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Abstract

Progressive loss of pancreatic β-cell functional mass and anti-diabetic drug responsivity are classic 

findings in diabetes, frequently attributed to compensatory insulin hypersecretion and β-cell 

exhaustion. However, loss of β-cell mass and identity still occurs in mouse models of human KATP-

gain-of-function induced Neonatal Diabetes Mellitus (NDM), in the absence of insulin secretion. 

Here we studied the mechanisms underlying and temporal progression of glucotoxicity-induced 

loss of functional β-cell mass in NDM mice, and the effects of sodium-glucose transporter 2 

inhibitors (SGLT2i) therapy. Upon tamoxifen induction of transgene expression, NDM mice 

developed severe diabetes followed by an unexpected loss of insulin content, decreased proinsulin 

processing and proinsulin accumulation at 2-weeks of diabetes. This was accompanied by a 

marked increase in β-cell oxidative and ER stress, without changes in islet cell identity. Strikingly, 

early treatment with the SGLT2 inhibitor dapagliflozin restored insulin content, decreased 

proinsulin:insulin ratio and reduced oxidative and ER stress. However, despite reduction of blood 

glucose, dapagliflozin therapy was ineffective in restoring β-cell function in NDM mice when tit 

was initiated at >40 days of diabetes, when loss of β-cell mass and identity had already occurred. 

These results have important clinical implications as they demonstrate that: i) hyperglycemia per 

se, and not insulin hypersecretion, drives β-cell failure in diabetes, ii) recovery of β-cell function 

by SGLT2 inhibitors is through reduction of oxidative and ER stress, iii) SGLT2 inhibitors 

revert/prevent β-cell failure when used in early stages of diabetes, but not when loss of β-cell 

mass/identity already occurred, iv) common execution pathways underlie loss and recovery of β-

cell function in different forms of diabetes. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.17.460837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.17.460837
http://creativecommons.org/licenses/by/4.0/


Abbreviations

NDM (neonatal diabetes mellitus), SGLT2 (sodium glucose transporter 2), KATP (ATP sensitive 

potassium channel), TXNIP (Thioredoxin Interacting protein), sXBP1 (spliced X-box binding 

protein 1), ER (endoplasmic Reticulum), PC (proinsulin convertase), BiP (binding 

immunoglobulin protein), CHOP (C/EBP homologous protein), Pdx1 (pancreas-duodenum 

homeobox 1), Nkx6.1 (homeobox protein Nkx6.1), Glut2 (glucose transporter 2), FFA (free fatty 

acid), DAPA (dapagliflozin), T2D (type 2 diabetes).

Keywords: β- cell/insulin/diabetes/SGLT2/dapagliflozin/stress/glucotoxicity/pancreas/function/ 

inhibitors/secretion/ER/oxidative/stress
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1. Introduction

Reduced pancreatic β-cell function and mass contribute to both type 1 diabetes (T1D) and type 2 

diabetes (T2D) [1]. Reduction of β-cell function is considered an early event, while loss of β-cell 

mass occurs closer to clinical manifestation [2-5]. Chronic high glucose induce β-cell membrane 

hyperexcitability, persistently elevated intracellular calcium concentration and insulin 

hypersecretion, all critically contributing to loss of β-cell mass in diabetes [6-8]. However, loss of 

β-cell mass still occurs in KATP-gain-of-function (KATP-GOF) mouse model of human neonatal 

diabetes mellitus (NDM), in which all of these factors are absent due to KATP overactivity in 

pancreatic β-cells [9-13]. Chronic hyperglycemia can also induce β-cell overstimulation, oxidative 

and endoplasmic reticulum (ER) stress leading to β-cell exhaustion, loss of β-cell mass and identity 

[4, 7, 14-16]. However, most of the studies have been performed in human pancreases from T2D 

individuals and in animal models of T2D and obesity, and little is known about mechanisms 

underlying and temporal progression of loss of functional β-cell mass in monogenic diabetes, in 

the absence of compensatory increase in insulin secretion. 

