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ABSTRACT 25 

Immunological memory is key to productive adaptive immunity. An unbiased, high throughput 26 
gene expression profiling of tissue-resident memory T cells at their precise anatomical locations 27 
within the lung is fundamental to understanding lung immunity, but such spatial information 28 
has yet to be characterized. In this study, using a well-established Klebsiella pneumoniae 29 
infection model, we performed an integrative analysis of spatial transcriptome with single-cell 30 
RNA-seq and single-cell ATAC-seq on lung cells from mice after immunization using the 10x 31 
Genomics Chromium and Visium platform. We employed several deconvolution algorithms and 32 
established an optimized deconvolution pipeline to accurately decipher specific cell-type 33 
composition by anatomic location. We identified and located 12 major cell types by scRNA-seq 34 
and spatial transcriptomic analysis.  Integrating scATAC-seq data from the same cells processed 35 
in parallel with scRNA-seq, we found epigenomic profiles provide more robust cell type 36 
identification, especially for lineage-specific T helper cells. When combining all three data 37 
modalities, we observed a dynamic change in the location of T helper cells as well as their 38 
corresponding chemokines for chemotaxis. Furthermore, cell-cell communication analysis of 39 
spatial transcriptome provided evidence of lineage-specific T helper cells receiving designated 40 
cytokine signaling. In summary, our first-in-class study demonstrated the power of multi-omics 41 
analysis to uncover intrinsic spatial- and cell-type-dependent molecular mechanisms of lung 42 
immunity. Our data provides a rich research resource of single cell multi-omics data as a 43 
reference for understanding spatial dynamics of lung immunization.  44 

45 
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INTRODUCTION 46 

Immunological memory, consisting of B cell and T cell memory, is a key characteristic of 47 
adaptive immunity upon encountering with pathogen invasion. Typically, memory T cells can be 48 
classified into two categories: effector memory and central memory T cells. Effector memory T 49 
cells are able to produce effector cytokines and have cytotoxic activity against pathogen 50 
infected cells 1. Tissue-resident memory T cells (TRM) have more recently been defined as a 51 
new subset, predominantly residing in mucosal tissues, barrier surfaces, and other non-52 
lymphoid organs but are also present in lymphoid sites 2. TRM are antigen experienced and are 53 
capable of rapidly responding to re-exposure to cognate antigen. TRM in the lung have been 54 
demonstrated to exhibit robust protective function against constant viral and bacterial 55 
challenge of the lungs and respiratory tract. 56 

Klebsiella pneumoniae is an important cause of community-acquired pneumonia. In 2011, the 57 
U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-58 
resistant K. pneumoniae that affected 18 patients, 11 of whom died. Thus, in addition to 59 
antimicrobial stewardship and hospital hygiene measures, there is a critical need for the 60 
development of novel therapeutic approaches to prevent and/or treat antibiotic resistant 61 
infections. Our previous work has demonstrated that K. pneumoniae specific Th17 cells are 62 
induced by immunization with whole bacterial lysate 3.These memory Th17 cells are both 63 
required and sufficient to provide serotype/antibody independent protection against a variety 64 
of strains of K. pneumonia including the recently described multidrug resistant New Delhi 65 
metallo-beta-lactamase strain. 66 

Tissue localization of these TRM cells has been investigated thoroughly in the past and 67 
comparisons between mouse and human TRM have been characterized extensively using the 68 
well-established flow cytometric and transcriptomic approaches 4. However, an unbiased, high 69 
throughput gene expression profiling of TRM residing in various anatomical location within the 70 
lung, such as airway vs parenchyma, has not been possible using conventional flow cytometry, 71 
transcriptomic approaches, and even the most recently developed single-cell sequencing 72 
technology. These methodologies are limited as anatomic location specific information is lost 73 
after single-cell suspension is acquired.  74 

Single-cell RNA-seq (scRNA-seq) has been gradually applied to study immune cells and immune 75 
responses in mouse lungs 5–8. Few recent studies utilize single-cell ATAC-seq (scATAC-seq) to 76 
measure the chromatin architecture of immune cells in mouse lungs 9. Although these 77 
technologies provide rich information in understanding cell heterogeneity and biology 78 
information of mouse lung, spatial information of single cell is lost in the process. Spatial 79 
transcriptomics (ST) is a recently developed technology and has the ability to map 80 
transcriptional signatures to distinct anatomical regions. To date, it has rarely been used in 81 
understanding lung tissues. In this first-in-class study, we employed a commercially available ST 82 
platform to investigate the spatial topography of gene expression of mouse lungs after 83 
immunization. To overcome the resolution limitation of current ST technology, we also applied 84 
state-of-art single-cell transcriptomics and single-cell epigenomics to jointly study the spatial 85 
localization, transcriptome, and epigenome of T cells induced by this immunization. The 86 
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integrative analysis of three types of omics data provides an unprecedented and 87 
comprehensive way to examine the genomic basis and dynamics of lung immunization.  88 

 89 

RESULTS 90 

Cataloging 12 Lung Cell Types using scRNA-seq Data 91 

In this study, we inoculated mice with heat-killed K. pneumoniae and assigned them into two 92 
groups, the immunized and the re-challenged groups. The immunized group was inoculated 93 
twice on day 0 and day 7, whereas the re-challenged group was additionally inoculated on day 94 
13. On day 14, both groups of mice were sacrificed for tissue harvesting. Slices A1 and A2 were 95 
sectioned from the fresh frozen lung of the immunized mouse, whereas slices A3 and A4 were 96 
from the re-challenged mouse. In a separate cohort, lung tissue from the re-challenged mouse 97 
were harvested and single-cell suspension was obtained after enzymatic digestion. The four 98 
lung slices were used for spatial transcriptomics, and the single-cell suspension from the re-99 
challenged mouse were subjected to scRNA-seq and scATAC-seq analyses. scRNA-seq data were 100 
integrated with scATAC-seq data via label transfer and were used as a reference to deconvolute 101 
spatial transcriptomics data (Figures 1A). 102 

We generated scRNA-seq data from 3,337 cells collected from the re-challenged mouse. Graph-103 
based clustering identified ten clusters (Figures S1A and S1C). Cluster 1, which has an extremely 104 
high percentage of mitochondrial genes (Figures S1B), was excluded from downstream 105 
analyses. Cluster 6 consisted of several sporadic sub-clusters and was re-clustered into four 106 
clusters (Figures S1D and S1E). 2,834 cells with good quality were retained for the downstream 107 
analyses. 108 

We carried out fine cluster annotation according to canonical markers and identified 12 lung 109 
cell types (Figures 1B), including alveolar epithelial cells, club cells, fibroblasts, endothelial cells, 110 
monocytes, macrophages, dendritic cells, neutrophils, B cells, T cells, NK cells, and erythrocytes. 111 
Selected canonical markers for each cell type were shown in the dot plot (Figures 1C, e.g., Sftpb 112 
for alveolar epithelial cells, Scgb1a1 for club cells, and Cd3d for T cells). The top five (by log2-113 
Fold Change) markers for each cell type were visualized using a heatmap (Figures 1D). 114 

