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Summary

Synthetic lethal interactions (SLIs), genetic interactions in which the simultaneous inactivation of

two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in

cancer, as exemplified by the recent success of PARP inhibitors in treating BRCA1/2-deficient

tumors. We present SL-Cloud, an integrated resource and framework to facilitate the prediction

of context-specific SLIs by using cloud-based technologies. This resource addresses two main

challenges related to SLI inference: the need to wrangle and preprocess large multi-omic

datasets and the multiple comparable prediction approaches available. We demonstrate the

utility of this resource by using a set of DNA damage repair genes as the basis for predicting

potential SLI partners, using multiple computational strategies. Context-specific synthetic

lethality potential can also be compared using the framework. We demonstrate various use

cases for our cloud-based computational resource and the utility of this approach for

customizable and extensible computational inference of SLIs.
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Introduction

The concept of synthetic lethality (SL) refers to interactions between two genes in which loss of

function of either gene alone does not impair cell viability, whereas inhibition of both genes is

lethal (O’Neil et al., 2017). These interactions are attractive for designing cancer therapies, as

targeting a gene whose synthetic lethal partner is permanently inactivated in cancer cells but

exhibits wild-type expression in healthy cells should selectively kill cancer cells. The synthetic

lethal interaction (SLI) between the poly (ADP-ribose) polymerase (PARP) genes and BRCA

deficiency (functional loss of either BRCA1 or BRCA2) is the first successful clinical application

of the SL concept (Fong et al., 2009; Lord and Ashworth, 2017). Subsequent functional screens

have proposed other synthetic lethal pairs, including the SWI/SNF chromatin remodeling

complex members SMARCA2-SMARCA4 (Hoffman et al., 2014) and ARID1A-ARID1B (Helming

et al., 2014), as well as the Werner syndrome RecQ-like helicase (WRN) gene in MYC

overexpressing cancers (Moser et al., 2012) and microsatellite unstable cancers (Chan et al.,

2019; Kategaya et al., 2019; Lieb et al., 2019). Although SL-based therapeutics are promising,

other drugs for clinical use designed using an SL-based rationale are still under development.

There is, therefore, a continued need to discover additional synthetic lethal gene pairs and to

develop automated methods that use various data types to predict clinically relevant synthetic

lethal pairs that can be nominated for further testing and therapeutic development (Huang et al.,

2020).

Functional screening using siRNA/shRNA technology or, more recently, CRISPR-based

targeting libraries is a leading method of SLI discovery (O’Neil et al., 2017). However, identifying

robust synthetic lethal gene pairs is challenging, in part due to biological factors such as tumor

heterogeneity and incomplete penetrance, i.e. context-dependent SL (Chan et al., 2010; Henkel

et al., 2019; Nijman and Friend, 2013; Ryan et al., 2018). To complement functional screening

efforts, multiple computational prediction strategies have been pursued (reviewed by (O’Neil et

al., 2017)). Early approaches inferred SLIs in humans via orthology mapping based on genetic

interaction networks from experimentally-tractable model organisms such as Saccharomyces

Cerevisiae (Conde-Pueyo et al., 2009; Kirzinger et al., 2019; Srivas et al., 2016) and Mus

Musculus (Gurley and Kemp, 2001). Alternative strategies rely on the integrated analysis of

multi-omic profiling and functional screening of patient-derived or cancer cell line based
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datasets to predict SLIs. Briefly, these approaches use statistical and/or heuristic methods, such

as implicating SL gene pairs via mutually exclusive loss-of-function mutations, shared pathways

or protein complex membership (Das et al., 2019; Jerby-Arnon et al., 2014; Lee et al., 2018;

Liany et al., 2020; Wappett et al., 2016; Ye et al., 2016). Furthermore, to facilitate interactive

exploration of predicted SLIs, several web portals or SLI databases have been published, such

as Syn-Lethality (Li et al., 2014), SynLethDB (Guo et al., 2016), the Synthetic Lethality

BioDiscovery Portal (SL-BiodP) (Deng et al., 2019), the Cancer Genetic Interaction Database

(CGIdb) (Han et al., 2019), and, more recently, SynLeGG (Wappett et al., 2021). These tools

present pre-computed synthetic lethal pairs based on the most comprehensive datasets

available at the time of publication. This necessarily excludes potential SLIs discoverable by

either algorithmic advances or developments in functional screening technologies in terms of

scope and throughput. Additionally, there is limited flexibility to explore the existing set of

putative SLIs or to change any parameters in the prediction algorithms to better understand how

the SL inference was made.

In addition to the aforementioned limitations, benchmarking the performance of different

prediction approaches is difficult, as no bona fide set of gold-standard SL interactions exists.

Because of the complexity of these prediction approaches and managing the amount of data on

which predictions are based, a framework to assess and compare multiple prediction

approaches simultaneously on the same dataset does not exist. Many of the current

computational approaches for SLI prediction do not provide customized scripts or a facile

connection to large public data resources, making it difficult to use the wealth of publicly

available data that can be repurposed for SLI prediction. These reasons also account for the

multiplicity of SL databases, with the accompanying challenge presented to the user of having

to select the most appropriate database and tools for their needs.