Loss of functional β-cell mass in diabetes seems to be independent of the antidiabetic 

therapy, with most antidiabetic agents initially effective as monotherapy, but failing to reduce 

blood glucose over time [17-19], requiring add-on combinational therapies. Sodium glucose 

transporter 2 inhibitors (SGLT2i) are a new class of antidiabetic drugs that inhibit glucose 

reabsorption in the kidneys and increase glucose excursion in the urine. Because their mechanism 

of action is independent of insulin secretion or action, they can be used in combination with other 

therapies [20]. T2D individuals treated with SGLT2i demonstrate improved glycemic control, 

increased glucose- and incretin-stimulated insulin secretion and enhanced insulin sensitivity as 

well as reduced blood pressure, decreased plasma lipids and reduced risk for cardiovascular events 
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[21-24]. Db/db and ob/ob mouse models of obesity and T2D treated with SGLT2i (luseogliflozin, 

ipragliflozin or dapagliflozin) demonstrated reduced blood glucose, augmented insulin and GLP-

1 secretion, increased β-cell mass, β-cell self-replication and α- to β-cell conversion, and restored 

β-cell identity [25-30]. Moreover, db/db mice with SGLT2 deletion showed improved insulin 

sensitivity and increased β-cell proliferation and decreased β-cell death [31]. Streptozotocin-

induced type 1 diabetic mice treated with empagliflozin demonstrated increased insulin mRNA, 

serum insulin, and β-cell area and proliferation [32]. Although improved β-cell function by 

SGLT2i has been suggested in humans and rodents, the underlying mechanisms and timeframe of 

this effect remain elusive, with most studies performed in the setting of obesity and T2D. 

Here we determined the underlying mechanisms and temporal progression to β-cell failure, 

and established the effects of SGLT2i therapy, in insulin secretory-deficient mouse model of KATP-

GOF induced NDM.

2. Materials and Methods

Mouse models Neonatal diabetic mice were generated as previously described [9]. Briefly, mice 

expressing Kir6.2 (K185Q,ΔN30) mutant transgene under the Rosa26 locus promoter were crossed 

with tamoxifen-inducible Pdx-Cre mice, to generate transgenic mice expressing the NDM 

mutation in β-cells. To induce transgene expression, 12 to14-week old mice were injected with 

five consecutive daily doses of tamoxifen (50 μg/g body weight). Littermate single transgenic 

(Rosa-kir6.2, Pdx-cre) were also injected with tamoxifen and used as controls since to date, no 

significant differences in phenotype were found.  Both male and female mice were used for all 

experiments as no significant sex-based differences were found. Mice were maintained on a 12-

hour light/dark cycle. Animals were house in BJCIH animal facility with a 24hs surveillance with 
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veterinarian and personnel assigned to the facility. Power analysis determined the sample size, and 

it is stated in each experimental design and figures. Experimental groups were randomized, and 

treatment separation was assigned blinded. 

Ethics statement This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 

protocol was approved by the Washington University School of Medicine Animal Care and Use 

Committee (IACUC, Protocol Number: 19-1078). Tissue collection was performed at the end of 

the experiments at a predetermined time, with the animals euthanized by inhalation of Isoflurane 

in a chamber, and then cervical dislocation. All efforts were made to minimize suffering.

Plasma hormones, and blood and urine glucose measurements Blood glucose was measured 

either randomly or after an overnight fast as indicated by using the one-touch Bayer Contour T5 

glucometer (Mishawaka, IN). Plasma insulin and glucagon levels were quantified using a 

rat/mouse insulin and mouse glucagon ELISA (Crystal Chem, IL). Urine glucose was analyzed by 

glucose-Autokit (Wako Diagnostics, Richmond, VA). Plasma lipids were measured by 

Washington University Diabetes Research Center Metabolic Tissue Function Core 

(http://diabetesresearchcenter.dom.wustl.edu/diabetes-models-phenotyping-core/). For all in 

vitro analyses, at least three independent animals were used. Cells and tissues from each animal 

were kept separated and analyzed individually. Data collection was stopped at predetermined, 

arbitrary time as 10 days after initiation of DAPA/vehicle treatment. No data were excluded. 

