17–35. DOI.org (Crossref),424

https://doi.org/10.1086/673914.425

[19] Wright, S. “The Distribution of Gene Frequencies in Populations.” Genetics, vol. 23, no.426

6, June 1937, pp. 307–20. DOI.org (Crossref), https://doi.org/10.1073/pnas.23.6.307.427

[20] Wright, S. “The Distribution of Gene Frequencies in Populations.” Sci-428

ence, vol. 85, no. 2212, May 1937, pp. 504–04. DOI.org (Crossref),429

https://doi.org/10.1126/science.85.2212.504.430

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.17.460820doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.17.460820
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix431

Accuracy of the fixed-state approximation432

Here, we compare the the mean allele frequency in an infinite metapopulation under the diffusion433

approximation with the fixed-state approximation for different Nm values. As expected, the434

accuracy of the fixed state approximation holds only for small Nm.435

0.01 0.05 0.10 0.50 1 5 10
Nm0

0.1

0.2

p

Figure A1: The mean allele frequency in an infinite metapopulation, plotted against Nm; ρ = 0.2, Ns1, Ns2 =
1, −2 (lower curve) 2, −4 (middle curve) or 10, −20 (upper curve). The fixed-state approximation, which applies
for small Nm, is shown by the red lines.

Loss of diversity from a finite population, with Nm=0.01436
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Figure A2: This is identical to fig. 6, except that Nm=0.01, and the timescale is correspondingly longer. The
fixed-state approximation is more accurate with a lower number of migrants.
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Distribution of mean allele frequency437
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Figure A3: The distribution of allele frequencies, averaged over the 20 demes in the rare habitat, conditional on
polymorphism, and accumulated over generations 8, 000, 8, 100, to 10, 000; taken from the simulations in fig. 7b,
7c.
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