To address the challenges associated with computational prediction of SL, we developed

Synthetic Lethality Cloud (SL-Cloud), a cloud-based computational resource to support SL

investigations. We mined large-scale publicly available multi-omics and functional screening

datasets such as The Cancer Genome Atlas (TCGA) (Hutter and Zenklusen, 2018), the Cancer

Cell Line Encyclopedia (CCLE) and the Cancer Dependency Map (DepMap) (Dempster et al.,

2019; Ghandi et al., 2019; McFarland et al., 2018; Meyers et al., 2017) to infer SL. To eliminate

the need for individual investigators to re-download these large multi-omic datasets, we make
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use of the cloud-hosted Google BigQuery tables provided by the Institute for Systems Biology

Cancer Gateway in the Cloud (ISB-CGC) (Reynolds et al., 2017). Additionally, we have

collected, reformatted, and structured other large-scale datasets not otherwise available on the

ISB-CGC into Google BigQuery (cloud-enabled SQL-queryable data warehouse) tables for use

in developing SL inference workflows. We implemented three SL inference pipelines, including

the Conserved Genetic Interaction (CGI) workflow, an orthology-mapping approach based on

SLIs discovered in S. Cerevisiae (Srivas et al., 2016); a mutation-dependent synthetic lethality

prediction (MDSLP) workflow that combines mutation and essentiality screening data to infer SL

pairs from cancer cell line data; and a re-implementation of the previously published

data-mining synthetic lethality identification pipeline (DAISY) (Jerby-Arnon et al., 2014). These

workflows are encoded in Jupyter notebooks that use functions from the provided Python scripts

and embedded SQL queries that pull down relevant data from the cloud-based BigQuery tables

for SL prediction. SL-Cloud brings together computational pipelines alongside large-scale

datasets via cloud infrastructure to facilitate highly scalable and customizable analyses.

Materials and Methods

Data Collection

We identified datasets hosted on the ISB-CGC platform that are relevant for SL inference, e.g.,

TCGA Pan-Cancer Atlas gene expression data. and designated them for use in this project (see

Table 1 for details). Additional datasets, particularly those from the Cancer Dependency Map

(DepMap) including genomic characterization data (on mutations, copy number, and gene

expression) from the CCLE project (Ghandi et al., 2019), gene effects estimated from CERES

for CRISPR-Cas9 essentiality screening from Project Achilles (Meyers et al., 2017), and cancer

cell line gene dependency scores estimated from DEMETER2 v6 from three large RNAi

screening datasets (McFarland et al., 2018) were downloaded from the DepMap data portal.

Similarly, comprehensive synthetic lethal interaction data from synthetic genetic array (SGA)

perturbation screens in S. Cerevisiae were downloaded from TheCellMap resources.

Human-to-S. Cerevisiae orthology mapping information for this paper were retrieved from the

Alliance of Genome Resources (Release 3.0.1). All datasets not previously available via the

ISB-CGC were collated in a Google Cloud Project (GCP Project ID: “syntheticlethality”)

established for the current project. All datasets were downloaded, parsed, and stored as
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BigQuery SQL-like tables. We downloaded and stored gene metadata tables as BigQuery tables

to facilitate table integration across datasets based on the “Entrez Gene ID” column and for

maintaining HGNC gene symbol compatibility. All of these datasets are accessible

programmatically via SQL-like queries through the Google Cloud API for various languages,

e.g., R, Python, Ruby, Java, etc., and through a web-based interface.

Data and Code Availability

All datasets supporting the current study are hosted on the ISB-CGC (Reynolds et al., 2017) in

existing Google BigQuery SQL database tables (Table 1). Additional publicly available datasets

relevant to SL inference were downloaded from the sources outlined in Table 1 and were

uploaded to new BigQuery tables in the Google Cloud Project (GCP) for this paper (GCP Name:

“syntheticlethality”). Project code and documentation describing how to access and use this

resource are available on the project github page at https://github.com/IlyaLab/SL-Cloud.

Reimplementation of Synthetic Lethal Prediction Algorithms

Data-mining synthetic lethality identification pipeline

The data-mining synthetic lethality identification pipeline (DAISY) was implemented as

described previously (Jerby-Arnon et al., 2014). DAISY uses three inference modules: pairwise

gene co-expression, survival of the fittest, and functional examination to enable the detection of

both synthetic lethal and synthetic dosage lethal gene pairs.

In the pairwise co-expression module, DAISY makes inferences based on the assumption that

synthetic lethal gene pairs play a role in related biological processes and are co-expressed.

Gene expression is measured for patient-derived data from TCGA and cancer cell line-derived

data from CCLE. Pairwise co-expression is estimated from the Spearman correlation which we

calculated between each gene of interest (each item in the query gene list) and all other genes.