Further methods details are available in the following sections or in the Supplementary Materials 

section.

Glucose tolerance tests (GTT) and Insulin tolerance tests (ITT). GTTs and ITTs were 

performed after overnight or six-hour fast, respectively. Blood glucose was measured before (time 
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0) and after (15, 30, 45, 60, 90 and 120 min) intraperitoneal (ip) injection of 1.5 mg/kg dextrose 

(GTT) or 0.5 U/kg human insulin (ITT, HI-210 Lilly). 

Pancreatic Islet Isolation For islet isolation euthanized mice were perfused through the bile duct 

with Hank’s solution containing collagenase type XI (Sigma, St. Louis, MO). Pancreases were 

removed, digested for 11 minutes at 37°C in water bath, hand shaken, and washed in cold Hank’s 

solution. Islets were handpicked under a stereo microscope in RPMI (11mM glucose) media 

(ThermoFisher Scientific) supplemented with fetal calf serum (10%), penicillin (100 U/ml), and 

streptomycin (100 μg/ml). For all assays involving islets, freshly isolated islets were immediately 

processed and freeze at -80C to avoid changes induced in the absence of DAPA.  

Insulin and proinsulin content measurement Total insulin and proinsulin content were 

measured using rat/mouse insulin ELISA kit (Crystal Chem, IL) and proinsulin ELISA kit 

(Mercodia, Uppsala, Sweden) respectively from batches of ten size-matched islets after acid-

ethanol extraction [12].

Quantitative PCR analysis Islet RNA extraction and qPCR analysis was performed as described 

previously [10]. Primers used to determine ER stress markers [33] and mature islet cell markers 

[10] have been published.

Western blot analysis 15μg of total protein lysate was loaded per lane. Blots were incubated 

overnight with the following antibodies: Beta-actin (1:1000; EMD Millipore, MO), Proinsulin 

(1:1000; CST, MA), TXNIP (1:1000; MBL International, MA), sXBP1 (1:1000; Santa Cruz 

Biotechnology, TX), Prohormone convertase 1/3 (1:1000; CST, MA), Prohormone convertase 2 

(1:1000; CST, MA), SERCA2b (1:1000, Santa Cruz Biotechnology, TX). Blots were washed and 

probed with RDye infrared fluorescent dye-labeled secondary antibody conjugates (1:10,000; LI-
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COR biotechnology). Fluorescence intensity was quantified by image studio Lite (LI-COR 

biotechnology).

Immunohistochemical and morphometric analysis Pancreases from control and NDM mice 

were fixed in 10% NBF, and paraffin-embedded after serial dehydration for sectioning.  Four- to 

eight mice from each genotype were sampled on 5μm thick sections, 25µm apart (spanning the 

whole pancreas) and used for immunohistochemical/morphometric analysis. For morphometric 

analysis, at least 3 pancreatic sections from 3-8 mice from each genotype were covered 

systematically by accumulating images from non-overlapping fields on an inverted EXC-500 

fluorescent microscope (Visual Dynamix, Chesterfield, MO). Hematoxylin-Eosin (HE) staining 

was carried out as described previously [10]. Briefly, slides were stained with guinea pig anti-

insulin (Abcam, 1:100), mouse anti-glucagon (Cell signaling, 1:100), rabbit anti-somatostatin 

(Abcam, 1:500) antibodies and their distribution visualized using secondary antibodies conjugated 

with AlexaTM 488 or AlexaTM 594 (Molecular Probes, Eugene-OR) using an EXC-500 

fluorescent microscope (Visual Dynamix, Chesterfield, MO). Whole pancreatic area and islet area 

were determined by H&E staining, and β-cell area and intensity by insulin staining (#C27C9 

Rabbit mAb, Cell Signaling). Β-cell mass was calculated as the product of relative β-cell area to 

whole pancreatic area and pancreatic weight for each mouse.