 115 

Robust Cell-type Decomposition (RCTD) of Spatial Transcriptome using scRNA-seq Data 116 

Although spatial transcriptomics provides additional spatial information, its resolution has not 117 
reached to single-cell level. Therefore, the expression profile of each spot in spatial 118 
transcriptomics is from a mixture of a few cells, typically one to ten. To better interpret spatial 119 
transcriptome data, it is vital to determine the proportions of different cell types within each 120 
spot. Using our finely annotated scRNA-seq data as a reference, we carried out deconvolution 121 
for each spot in the four slices using the robust cell-type decomposition (RCTD) method 10. The 122 
deconvolution results for slice A3 were shown as proportions of 12 cell types across slice A3 123 
(Figures S2A). 124 

To assess the robustness of this deconvolution method, we inspected whether well-125 
characterized cell types were colocalized with the expression of their canonical markers, as well 126 
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as corresponding histological structures. In slice A3, spots with a high proportion of club cells 127 
were around the histological airways and colocalized with spots with increased expression of 128 
Scgb1a1 (Figures 2Ai-iii). 129 

To examine the robustness and impact of reference panel on deconvolution, another public 130 
scRNA-seq data (GEO: GSE119228) 5, including 20 annotated mouse lung cell types (Figures 131 
2Bi), were also used as an independent reference to deconvolute spatial transcriptome for the 132 
four slices. The deconvolution results for slice A3, using public scRNA-seq reference, were 133 
shown (Figures S2B). In slice A3, proportions of T cells deconvoluted using in-house or public 134 
scRNA-seq references were quite similar (Figures 2Bii and 2Biii). Deconvolution results can also 135 
be represented using proportion matrices, whose rows indicate spots and columns indicate cell 136 
types. To quantify the similarity between the deconvolution results using the two independent 137 
references, Pearson correlation coefficients between the columns of the two proportion 138 
matrices were calculated and visualized using correlation heatmaps (Figures 2Ci-iv). Although 139 
we cannot perfectly match all the 12 cell types from our in-house data with the 20 cell types 140 
identified in this public dataset, we found the proportions of some adaptive immune cells (e.g., 141 
T cells and B cells) and innate immune cells (e.g., neutrophils and NK cells) were highly 142 
correlated with those deconvoluted using the other reference in all four slices. Other cell types 143 
were also highly correlated with their related cell types deconvoluted using the other reference 144 
(e.g., club cells in in-house data with ciliated cells in public data, alveolar epithelial cells in in-145 
house data with AT2 in public data). These analyses validated the robustness of the robust cell-146 
type decomposition (RCTD) method. 147 

 148 

Integrative Analysis of scRNA-seq and scATAC-seq Data Enabling the Identification of Th17 149 
and Th1 Cells 150 

In parallel with scRNA-seq, we also generated scATAC-seq data from 4,908 cells collected from 151 
the re-challenged mouse. After excluding cells with low quality, 4,794 cells were retained for 152 
downstream analyses. Leveraging our finely annotated scRNA-seq data, we identified the 12 153 
lung cell types in scATAC-seq data via label transfer (Figures 3A). Proportions of the 12 cell 154 
types in scRNA-seq and scATAC-seq data were quite similar (Figures 3B), showing a good 155 
biological agreement between two types of data. 156 

Because we are interested in T cells in this study, we carried out re-clustering for T cells in 157 
scATAC-seq data and identified four subtypes of T cells (Figures 3C), including Th17 cells, Th1 158 
cells, other T cells 1, and other T cells 2. The top 20 (by log2-Fold Change) markers (gene activity 159 
scores) for each subtype of T cells were visualized using a heatmap (Figures 3D). Canonical 160 
transcription factors for subtypes of T cells were shown on the heatmap (e.g., Rorc and Rora for 161 
Th17 cells, Tbx21 for Th1 cells). Cd8b1 was a marker for other T cells 1, suggesting they could be 162 
cytotoxic T cells. 163 

To confirm the identity of Th17 and Th1 cells, further analyses were performed. For Th17 cells, 164 
there were much more peaks in genomic regions around Il17a and Rorc, compared with other 165 
subtypes of T cells (Figures 3Ei and 3Eii). In contrast, the peaks from Th1 cells dominated 166 
genomic regions around Ifng and Tbx21 (Figures 3Eiii and 3Eiv). Motif footprinting analysis 167 
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further confirmed RORC was dominated by Th17 cells, and TBX21 was dominated by Th1 cells 168 
(Figures S3Ai-ii and S3Bi-ii). 169 

Although subtypes of T cells were almost indistinguishable only using scRNA-seq data, we 170 
managed to identify the four subtypes of T cells via label transfer from scATAC-seq data to 171 
scRNA-seq data (Figures 3F). To confirm the identity of Th17 and Th1 cells in scRNA-seq data, 172 
further analyses were performed. Selected canonical markers for Th17 and Th1 cells were 173 
shown in the dot plot (Figures 3G, e.g., Rora for Th17 cells, Tbx21 for Th1 cells). The top 20 (by 174 
log2-Fold Change) markers for each subtype of T cells were visualized using a heatmap (Figures 175 
S3C). Canonical markers for subtypes of T cells can be seen in the heatmap (e.g., Rora for Th17 176 
cells, Ifng for Th1 cells, and Cd8b1 for other T cells 1). We also conducted gene regulatory 177 
network analysis using SCENIC 11,12 and identified RORA as a cell-type specific regulator for Th17 178 
cells in scRNA-seq data (Figures S3D). By integrative analysis of scRNA-seq and scATAC-seq 179 
data, 15 lung cell types (including four subtypes of T cells) were identified in scRNA-seq data 180 
(Figures 3H), with the potential to be deconvoluted in spatial transcriptome. 181 

 182 

Dynamic Changes of Cell Locations upon K. pneumoniae Re-challenge 183 

Using the updated scRNA-seq data with final 15 cell types, we carried out deconvolution again 184 
for each spot in the four slices (Figures S4). The proportions of 15 cell types across four slices 185 
were summarized by a box plot (Figures 4A). We performed t-tests to compare the differences 186 
between the immunized (slice A1 and A2) and the re-challenged mouse (slice A3 and A4), with 187 
significant differences found for each cell type. Generally, there were more monocytes, 188 
macrophages, dendritic cells, neutrophils, Th1 cells, and NK cells in the re-challenged mouse. In 189 
contrast, the immunized mouse had more B cells, Th17 cells, and other T cells 1 (Figures 4A and 190 
S4). 191 

After pooling spots from the slices for the immunized (slice A1 and A2) or the re-challenged 192 
mouse (slice A3 and A4), Pearson correlation coefficients between the columns of the 193 
proportion matrices were calculated. Significant same-spot co-occurrence of different cell types 194 
was found in the immunized and the re-challenged mouse (Figures 4B). For the immunized 195 
mouse, Th17 cells, monocytes, and endothelial cells tended to appear in the same spots. 196 
Dendritic cells, B cells, fibroblasts, and other T cells 1 were also close to one another. For the re-197 
challenged mouse, other T cells 1, B cells, Th17 cells, Th1 cells, and dendritic cells often 198 
appeared in the same spots. While Th1 cells, NK cells, and myeloid cells were possibly close to 199 
one another in vivo. These observations remained unchanged with each slice analyzed 200 
separately (Figures S5C). 201 