Reactive Oxygen Species Islets were dispersed into single cells using Acutase (Sigma-Aldrich) 

and plated in RPMI complete media overnight on ploy-D-lysine (Sigma-Aldrich) coated glass-

bottom culture dishes (MatTek Corp).  After overnight culture, cells were incubated in KRB 

containing 2.8 mM glucose for one hour, followed by 16.7 mM glucose for one hour at 37°C. In 

the last 30 minutes of incubation, CellROX Deep Red Reagent (final concentration of 5µM, 

Molecular Probes ThermoFisher Scientific, MA) and live nuclear reagent (Hoeschst 33342, 
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Molecular Probes) were added. After 30 min, cells were washed with PBS 3 times and imaged 

using a Leica DMI 4000B inverted microscope (Lecia microsystems, IL). Fluorescence intensity 

was quantified by image studio Lite (LI-COR biotechnology).

Calcium measurements The genetically encoded calcium sensor pRSET-RcaMP1h was a gift 

from Loren Looger (Addgene plasmid # 42874).  The coding sequence of the RcaMP1h sensor 

was subcloned into the pShuttle vector, and recombinant adenovirus particles were produced 

following the AdEasy XL Adenoviral Vector System protocol (#240010 Agilent Technologies). 

Islets were transduced using a microfluidic device to obtain uniform infection of the islet cells 

throughout the islet volume and were incubated overnight before imaging. Imaging on islets was 

performed on the LSM880 inverted microscope (Zeiss Inc), using a heated stage-top incubator 

(Pecon GmbH) 24 hours post transduction.  Islets were imaged in KRBH medium (NaCl 128.8 

mM, KCl 4.8 mM, KH2PO4 1.2 mM, MgSO4 1.2 mM, CaCl2 2.5 mM, NaHCO3 5mM, HEPES 

10 mM, pH 7.40, 0.1% BSA) supplemented with the desired glucose concentration. RcaMP1h 

fluorescence was excited with a 561 nm laser, and the emission was collected through a 570-650 

nm bandpass.

Dapagliflozin treatment NDM, db/db and ob/ob mice were randomly separated into two 

treatment groups – vehicle or – Dapagliflozin (DAPA, SelleckChem, Houston, TX), a sodium-

glucose transporter 2 inhibitor. DAPA was suspended in vehicle containing 30% Polyethylene 

glycol, 5% Propylene glycol, 0.4% tween-80 as recommended by the manufacturer. 12 to 14-week-

old NDM mice were injected with 5 consecutive doses of tamoxifen to induce diabetes. Mouse 

groups were assigned randomly, and the study was not blinded. On day 7, NDM mice received a 

daily oral gavage of either vehicle or DAPA (10 mg/kg of body weight) for 10 days. 10-weeks old 

db/db and ob/ob mice also received a daily oral gavage of either vehicle or DAPA (10 mg/kg of 
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body weight) for 10 days. Vehicle and DAPA treated mice were monitored through blood glucose 

measurements daily and blood serum collection and then euthanized for ex vivo analysis. Data 

collection was stopped at predetermined, arbitrary time as 10 days after initiation of DAPA/vehicle 

treatment. No data were excluded. Further methods details are available in the following sections 

or in the Supplementary Materials section.

Statistical Analysis Data are expressed as mean ± standard error of the mean. Statistical 

differences between two groups were determined using Student’s t-test and among several groups 

were tested using analysis of variance (ANOVA) with GraphPad PRISM version 8.0 (La Jolla, 

CA), assuming that the data is normally distributed for each variable. Significant differences 

among groups with *p<0.05, **p<0.01; ***p<0.001 and ****p<0.0001 are indicated in the 

Figures, and non-significant differences are not shown. The sample size, n, indicates the total 

number of biological samples. 