Localization and segmentation of airway and blood vessels are important in our analysis. We 202 
defined airways and blood vessels according to the proportion of club cells and the histological 203 
blood vessels (Figures S5A and S5B). After excluding spots within the blood vessels and spots 204 
whose distances to the airways longer than 1,000 micrometers, we calculated weighted 205 
distances to the airways for Th17 and Th1 cells in four slices, according to the formula (Figures 206 
4D). Th17 cells were found closer to the airways than Th1 cells in the re-challenged mouse, 207 
whereas Th1 cells were closer to the airways in the immunized mouse (Figures 4C). This 208 
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conclusion was independent of the definition of airways and blood vessels, since it remained 209 
unchanged even if a set of cut-offs were used to define these structures (Figures S5D). 210 

To find the spatial distribution patterns of immune cells, natural spline regression was 211 
performed to fit the non-linear relationship between the proportions of immune cells and the 212 
distances to the airways. Generally, B cells and other T cells 1 were proximal to the airways in 213 
the immunized mouse, whereas neutrophils were distal to the airways in the re-challenged 214 
mouse (Figures 4Ei-iv). The same analysis for all 15 cell types was also performed (Figures S5Ei-215 
iv). We also performed natural spline regression between the expression of genes and the 216 
distances to the airways. 3,655 distance-associated genes (FDR-adjusted P-value < 0.05 in both 217 
slices) were identified in the immunized mouse (Table S1), while 3,407 were identified in the re-218 
challenged mouse (Table S2). Gene Ontology (GO) enrichment analysis was performed for 219 
these distance-associated genes 13–15. 1,293 significantly (FDR-adjusted P-value < 0.05) over-220 
represented biological processes were identified for the immunized mouse, and 1,294 for the 221 
re-challenged mouse. The top 50 (hierarchically sorted by fold-enrichment) over-represented 222 
biological processes for the re-challenged mouse included many immune responses (e.g., 223 
proliferation, differentiation, activation, aggregation, adhesion, and chemotaxis of immune 224 
cells). In contrast, few immune responses were over-represented in the immunized mouse 225 
(Table 1). Ccl20, a top distance-associated gene, was highly expressed around the airways in the 226 
re-challenged mouse, instead of the immunized mouse (Figures 4F). Since CCL20 is capable of 227 
binding to CCR6, a chemokine receptor expressed on Th17 cells, this finding possibly explains 228 
why Th17 cells were closer to the airways than Th1 cells in the re-challenged mouse. 229 

 230 

Biological Differences upon K. pneumoniae Re-challenge 231 

Upon K. pneumoniae re-challenge, the spatial transcriptome was tremendously changed 232 
(Figures S6A), while little batch effects were found between the two slices from the same 233 
mouse. The spots we defined as airways according to the proportion of club cells were also 234 
shown in a UMAP plot (Figures S6B and S5A), with significant biological differences found 235 
between the immunized and the re-challenged mouse. 236 

Differential expression (DE) analysis was performed to compare the airways in the re-237 
challenged mouse versus the immunized mouse, with 2,071 significantly (FDR-adjusted P-value 238 
< 0.05) differentially expressed genes (DEGs) identified (Table S3). To overcome the limitations 239 
of the analysis based on different thresholds of selected DEGs, we performed Gene Set 240 
Enrichment Analysis (GSEA) using the unfiltered, ranked gene list (including 16,937 genes), and 241 
found 379 significantly (FDR-adjusted P-value < 0.05) enriched GO biological processes. The top 242 
30 (by normalized enrichment score) up-regulated and down-regulated pathways were shown 243 
by a lollipop plot (Figures 5A). Compared with the immunized mouse, most up-regulated 244 
pathways in the airways of the re-challenged mouse were related to immune responses (e.g., 245 
migration and chemotaxis of immune cells, and response to stimuli), whereas most down-246 
regulated pathways were related to catabolic and metabolic processes, as well as ciliary 247 
functions. AW112010, a top DE gene up-regulated in the airways upon re-challenge, was highly 248 
expressed in the airways of the re-challenged mouse (Figures 5B). AW112010 has also been 249 
reported capable of promoting the differentiation of inflammatory T cells 16. Cbr2, a top DE 250 
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gene down-regulated in the airways upon re-challenge, was highly expressed in the airways of 251 
the immunized mouse (Figures 5C), and may function in the metabolism of endogenous 252 
carbonyl compounds 17 and alveolar epithelial cell plasticity 18. 253 

 254 

Spatial Transcriptomics Showing the Potential to Analyze Cell-cell Communication 255 

In order to perform cell-cell communication networks analysis, cell-type enriched spots were 256 
identified according to their ranks of proportions of cell types (Figures S6D), with little 257 
difference found between the two slices from the same mouse (Figures S6C). Fibroblasts, 258 
endothelial cells, and erythrocytes were not included in the analysis due to the difficulty of 259 
interpreting the interactions with these cells. 260 

Cell-cell communication networks among the cell-type enriched spots were inferred in each 261 
slice using CellChat (Figures S6E)19. To compare the differences of communication patterns 262 
between the re-challenged and the immunized mouse, differential interaction strength 263 
between cell-type enriched spots was shown by a heatmap (Figures 6A). The communication 264 
among myeloid cells, Th1 cells, and Th17 cells was increased in the re-challenged mouse, also 265 
revealed by our same-spot co-occurrence analysis. For the immunized mouse, dendritic cells 266 
could be the major sender of communication signals, while B cells and other T cells 1 were 267 
essential receivers of the signals. 268 

The conserved and context-specific signaling pathways were identified and visualized by bar 269 
plots (Figures 6B). TNF pathway was only turned on in the re-challenged mouse, while CXCL and 270 
CCL pathways were increased. We also confirmed some well-known signaling pathways in the 271 
cell-cell communication analysis of spatial transcriptome, outperforming the cell-cell 272 
communication analysis of scRNA-seq data. The performance of this analysis could be 273 
improved, as the resolution of spatial transcriptomics evolves. We found Th17 enriched spots in 274 
the re-challenged mouse were the receivers of the IL6 signaling pathway (Figures 6Ci), given the 275 
receptor gene Il6ra was highly expressed in Th17 enriched spots from slice A3 and slice A4 276 
(Figures 6Cii). Leveraging scATAC-seq data, we confirmed macrophages and dendritic cells were 277 
the sources of the IL6 signaling (Figures 6Ciii), and Th17 cells were the targets (Figures 6Civ). 278 
For the TGF-β signaling pathway, we also found Th17 enriched spots in the re-challenged 279 
mouse were its receivers (Figures 6Di), with the receptor genes Tgfbr1, Tgfbr2, and Acvr1b 280 
found highly expressed in Th17 enriched spots from slice A3 and slice A4 (Figures 6Dii). By 281 
checking peaks in genomic regions around these receptor genes, Th17 cells were confirmed to 282 
have the capacity of expressing the receptors for the TGF-β signaling (Figures 6Diii-v). These 283 
data suggested that spatial transcriptomics data can be extrapolated and utilized to perform 284 
cell-cell communication networks analysis. 285 