3. Results

Early loss of insulin content and proinsulin accumulation in islets from insulin secretory-

deficient NDM mice  Upon induction of KATP-GOF expression by tamoxifen, NDM mice 

developed severe diabetes and a marked decrease in plasma insulin levels (Fig. 1A,B) [9]. As 

predicted by the ‘switch off’ of glucose-stimulated insulin secretion, NDM mice showed 

significantly impaired glucose tolerance (Fig. 3C,D). Unexpectedly however, and not explained 

by expression of the KATP mutation, insulin content was markedly reduced (>50%) at day 15 of 

diabetes (Fig. 1E), correlating with decreased insulin immunostaining (Fig. 1F). This was 

accompanied by a significant increase in islet proinsulin protein levels (Fig. 1H), proinsulin:insulin 

content ratio (Fig. 1I) and plasma proinsulin (Fig. 1G). Prohormone convertases 1/3 and 2, which 
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direct the endoproteolytic cleavage of proinsulin to insulin and C-peptide, were significantly 

decreased in NDM islets (Fig. 1J), suggesting reduced proinsulin processing as causal for 

proinsulin accumulation. As expected by the presence of overactive KATP-channels in β-cells, 

NDM islets did not demonstrate an increase in cytosolic calcium in response to high glucose (Fig. 

1K), confirming previous results in islets from long-standing diabetic NDM mice.

Increased oxidative and ER stress in islets from NDM diabetic mice Proinsulin accumulation 

can activate the ER stress pathway response. Islets from NDM mice demonstrated a significant 

increase in mRNA levels in the ER stress markers BiP, spliced XBP1 (sXBP1). ATF4 and ATF6, 

and no changes in CHOP (Fig. 2A). Protein levels of sXBP1, a product of the IRE pathway that is 

critical in highly secretory cells to maintain cell stress homeostasis, was significantly increased in 

NDM islets (Fig. 2B), and ER based ATPase sarco/endoplasmic reticulum calcium pump 2 

(SERCA2b) significantly reduced (Fig. 2C). Reactive oxygen species (ROS) formation (Fig. 2D) 

and thioredoxin-interacting protein (TXNIP, a pro-oxidant protein) (Fig. 2E), were also markedly 

increased in NDM islets at day 15 of diabetes, suggesting increased oxidative stress in early stages 

of diabetes. Islets are particularly susceptible to oxidative damage due to low levels of antioxidants 

enzymes. Correlating with this, glutathione peroxidase and catalase were not detected, and 

superoxide dismutase 2 (SOD2) not altered in NDM islets (Fig. 2F). Interestingly, despite the 

decrease in insulin content at day 15 of diabetes, islet morphology, insulin and glucagon staining 

were not affected (Fig. 3A) in NDM islets. Moreover, total islet area, percent of β-cell area and β-

cell mass (Fig. 3B).  as well as the β-cell identity markers insulin, Pdx1, Nkx6.1 and Glut2 (Fig 

3C) were not altered in NDM islets. In addition, plasma glucagon did not significantly change 

during diabetes progression (Fig. 3D), and percent of α-cell area and gene expression of the α-cell 
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marker Arx remained similar in NDM and littermate controls islets at day 15 of diabetes (Fig. 

3E,F).

Dapagliflozin therapy restores insulin content in non-obese NDM mice through reduction of 

β-cell stress To determine whether reducing blood glucose alone reverts loss of insulin content 

and cellular stress, NDM mice were treated with the SGLT2i dapagliflozin (DAPA). As expected, 

DAPA-treated NDM mice showed a significant reduction in blood glucose (Fig. 4A), increased 

urinary glucose output (Fig. 4B), and no changes in plasma insulin (Fig. 4C) or body weight (Fig. 

4D) after 10 days of DAPA therapy compared to vehicle-treated NDM. Plasma lipids such as 

triglycerides, cholesterol and free fatty acids (FFA) did not change by DAPA treatment (Fig. 4E). 

DAPA-treated NDM mice showed lower fasting glucose and improved glucose tolerance (Fig. 