 286 

DISCUSSION 287 

As the development of single-cell sequencing technologies, scRNA-seq has been gradually 288 
applied to study immune cells and immune responses in mouse lungs 5–8. In many cases, T 289 
helper cells and cytotoxic T cells can be identified in these scRNA-seq studies, but not their 290 
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subtypes. Few studies additionally utilize scATAC-seq to measure the chromatin architecture of 291 
immune cells in mouse lungs 9, which allows the identification of subtypes of T helper cells. As 292 
the birth of spatial transcriptomics, this cutting-edge technology is also adopted by this field to 293 
study mouse lungs infected by influenza 20. 294 

To our knowledge, this is the first study to integrate spatial transcriptome with single-cell 295 
transcriptome and single-cell epigenome in mouse lungs. A key advantage of our study lies in 296 
the capture of intact anatomical structures of mouse lungs, providing location specific 297 
information and preserving information from cells prone to damage. Integrating with single-cell 298 
multi-omics profiled from matched tissue, sub-single-cell resolution were further achieved in 299 
our spatial analysis of cells residing in lung, especially TRM. In our study, we first identified 12 300 
lung cell types in scRNA-seq data, covering major epithelial, mesenchymal, and immune cells. 301 
Using our finely annotated scRNA-seq data as a reference, we deconvoluted spatial 302 
transcriptome of the four slices and inferred proportions of cell types for each spot. We 303 
established an optimized deconvolution pipeline to accurately decipher specific cell-type 304 
composition at sub-single-cell resolution, by checking the correlation of deconvolution results 305 
using two independent references and the colocalization of canonical markers and histological 306 
structures. Integrating scATAC-seq data from the same cells processed side by side with scRNA-307 
seq, we found epigenomic profiles provide more robust cell type identification, especially for 308 
lineage-specific T helper cells, and further identified four subtypes of T cells. Combining all 309 
three data modalities, we mapped the 15 lung cell types to histological structures for the four 310 
slices at sub-single-cell resolution. 311 

Our data provides further insights into dynamic changes of cell locations upon K. pneumoniae 312 
re-challenge. We found Th17 cells were closer to the airways than Th1 cells in the re-challenged 313 
mouse, whereas Th1 cells were closer to the airways in the immunized mouse without re-314 
challenge. This could be explained by the increased expression of Ccl20 around the airways in 315 
the re-challenged mouse. Ccl20, a top distance-associated gene identified by our spatial 316 
analysis, has the ability to attract Ccr6 expressing cells. The CCL20/CCR6 axis has been shown to 317 
play crucial roles in recruiting Th17 cells in many organs as well as various disease settings 21,22. 318 
We discovered different spatial distribution patterns of immune cells in the lungs of the two 319 
mice, finding B cells were proximal to the airways in the immunized mouse, whereas 320 
neutrophils were distal to the airways in the re-challenged mouse. We also identified thousands 321 
of distance-associated genes for the two mice by natural spline regression, confirming immune 322 
responses related genes were over-represented in the re-challenged mouse. These spatial 323 
analyses were only possible when location specific information was captured by spatial 324 
transcriptomics, highlighting the value of our study compared with conventional flow 325 
cytometric and transcriptomic approaches. 326 

Comparing the biological differences in the airways upon K. pneumoniae re-challenge, we found 327 
pathways related to migration and chemotaxis of immune cells, and response to stimuli were 328 
up-regulated in the re-challenged mouse, whereas pathways related to catabolic and metabolic 329 
processes, and ciliary functions were up-regulated in the immunized mouse. We also 330 
performed cell-cell communication analysis of spatial transcriptome, providing evidence of 331 
lineage-specific T helper cells receiving designated cytokine signaling. Our study shows the 332 
potential to perform DE analysis between specific cells or regions across the slices and analyze 333 
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cell-cell communication using spatial transcriptomics. The performance of these analyses could 334 
be improved as spatial transcriptomics advances towards single-cell resolution. 335 

Several limitations were recognized in our study. First, we had a small sample size for our 336 
scRNA-seq and scATAC-seq data as the purpose of generating these data was to provide a 337 
reference for deconvolution, instead of carrying out a census of lung cell types. Second, there is 338 
no ground truth to evaluate deconvolution results, although we optimized our deconvolution 339 
pipeline by assessing its robustness. This issue could be eventually resolved as the resolution of 340 
the spatial transcriptomics technology improves. Third, our method to define airways and blood 341 
vessels may not be fully accurate and can be further improved by both high-resolution 342 
histological images and spatial transcriptome.  Last, more biological replicates and experimental 343 
validations may be needed to extend this study. For example, the cellular source of CCL20 344 
around the airways in the re-challenged mouse could be determined by immunofluorescence. 345 

In summary, we presented a comprehensive single-cell multi-omics study on immunized mouse 346 
lungs and generated novel hypotheses for understanding underlying biological mechanism.  347 
Recently, spatial analysis has been made compatible with Formalin-Fixed Paraffin-Embedded 348 
(FFPE) tissue specimens. It is foreseeable that a massive amount of data will be generated from 349 
historically preserved samples. Our spatial transcriptomics data processing pipeline provides a 350 
timely solution to these analyses and contributes to advance the field of lung biology and 351 
respiratory medicine.    352 

 353 

MATERIALS AND METHODS 354 

Mouse models 355 

All mice used in this study were wildtype and purchased from Jackson Lab (Cat# 000664). 356 
Animals were maintained in pathogen-free conditions in the animal facility at the University of 357 
Pittsburgh Medical Center. All experiments were approved by the University of Pittsburgh 358 
Institutional Animal Care and Use Committee. 359 

 360 

In vivo inflammation induction 361 

6-8 weeks old C57BL/6 mice were immunized with heat-killed K. Pneumoniae (ATCC-43816) as 362 
previously described 3. Briefly, mice were injected with heat-killed K. Pneumoniae twice (Day0 363 
and Day7) or three times (Day0, Day7, and Day13) intranasally and sacrificed on Day14. Lungs 364 
were removed and digested by Collagenase/DNase to obtain single-cell suspension. 365 
Mononuclear cells after red blood cell lysis and filtration with a 40 μM cell strainer were 366 
subjected to single cell RNA-seq (scRNA-seq) and single cell ATAC-seq (scATAC-seq) library prep 367 
following the protocols by 10x Genomics using the Chromium controller (10x Genomics). To 368 
yield sufficient IL-17A producing cells and reduce doublets formation, we targeted 3,000-5,000 369 
cells/nuclei for recovery. Libraries were QC’ed on an Agilent TapeStation and sequenced on an 370 
Illumina Novaseq.   371 

 372 
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Spatial Transcriptomics Experiment 373 

We conducted ST experiment using 10X Genomics Visium platform. 374 

Tissue harvesting: Mouse lungs were harvested, and the left lobes were inflated with 1mL 375 
mixture of 50% sterile PBS/ 50%Tissue-Tek OCT compound (SAKURA FINETEK) followed by 376 
frozen in alcohol bath on dry ice. OCT blocks were stored in -80C until further processing. 377 

ST library prep: OCT blocks were sectioned at 10μm in thickness, 6.5mm X 6.5mm in size, 378 
attached to the Visium slides, then stained with hematoxylin and eosin following 10x Genomics 379 
Visium fresh frozen tissue processing protocol. H&E Images were taken by a fluorescence and 380 
tile scanning microscope (Olympus Fluoview 1000) then the slides underwent tissue removal 381 
and library generation per 10x Genomics demonstrated protocol.  382 

 383 

Raw Sequencing Data Processing 384 

The sequenced scRNA-seq library was processed and aligned to mm10 mouse reference 385 
genome using Cell Ranger software (version 3.1.0) from 10x Genomics, with unique molecular 386 
identifier (UMI) counts summarized for each barcode. To distinguish cells from the background, 387 
cell calling was performed on the full raw UMI count matrix, with the filtered UMI count matrix 388 
generated (31,053 genes x 3,337 cells).  389 

The sequenced scATAC-seq library was processed and aligned to mm10 mouse reference 390 
genome using Cell Ranger ATAC software (version 1.1.0) from 10x Genomics, with fragments 391 
and peak counts summarized for each barcode. To distinguish cells from the background, cell 392 
calling was performed on the full raw peak count matrix, with the filtered peak count matrix 393 
generated (84,317 peaks x 4,908 cells). 394 

Each sequenced spatial transcriptomics library was processed and aligned to mm10 mouse 395 
reference genome using Space Ranger software (version 1.2.2) from 10x Genomics, with UMI 396 
counts summarized for each spot. To distinguish tissue overlaying spots from the background, 397 
tissue overlaying spots were detected according to the images. And only barcodes associated 398 
with these tissue overlaying spots were retained, with the filtered UMI count matrices 399 
generated. We also manually excluded spots not covered by tissue but not detected by Space 400 
Ranger and further filter the UMI count matrices (slice A1: 32,285 genes x 3,689 spots; slice A2: 401 
32,285 genes x 2,840 spots; slice A3: 32,285 genes x 3,950 spots; slice A2: 32,285 genes x 3,765 402 
spots). 403 

 404 

scRNA-seq Data Analysis 405 

After imported into R, the filtered UMI count matrix was analyzed using the R package Seurat 406 
(version 4.0.1)23. The percentage of mitochondrial genes per cell was calculated for further 407 
check of the quality of cells. Regularized negative binomial regression (SCTransform)24 was used 408 
to normalize UMI count data, with the removal of confounding effects from mitochondrial 409 
mapping percentage. To improve the speed of the normalization, glmGamPoi 25 was invoked in 410 
the procedure. 3,000 highly variable genes were identified and used in principal component 411 
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analysis to reduce dimensionality. We determined to use the first 50 principal components in 412 
clustering analysis according to the elbow plot.  Uniform Manifold Approximation and 413 
Projection (UMAP) dimensionality reduction 26 was performed with the first 50 principal 414 
components as input to visualize cells. Using the Shared Nearest-neighbor (SNN) graph as input, 415 
cells were then clustered using the original Louvain algorithm with resolution = 0.2. 416 

Cluster 1 was marked as low-quality cells and excluded from downstream analysis (2,834 cells 417 
retained) because its median percentage of mitochondrial genes was 87.7%, whereas those of 418 
all other clusters were lower than 10.5%. Markers for each cluster were identified using a 419 
Wilcoxon Rank Sum test with only.pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25. 420 
According to the UMAP plot, cluster 6 was found to consist of several sporadic sub-clusters. We 421 
isolated cells within cluster 6 and repeated the procedures from normalization to 422 
dimensionality reduction. These cells were then clustered using the original Louvain algorithm 423 
with resolution = 0.6. Markers were also identified as described above. 424 

 425 

Characterization of 12 Lung Cell Types in scRNA-seq Data 426 

Fine cluster annotation was performed for the retained 12 clusters in scRNA-seq data according 427 
to canonical markers: alveolar epithelial cells (Sftpa1, Sftpb, Sftpc, and Sftpd), club cells 428 
(Scgb1a1, Muc5b, Scgb3a1, and Scgb3a2), fibroblasts (Col3a1, Col1a2, Col1a1, and Mfap4), 429 
endothelial cells (Cdh5, Mcam, Vcam1, and Pecam1), monocytes (Cd14 and Itgam), 430 
macrophages (Itgax, Cd68, Mrc1, and Marco), dendritic cells (Aif1, H2-DMb1, H2-Eb1, and H2-431 
Aa), neutrophils (Gsr, Pglyrp1, S100a8, and Ly6g), B cells (Ms4a1, Cd79a, Igkc, and Cd19), T cells 432 
(Cd3d, Cd3e, and Cd3g), NK cells (Ncr1 and Nkg7), and erythrocytes (Hbb-bt and Hba-a2). 433 

 434 

Spatial Transcriptomics Data Analysis 435 

After imported into R, the filtered UMI count matrix was analyzed using the R package Seurat 436 
(version 4.0.1)23. Regularized negative binomial regression (SCTransform)24 was used to 437 
normalize UMI count matrices, and glmGamPoi 25 was invoked in the procedure to improve the 438 
speed of the normalization. Four matrices from the four slices were merged to analyze them 439 
together. 3,000 highly variable genes were identified in each matrix, and the union set of them 440 
was set as highly variable genes for the merged data and used in principal component analysis 441 
to reduce dimensionality. We determined to use the first 30 principal components in clustering 442 
analysis according to the elbow plot.  Uniform Manifold Approximation and Projection (UMAP) 443 
dimensionality reduction 26 was performed with the first 30 principal components as input to 444 
visualize spots.  445 

 446 

Deconvolution of Spatial Transcriptome 447 

Deconvolution for each spot in the four slices was performed using the robust cell-type 448 
decomposition (RCTD) method 10. Before running the R package RCTD (version 1.2.0), scRNA-449 
seq data used as a reference were processed, with gene expression matrix, the annotation for 450 
each cell, and the total UMI count for each cell extracted and saved in the RDS object. Spatial 451 
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transcriptome for the four slices was also processed, with spot location matrices, gene 452 
expression matrices, and the total UMI count for each spot extracted and saved in the RDS 453 
object. 454 

RCTD objects were created for each slice from the processed RDS objects, with max_cores = 24, 455 
test_mode = F, and CELL_MIN_INSTANCE = 6.  RCTD pipeline was run on the RCTD objects, with 456 
doublet_mode = full. The deconvolution results were matrices of cell type weights for each 457 
spot. The cell type weights were normalized to make the sum of cell type weights in each spot 458 
equal to 1. Proportion matrices, whose rows indicate spots and columns indicate cell types, 459 
were then created and stored in the analyzed spatial transcriptome for loading. 460 