4F), and a mild, but not significant, improvement in insulin sensitivity (Fig. 4G) compared to 

vehicle-treated NDM mice. Ten days of DAPA treatment was sufficient to increase insulin content 

(Fig. 4H), reduce proinsulin (Fig. 4I) and proinsulin:insulin ratio (Fig. 4J) compared to vehicle-

treated NDM mice. These changes were accompanied by a significant decrease in TXNIP and 

sXBP1 proteins (Fig. 4K), suggesting decreased cellular stress as a mechanism underlying 

recovery of β-cell function in NDM. No differences in any of the above-mentioned tests were 

observed in control mice treated with vehicle or DAPA (Fig. 4A-J). To test if alleviation of cellular 

stress is a unique effect of dapagliflozin, or an effect of lowering blood glucose, NDM mice were 

implanted with low dose slow-release insulin pellets (0.1U/day/pellet) 7 days post tamoxifen, to 

match the timeline for DAPA therapy (Fig. S1A). While blood glucose was significantly reduced, 

total islet insulin higher, and proinsulin:insulin ratio reduced in insulin-treated NDM mice 

compared to placebo treated mice (Fig. S1A-C), cellular stress marker proteins such as TXNIP 
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and sXBP1 were not improved (Fig. S1D), suggesting unique effects of DAPA on reducing β-cell 

stress. 

Notably however, despite the significant decrease in blood glucose levels (Fig. 5A,B), 

insulin content (Fig. 5C) was not improved in islets from NDM mice when therapy was initiated 

at >42 days of diabetes. These results suggest inability of SGLT2i to improve β-cell function in 

animals with long-standing diabetes when they had already loss β-cell mass and identity.

Dapagliflozin therapy reduced cellular stress in mouse models of obesity and T2D. Animal 

models of obesity and T2D diabetes such as leptin receptor deficient db/db and leptin deficient 

ob/ob mice were also treated with DAPA. DAPA-treated db/db mice showed a marked reduction 

in blood glucose (Fig. S2A), and no significant changes plasma insulin (Fig. S2B) or plasma lipids 

(Fig. S2C) compared to vehicle treated db/db mice. Similar to NDM mice, 10 days of DAPA 

therapy was sufficient to significantly increase insulin content (Fig. S2D) and markedly reduced 

TXNIP and sXBP1 protein levels (Fig. S2E). Ob/ob mice treated with DAPA also showed a 

reduction in blood glucose (Fig. S2F), although less consistent compared to the other two mouse 

models, and no significant changes in plasma insulin (Fig. S2G) or plasma triglycerides, 

cholesterol or FFA (Fig. S2H). DAPA-treated ob/ob mice also showed increased islet insulin 

content (Fig. S2I) and decreased sXBP1 and TXNIP (Fig. S2J).

4. Discussion 

Loss of pancreatic β-cell mass and identity, and increased apoptosis have been demonstrated in 

T2D and T1D individuals [1, 3, 5, 34], and in animal models of monogenic diabetes as well as 

T1D and T2D diabetes [2, 4, 10, 11, 35]. Beta-cell oxidative and ER stress has been shown to be 
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involved in β-cell failure in both T1D and T2D [34]. We demonstrated here that this is also the 

mechanism underlying early loss of insulin content in a mouse model of monogenic NDM, in the 

absence of hyperglycemia-induced insulin hypersecretion and β-cell exhaustion. Loss of insulin 

content, proinsulin accumulation and cellular stress are early events in NDM, leading to loss of β-

cell mass and identity in long-standing diabetes. These results are in agreement with similar 

mechanism of β-cell failure occurring in human and mouse models of both T1D and T2D/obesity 

[34, 36, 37], thus highlighting common execution pathways for β-cell failure in different forms of 

diabetes. 

Although some studies demonstrated that treatment with SGLT2i preserved β-cell mass in 

ZDF rats [38], streptozotocin-induced T1D mice [32] and in db/db and ob/ob mouse models of 

obesity and T2D [25-30, 39], the underlying mechanism of this protection remains elusive. We 

demonstrate here for the first time that SGLT2i therapy increased islet insulin content, and 

decreased proinsulin through reduction in β-cell oxidative and ER stress in mouse models of 

monogenic NDM and obese/T2D. Our demonstration of lack of restoration of insulin content in 

NDM mice treated with DAPA at day 42 of diabetes correlate with no improvements in insulin 

biosynthesis/secretion in 16 weeks old db/db mice treated with luseogliflozin [25], and with 

absence of preservation of β-cell function in 15-20 weeks old db/db mice treated with dapagliflozin 

[28], suggesting a point of no return for improvement of islet function by SGLT2i when β-cells 

had already lost their mature identity. These studies also correlate with those demonstrating that 

dapagliflozin was effective as monotherapy at early stages of human T2D, but only as add-on 

mediation to other antidiabetic drugs in individuals with long-standing diabetes [40]. 