In total, three scRNA-seq references were used in deconvolution, which were in-house scRNA-461 
seq data with 12 cell types, in-house scRNA-seq data with 15 cell types (including four subtypes 462 
of T cells), and public scRNA-seq data with 20 cell types. 463 

Pearson correlation coefficients between the columns (indicating different cell types) of the 464 
two proportion matrices deconvoluted using in-house (12 cell types) and public (20 cell types) 465 
references were calculated in each slice. Correlation r matrices were hierarchically clustered 466 
and visualized in heatmaps. 467 

 468 

scATAC-seq Data Analysis 469 

After imported into R, the filtered peak count matrix was analyzed using the R package Signac 470 
(version 1.1.1)27. Gene annotations were extracted from Ensembl release 79 of the mm10 471 
mouse reference genome. Nucleosome signal score and Transcriptional Start Site (TSS) 472 
enrichment score per cell were calculated for further check of the quality of cells. Cells whose 473 
fraction of fragments in peaks > 15, ratio of reads in genomic blacklist regions < 0.05, 474 
nucleosome signal score < 4, and TSS enrichment score > 2 were retained for downstream 475 
analysis. Latent Semantic Indexing (LSI)28, which is combined steps of Term Frequency–Inverse 476 
Document Frequency (TF-IDF) followed by Singular Value Decomposition (SVD), was used to 477 
normalize and reduce the dimensionality of peak count data, with all the peaks selected as 478 
variable features. We found the first LSI component was highly correlated with sequencing 479 
depth and determined to use the second to the fortieth LSI components in non-linear 480 
dimensionality reduction. Uniform Manifold Approximation and Projection (UMAP) 481 
dimensionality reduction 26 was performed with the second to the fortieth LSI components as 482 
input to visualize cells. 483 

 484 

Label Transferring from scRNA-seq Data to scATAC-seq Data 485 

A gene activity matrix was created in scATAC-seq data by counting the number of fragments 486 
mapping to promoter or gene body regions of all protein-coding genes for each cell. 487 
Regularized negative binomial regression (SCTransform)24 was used to normalize the gene 488 
activity matrix. Transfer anchors were identified by canonical correlation analysis between the 489 
normalized gene activity matrix in scATAC-seq data and the normalized gene expression matrix 490 
in scRNA-seq data 29. Annotations were then transferred from scRNA-seq to scATAC-seq data 491 
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with the second to the fortieth LSI components in scATAC-seq data used for weighting anchors. 492 
Canonical markers were checked in the gene activity matrix for each predicted cell type. The 493 
proportions of 12 cell types were also compared between scRNA-seq and scATAC-seq data. 494 

 495 

Characterization of Four Subtypes of T cells in scATAC-seq Data 496 

We isolated predicted T cells in scATAC-seq data and repeated the procedures from 497 
normalization to non-linear dimensionality reduction. Using the Shared Nearest-neighbor (SNN) 498 
graph leveraging the second to the fortieth LSI components as input, T cells were then clustered 499 
into four subtypes using the Smart Local Movement (SLM) algorithm with resolution = 0.2. 500 

Markers for each subtype were identified in the gene activity matrix using a Wilcoxon Rank Sum 501 
test with only.pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25. Differential accessible 502 
analysis was performed between the possible Th17 and Th1 cells using logistic regression, with 503 
fraction of fragments in peaks set as latent variable and min.pct = 0.1. Peaks in genomic regions 504 
around (including all the differentially accessible regions or 10,000 bps apart from the gene 505 
bodies) canonical markers for Th17 and Th1 cells were visualized. Motif footprinting analysis 506 
was also performed to provide supportive evidence. Taken together, four subtypes of T cells 507 
were annotated according to canonical markers: Th17 cells (Il17a, Rorc, and Rora), Th1 cells 508 
(Ifng and Tbx21), other T cells 1, and other T cells 2. 509 

 510 

Label Transferring from scATAC-seq Data to scRNA-seq Data 511 

We isolated annotated T cells in scRNA-seq data and repeated the procedures from 512 
normalization to non-linear dimensionality reduction. Transfer anchors were identified by 513 
canonical correlation analysis between the normalized gene activity matrix of T cells in scATAC-514 
seq data and the normalized gene expression matrix of T cells in scRNA-seq data 29. Annotations 515 
were then transferred from T cells in scATAC-seq to T cells in scRNA-seq data with the first 50 516 
principal components in T cells from scRNA-seq data used for weighting anchors. 517 

 518 

Characterization of Four Subtypes of T cells in scATAC-seq Data 519 

Canonical markers were checked for the predicted subtypes of T cells in scRNA-seq data (Rorc, 520 
Rora, Ccr6, and Ccr4 for Th17 cells; Ifng, Tbx21, Cxcr3, Ccr5, and Il12rb2 for Th1 cells). Markers 521 
for each predicted subtype of T cells were identified using a Wilcoxon Rank Sum test with 522 
only.pos = TRUE, min.pct = 0.25, and logfc.threshold = 0.25. 523 

To detect active transcription factor (TF) modules, the R package SCENIC (version 1.2.4)11,12 was 524 
used to analyze the annotated scRNA-seq data, including 15 cell types. We downloaded the 525 
RcisTarget database containing transcription factor motif scores for gene promoter and around 526 
Transcription Start Site (TSS) for mm10 mouse reference genome from 527 
(https://resources.aertslab.org/cistarget/databases/mus_musculus/mm10/refseq_r80/mc9nr/g528 
ene_based/). The gene expression matrix was filtered according to default settings, and 9392 529 
genes were retained and used to compute a gene-gene correlation matrix. Co-expression 530 
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module detection was performed using the GENIE3 algorithm based on random forest. 531 
Transcription factor network analysis was performed to detect co-expression modules enriched 532 
for target genes of each candidate TF from the RcisTarget database, with regulons identified. 533 
The R package AUCell (version 1.12.0) was used to compute a score for each TF module in each 534 
cell. 535 

Regulon Specificity Score (RSS) was calculated for regulons in each cell type according to Area 536 
Under the Curve (AUC) of regulons. Cell-type specific regulators were then identified, and those 537 
for the four subtypes of T cells were visualized to provide supportive evidence (Rora_extended 538 
(15g) for Th17 cells). 539 

 540 

Same-spot Co-occurrence Analysis 541 

Pearson correlation coefficients between the columns (indicating different cell types) of the 542 
proportion matrices were calculated in each slice to broadly assess spatial cell type co-543 
occurrence in the same spot. Spots from the slices for the immunized (slice A1 and A2) or the 544 
re-challenged mouse (slice A3 and A4) were pooled together, respectively, and Pearson 545 
correlation coefficients were also calculated for them. Correlation r matrices were hierarchically 546 
clustered and visualized in heatmaps. 547 

 548 

Defining Airways and Blood Vessels in Four Slices 549 

Airways were defined according to the proportion of club cells in four slices. We manually set 550 
the thresholds in each slice to match the selected spots with the histological airways. Spots 551 
whose proportion of club cells higher than the thresholds were defined as airways (20% for 552 
slice A1, 20% for slice A2, 10% for slice A3, and 10% for slice A4). 553 

Blood vessels were defined according to the histological blood vessels. We created a training 554 
set using manual annotation of histological structures in the image of slice A1 and trained a 555 
random trees pixel classifier using QuPath (version 0.2.3)30 with downsample = 16. The 556 
probability of blood vessels was predicted for each pixel in the image of four slices using the 557 
trained classifier. If the probability of blood vessels in the spot corresponding pixel was higher 558 
than 0.5, the spot would be defined as blood vessels. 559 

Alternatively, the proportion of club cells and the expression of Mgp were used to define 560 
airways and blood vessels with different cut-offs, from 90th quantile to 95th quantile. Spots 561 
whose proportion or expression higher than the selected quantile were defined as airways or 562 
blood vessels. 563 

 564 

Spatial Transcriptomics Spot Distance-based Analyses 565 

For all distance-based analyses, spots defined as blood vessels and spots whose distances to the 566 
airways longer than 1,000 micrometers were excluded. Because cells within the blood vessels 567 
were different from those in the lung parenchyma, and the analyses including cells extremely 568 
distal to the airways were not stable, given the capture area of each slice was only 6.5 x 6.5 569 
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mm2. Only a few spots’ distances to the airways were longer than 1,000 micrometers (5.89% for 570 
slice A1, 5.75% for slice A2, 15.00% for slice A3, and 11.43% for slice A4). 571 

Weighted distances to the airways for Th17 and Th1 cells were calculated in four slices 572 
according to the formula, allowing for each spot’s distance to the nearest airway and the 573 
proportions of Th17 and Th1 cells in each spot. 574 

To find the spatial distribution patterns of cell types, natural spline regression (with three 575 
degrees of freedom) was performed to fit the non-linear relationship between the proportions 576 
of cell types and the distances to the airways. 577 

To identify distance-associated genes, we constructed natural splines (with three degrees of 578 
freedom) for the distances to the airways in each slice and created design matrices. We then 579 
fitted linear models for each gene in normalized gene expression matrices, with the R package 580 
limma (version 3.46.0)31 invoked to speed up the procedure. P-values for each spline in each 581 
slice were corrected for multiple testing using Benjamini-Hochberg correction. Genes whose 582 
FDR-adjusted P-values < 0.05 for at least one spline were considered significant in that slice. 583 
And genes significant in both slices for the immunized (slice A1 and A2) or the re-challenged 584 
mouse (slice A3 and A4) were defined as distance-associated genes. 585 

 586 

Gene Ontology (GO) Enrichment Analysis 587 

Gene ontology enrichment analysis was performed on the distance-associated genes identified 588 
in the immunized and re-challenged mouse using PANTHER Classification System (version 589 
16.0)13–15. GO biological process complete was used as annotation dataset, and the analysis was 590 
performed using Fisher’s exact test, with FDR adjustment for multiple testing. Over-represented 591 
pathways were then hierarchically clustered. 592 

 593 

Differential Expression Analysis 594 

Differential expression analysis was performed to compare the airways in the re-challenged 595 
mouse versus the immunized mouse using the R package MAST (version 1.16.0)32. MAST 596 
procedure was invoked in Seurat FindMarkers function (test.use = MAST) with logfc.threshold = 597 
0, min.pct = 0, in order to obtain an unfiltered gene list. The gene list was then ranked by log2-598 
fold change (L2FC). Genes whose L2FC equal to 0 were excluded due to their ranks were not 599 
available. 600 

 601 

Gene Set Enrichment Analysis (GSEA) 602 

To overcome the limitations of the analysis based on manually selected DEGs, Gene Set 603 
Enrichment Analysis (GSEA)33 was performed on the unfiltered, ranked gene list (including 604 
16,937 genes) using the R package clusterProfiler (version 3.18.1)34. The parameters for the 605 
clusterProfiler gseGO function were set as ont = BP, keyType = SYMBOL, nPerm = 10,000, 606 
minGSSize = 3, maxGSSize = 800, pvalueCutoff = 0.05, OrgDb = org.Mm.eg.db, pAdjustMethod = 607 
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fdr. The top 30 (by normalized enrichment score) up-regulated and down-regulated pathways 608 
were then visualized by a lollipop plot. 609 

 610 

Defining Cell-type Enriched Spot in Spatial Transcriptomics Data 611 

The expression profile of each spot in spatial transcriptomics is a mixture of a few cells, and it is 612 
irrational to annotate a spot with a cell type directly. To perform cell-cell communication 613 
analysis of spatial transcriptome, we annotated spots as cell-type enriched spots according to 614 
their proportions of cell types. 615 

The mean proportions of cell types were available for each slice, as well as the number of spots 616 
for each slice. The mean proportions could be interpreted as the expected proportions of cell 617 
types in each spot. The product of the mean proportions and the number of spots could be 618 
interpreted as how many spots could represent each cell type on average. The spots with the 619 
highest proportions were selected according to the product and defined as cell-type enriched 620 
spots. Spots defined as cell-type enriched spots for multiple cell types were then excluded. 621 

For example, the mean proportion of club cells was 6.39% in slice A1, and the number of spots 622 
was 3,689 in slice A1. Thus, the top 236 spots with the highest proportion of club cells were 623 
defined as club cell enriched spots. A spot would be excluded if the spot was defined as a club 624 
cell enriched spot and a Th17 enriched spot simultaneously. 625 

 626 

Cell-cell Communication Analysis of Spatial Transcriptome 627 

Cell-cell communication analysis was performed using CellChat 19. Before running the R package 628 
CellChat (version 1.1.0), spatial transcriptome for the four slices was processed, with 629 
normalized gene expression matrices, the annotations for cell-type enriched spots extracted 630 
and saved in the CellChat object. The processed data from both slices for the immunized (slice 631 
A1 and A2) or the re-challenged mouse were also pooled together and saved in the CellChat 632 
objects to compare the differences between the two mice. 633 

A manually curated database of literature-supported ligand-receptor interactions in mouse was 634 
loaded for the analysis. And all ligand-receptor interactions, including paracrine/autocrine 635 
signaling interactions, extracellular matrix (ECM)-receptor interactions, and cell-cell contact 636 
interactions, were included in the analysis. 637 

Over-expressed ligands or receptors were first identified for each type of cell-type enriched 638 
spots in each CellChat object. Over-expressed ligand-receptor interactions were also identified 639 
if either ligand or receptor was over-expressed. Then, we computed the communication 640 
probability and inferred cellular communication network according to default settings. The 641 
communication probability at signaling pathway level was computed by summarizing the 642 
communication probabilities of all ligands-receptors interactions associated with each signaling 643 
pathway. The aggregated cell-cell communication network was calculated by counting the 644 
number of links or summarizing the communication probability and visualized in four slices 645 
using heatmaps. 646 
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To figure out in which type of cell-type enriched spots interactions significantly changed in the 647 
re-challenged mouse versus the immunized mouse, differential interaction strength was 648 
identified and visualized using a heatmap. The conserved and context-specific signaling 649 
pathways were identified by comparing the information flow for each signaling pathway, which 650 
was defined by the total weights in the network. Selected signaling pathways were visualized by 651 
circle plots using CellChat netVisual_aggregate function. 652 
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Figure 1. Generation of multi-omics datasets of mice lungs after immunization 

(A) Overview of study design. scRNA-seq data work as a bridge to link scATAC-seq and spatial 
transcriptomics data. 