In addition to the effect of lowering of blood glucose, SGLT2i also act as insulin-

sensitizing agents. While some T2D individuals showed an improvement in insulin sensitivity, 
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reduced HbA1c and weight loss by SGLT2i therapy [41], others did not [42]. Obese db/db mice 

treated with empagliflozin [39, 43], and db/db mice with genetic deletion of SGLT2 [31] 

demonstrated improved insulin sensitivity. However, lack of significant changes in insulin 

sensitivity and lipid profile in 10-day DAPA-treated NDM mice suggests additional effects of 

SGLT2i in insulin-resistant/obese states. Though, longer SGLT2i therapy could lead to reduction 

of plasma lipids and therefore additional improvements in β-cell function as it has been shown in 

mouse models of obesity/T2D [44-46].

Increased ER stress and decreased insulin signaling might synergistically reduce β-cell 

function [47-49], which is supported by our data demonstrating restoration of insulin signaling and 

reduction of ER stress by DAPA. Insulin therapy also preserved insulin content and decreased 

proinsulin:insulin ratio in NDM mice, which is consistent with proinsulin synthesis not regulated 

by insulin autocrine feedback on β-cells [49]. Therefore, we speculate that synergistic effects might 

be induced by a combination of SGLT2i and insulin therapy, which could explain the beneficial 

effects of combination of these two agents in individuals with long-standing T2D [40]. Thus, we 

may reconceptualize the role of SGLT2i as organ-protective agents in promoting adaptive cellular 

reprogramming of stressed cells for survival and function, as has been proposed elsewhere for cardiorenal 

benefits [50]. This paradigm shift in understanding additional actions of SGLT2i correlate with the 

reduction of β-cell stress in NDM mice by DAPA, but not by insulin therapy. 

In conclusion, our study showed increased β-cell oxidative and ER stress as the underlying 

mechanism of early loss of insulin content in insulin secretory-deficient monogenic NDM, and 

that lowering blood glucose alone by SGLT2i is sufficient, through reduction of oxidative and ER 

stress, to restore insulin content and β-cell function. From a therapeutic perspective, our study 

strongly supports the use of SGLT2i as monotherapy in initial stages to preserve functional β-cell 

mass in monogenic diabetes, and as add-on combinational therapy to other antidiabetic agents in 
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long-standing diabetes. Strikingly, similar underlying mechanisms for protection of β-cell failure 

by SGLT2i were found in different forms of diabetes suggesting common execution pathways.
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Figure Legends 

Fig. 1.  Loss of insulin content precedes β-cell mass and cell identity in NDM (A) Non-fasting 

blood glucose and (B) plasma insulin over time (n=15-20 mice/group). Glucose tolerance test at 

day 7 (C) and 15 (D) post tamoxifen induction. (E) Total islet insulin content per 10 islets at 

different days post tamoxifen induction (n=8-10 mice/group). (F) beta-cell intensity determined in 

pancreatic sections immunostained with insulin. (G) Plasma proinsulin at day 15 post tamoxifen 

induction. (H) Western blot analysis of proinsulin protein, representative (top) and quantification 

(bottom) on islets at day 15 post tamoxifen induction, n=6 mice/group. (I) Proinsulin:insulin ratio 

at day 15 post tamoxifen induction (n= 10 mice/group) measured by Elisa. (J) Western blot 

analysis of prohormone convertases 1/3 and 2, representative (top) and quantification (bottom) on 

islets at day 15 post tamoxifen induction, n=4 mice/group. (K) Calcium imaging, representative 

left and quantification right at 2- and 16-mM glucose at day 15 post tamoxifen induction. 