(B) UMAP plot of 12 lung cell types identified in scRNA-seq data, with manual annotation 
according to canonical markers. 

(C) Dot plot showing selected canonical markers for each cell type. 

(D) Heatmap showing top five (by log2-Fold Change) markers for each cell type. 
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Figure 2. Validation of the robustness of deconvolution method for spatial transcriptomics 
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(A) Proportion of club cells colocalizing with the expression of Scgb1a1 and the histological 
airways. (i) Histology of slice A3 showing the location of the airways. (ii) Proportion of club cells 
across slice A3, deconvoluted using in-house scRNA-seq data. (iii) Expression of Scgb1a1, a 
canonical marker for club cells, across slice A3. 

(B) Proportions of T cells deconvoluted using the two independent scRNA-seq references were 
quite similar. (i) UMAP plot of 20 lung cell types identified in Cohen et al.’s public scRNA-seq 
data (GSE119228). (ii) Proportion of T cells across slice A3, deconvoluted using in-house scRNA-
seq data. (iii) Proportion of T cells across slice A3, deconvoluted using Cohen et al.’s public 
scRNA-seq data. 

(C)(i-iv) Correlation heatmap visualizing the proportions of cell types deconvoluted using in-
house (in rows, 12 types) and public (in columns, 20 types) scRNA-seq data were highly 
correlated in slice A1-A4. Pearson’s r values were indicated by the color bars. Red boxes with 
solid lines highlighted selected adaptive immune cells, T cells and B cells. Red boxes with 
dashed lines highlighted selected innate immune cells, neutrophils and NK cells. 
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Figure 3. Identification of subtypes of T cells by integrating scRNA-seq and scATAC-seq data 
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(A) UMAP plot of 12 lung cell types in scATAC-seq data identified via label transfer. 

(B) Bar plot showing proportions of 12 cell types in scRNA-seq and scATAC-seq data were quite 
similar. 

(C) UMAP plot of four subtypes of T cells in scATAC-seq data. 

(D) Heatmap showing top 20 (by log2-Fold Change) markers (gene activity scores calculated 
using peaks) for each subtype of T cells in scATAC-seq data. 

(E)(i-iv) Peaks in genomic regions around Il17a, Rorc, Ifng, and Tbx21, canonical markers for 
Th17 and Th1 cells. 

(F) UMAP plot of four subtypes of T cells in scRNA-seq data identified via label transfer. 

(H) Dot plot showing selected canonical markers for Th17 and Th1 cells in scRNA-seq data. 

(G) UMAP plot of 15 lung cell types (including four subtypes of T cells) in scRNA-seq data. 
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Figure 4. Spatial analyses of mice lungs after immunization 
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(A) Box plot showing proportions of 15 cell types across four slices were different. To compare 
the differences between the immunized (slice A1 and A2) and the re-challenged mouse (slice A3 
and A4), t-tests were performed for each cell type. ****: p-value < 1x10-4. 

(B)(i-ii) Correlation heatmap visualizing the same-spot co-occurrence of 15 cell types in the 
immunized and the re-challenged mouse. ST spots from the slices for the immunized (slice A1 
and A2) or the re-challenged mouse (slice A3 and A4) were pooled together, respectively. Red 
boxes highlighted cell types tending to appear in the same spots, that is to say, possibly close to 
one another in vivo. 

(C) Weighted distances to the airways for Th17 and Th1 cells in four slices, after excluding spots 
within the blood vessels and spots whose distances to the airways longer than 1,000 
micrometers. 

(D) Formula defining weighted distance, allowing for each spot’s distance to the nearest airway 
and the proportions of Th17 and Th1 cells in each spot. 

(E)(i-iv) Proportions of immune cells over distance to the airways showing the spatial 
distribution of immune cells in four slices, after excluding spots within the blood vessels and 
spots whose distances to the airways longer than 1,000 micrometers. The curves were obtained 
from natural spline (with three degrees of freedom) regression. 

(F) Expression of Ccl20, a top distance-associated gene, across four slices. 
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Figure 5. Differential expression analysis of spots annotated as airways in the immunized and 
the re-challenged mouse 

(A) Gene Set Enrichment Analysis (GSEA) of all the 16,937 genes available in the DE analysis of 
the airways. 

(B) Expression of AW112010, a top DE gene up-regulated in the airways upon re-challenge, 
across four slices. 

(C) Expression of Cbr2, a top DE gene down-regulated in the airways upon re-challenge, across 
four slices. 
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Figure 6. Cell-cell communication among cell-type enriched spots 
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(A) Heatmap showing differential interaction strength between cell-type enriched spots. 
Outgoing signals were shown in rows, while incoming signals were shown in columns. Increased 
(or decreased) signals in the re-challenged mouse compared to the immunized mouse were 
represented using red (or blue) in the color bar. The sum of values within the same column was 
summarized using the colored bar plot on the top. The sum of values within the same row was 
summarized using the colored bar plot on the right. 

(B) Bar plots showing overall information flow of each signaling pathway. Relative information 
flow was shown in the stacked bar plot, while raw information flow was shown in the regular 
bar plot. Enriched signaling pathways were colored in red or cyan. 

(C) Th17 enriched spots in the re-challenged mouse were the receivers of the IL6 signaling 
pathway. (i) Circle plot visualizing the inferred communication network of the IL6 signaling 
pathway in the re-challenged mouse. The network of the IL6 signaling pathway in the 
immunized mouse was not significant. Circle sizes represented the number of spots in each 
group. Edge colors were consistent with the senders of the signal (sources), and edge weights 
represented the interaction strength. (ii) Violin plot visualizing the expression of genes related 
to IL6 signaling pathway in cell-type enriched spots from the re-challenged mouse. Gene 
expression from slice A3 was colored in red, and that from slice A4 was colored in cyan. (iii-iv) 
Peaks in genomic regions around Il6 and Il6ra in scATAC-seq data. 

(D) Th17 enriched spots in the re-challenged mouse were the receivers of the TGF-β signaling 
pathway. (i) Circle plot visualizing the inferred communication network of the TGF-β signaling 
pathway in the re-challenged mouse. The network of the TGF-β signaling pathway in the 
immunized mouse was also significant but not shown. Circle sizes represented the number of 
spots in each group. Edge colors were consistent with the senders of the signal (sources), and 
edge weights represented the interaction strength. (ii) Violin plot visualizing the expression of 
genes related to TGF-β signaling pathway in cell-type enriched spots from the re-challenged 
mouse. Gene expression from slice A3 was colored in red, and that from slice A4 was colored in 
cyan. (iii-v) Peaks in genomic regions around Tgfbr1, Tgfbr2, and Acvr1b in scATAC-seq data. 
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