Black=controls and green=NDM. Data are expressed as mean ± SEM. Significant differences 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

  Fig. 2. NDM islets demonstrated oxidative and ER stress in early diabetes (A) Quantitative 

real-time PCR analysis of gene expression of ER stress markers in islets, n=5-8 mice/group. 

Western blot analysis of (B) sXBP1 and (C) SERCA2b, representative blot (top) and quantification 

(bottom), n=6 mice/group. (D) Reactive Oxygen Species (ROS) measurement in dispersed islets; 

representative images (left) and quantification (right), n=18 images from islets obtained from 3-4 

mice in each group; scale bar=25 µm. (E) Representative western blot of TXNIP (top) and 

quantification (bottom), n=9 mice/group. Samples were run on the same gel but were not 

contiguous. (F) Representative western blot of SOD2 (top) and quantification (bottom), n=6 

mice/group. Black=controls and green=NDM at day 15 post tamoxifen induction. Data are 
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expressed as mean ± SEM. Significant differences *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001.

Fig. 3. No changes in morphology or β-cell identity in islets from NDM mice at early stages 

of diabetes (A) representative images of islets immunostained with insulin (green) and glucagon 

(red). (B) Islet area (left), percent of β-cell area (middle) and β-cell mass (right) n=8 mice/group, 

3 slides from each mouse.  (C) Quantitative real-time PCR analysis of gene expression of mature 

β-cell identity markers in islets (n=5-8 mice/group) at day 15 of diabetes. (D) Plasma glucagon 

overtime during development and progression of diabetes. (E) percent of α-cell area n=8 

mice/group, 3 slides from each mouse, and (F) Quantitative real-time PCR analysis of gene 

expression of the α-cell identity marker Arx in islets, n=4 mice/group. Black=controls and 

green=NDM at day 15 post-tamoxifen injection. Data are expressed as mean ± SEM. Significant 

differences *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

Fig. 4.  Dapagliflozin therapy in NDM mice improves β-cell function though reduction of 

oxidative and ER stress (A) Blood glucose in control and NDM mice administered with vehicle 

or dapagliflozin (DAPA) by daily oral gavage on day 7 post-tamoxifen; n=5-15 mice/group. (B) 

Body weight (g) over time, (C) Plasma insulin and (D) urine glucose after 10 days of vehicle or 

DAPA treatment, n= 11 mice/group. (E) Lipid panel (tryglyceride, cholesterol and FFA) and (F) 

Glucose tolerance test (left) and calculated area under the curve (AUC, right) from control and 

NDM mice after 10-day treatment with vehicle or DAPA, n=5 mice/group. (G) Insulin tolerance 

test from control and NDM mice after 10-day treatment with vehicle or DAPA calculated as 

percentage from the initial blood glucose at 6-hrs fast (right), n=5 mice/group.  (H) Islet total 

insulin content, (I) total proinsulin content, (J) proinsulin/insulin ratio and (K) prohormone 

convertases PC1/3 and PC2 from control and NDM mice after 10-day treatment with vehicle or 
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DAPA, n=5-12 mice/group. (L) Western blot analysis on isolated islets after 10 days treatment 

with DAPA or vehicle. Representative blots (left) and quantification (right), n=4-6 mice/group.  

Black open circles: controls, pink open circles: control DAPA, grey filled circles: NDM vehicle 

treated, and pink filled circles: NDM DAPA treated mice. Arrow indicates initiation of DAPA 

therapy. Data are expressed as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.001.   

Fig. 5. Dapagliflozin therapy does not improve insulin content in long-standing NDM NDM 

mice treated with vehicle or DAPA, starting on day 42 post-tamoxifen (A) blood glucose over-

time (left) and 10 days after treatment (right), n=6 mice/group. (B) Total islet insulin content 10 

days after treatment with vehicle or DAPA, n=6 mice/group.  Grey=vehicle-treated NDM and 

pink=DAPA-treated NDM mice. Arrow indicates initiation of DAPA therapy. Data are expressed 

as mean ± SEM. *P<0.05, **P<0.01.  
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