Candidate synthetic lethal gene pairs are those with correlation coefficient greater than 0.5 and

whose Bonferroni-corrected P value was smaller than 0.05. We used SQL query-based

implementations of the Spearman correlation and Wilcoxon test calculations to estimate effect

sizes and P values when retrieving the data, because that approach is faster than using the

standard Python libraries.
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The other two inference procedures are built on the definition of SLIs in that functional loss of

both genes in a synthetic lethal pair decreases cell viability and is, therefore, selected against.

The genomic survival of the fittest inference module is based on the statistical test of the copy

number alteration of the gene in the search domain, given whether or not the gene of interest is

inactive (overactive) or not. The gene of interest in a sample is considered inactive if its

expression is less than 10th percentile across all samples and its copy number alteration is less

than -0.3 or if it has a nonsense, frame shift or frame-del mutation. The gene of interest in a

sample is considered overactive if it has gene expression exceeding the 90th percentile across

all samples and its copy number alteration is greater than 0.3 (over-activity is used in synthetic

dosage lethal pair prediction). The one-sided Wilcoxon rank-sum (Mann- Whitney U) test was

applied to the copy number alteration of the candidate synthetic lethal pair of each gene of

interest. The higher copy number of the candidate synthetic lethal pair for the samples whose

gene of interest is inactive (overactive) is considered as an indicator of the genes being in a

synthetic lethal or synthetic dosage lethal relationship. The SL/SDL pairs whose Bonferroni -

corrected p-value is less than 0.05 were returned. This inference procedure was applied on

Pancancer Atlas and CCLE data separately. The union of results from PanCancer Atlas and

CCLE was used.

The rationale for the functional examination inference module is that if the synthetic lethal

partner of a gene is inactive in a given sample, subsequent inactivation of that gene will be

lethal. Therefore, for a gene of interest, we first defined two groups for the test, one in which the

gene was inactive and the other in which it was not. We then performed a one-sided Wilcoxon

rank-sum (Mann-Whitney U) test on the knockdown/knockout sensitivity of candidate synthetic

lethal pairs of interest. Lower viability that is associated with higher knockout/knockdown

sensitivity is an indicator of a potential SLI. The synthetic lethal pairs for whom the test result P

value was lower than 0.05 were returned. This inference procedure was applied to the

gene-dependency scores or gene effect scores for the shRNA and CRISPR datasets separately.

We reported the union of results from shRNA and CRISPR-based datasets.

The synthetic lethal pairs and their corresponding P values were listed for each data source and

DAISY module. In addition, for all DAISY modules, we applied statistical testing where an

appropriate number of samples with particular features was available (typically n >= 5). For

example, for the SoF module, we applied the test only where the number of inactive/overactive
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samples was greater than five and the total number of samples was greater than 20. The

thresholds for the gene inactivation/overactivation decision, P value, and mutation type can also

be adjusted by users for their own analyses, and inclusion/exclusion of specific mutation classes

to decide whether a gene is inactive is optional. Users can also use different multiple-test

correction approaches. The Spearman correlation coefficient and P value thresholds and the

method used for multiple-test correction are parametrized, and the user can set customize their

selection of thresholds and multiple-test correction methods from among those defined in the

‘statsmodels.stats.multitest.multipletests’ Python library function.

Mutation-dependent synthetic lethality prediction

The MDSLP is based on genetic variants, gene-dependency scores, or gene effects from the

cancer cell line data in the DepMap Portal (see sources in Table S1). The genomic variants data

from the CCLE project, gene-dependency scores estimated from CERES for CRISPR-Cas9

essentiality screening from project Achilles (Meyers et al., 2017) and gene-dependency scores

estimated from DEMETER2 from three large RNAi screening datasets (McFarland et al., 2018)

were used. We developed a pipeline that integrates the genetic information and the functional

screening data to evaluate mutation-based conditional dependence, using either the CRISPR or

the shRNA dataset. For this pipeline, tumor types can be selected by the users. The variants

selected for this pipeline include those that alter the amino acid in the protein structures or

protein expression which may further impact the function of the gene product. These alterations

include Splice_Site, Frame_Shift_Del, Frame_Shift_Ins, Nonstop_Mutation, In_Frame_Del,

In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Start_Codon_Del,

Start_Codon_Ins, Start_Codon_SNP, Stop_Codon_Del, Stop_Codon_Del, Stop_Codon_Ins,

and De_novo_Start_OutOfFrame.

For the CRISPR data-based pipeline, we used CCLE mutation, Achilles gene effect, and

sample_info data from DepMap (version 20Q3). After selecting tumor types, or the pan-cancer

analysis option, for each selected mutated gene, we grouped the cell lines into either the

mutated or the wild-type group, then tested whether the knockout effects or the gene

dependency scores for the two groups show statistically significant differences using a t-test,

followed by Benjamini-Hochberg (BH) adjustment. Effect size (Function 1) was used to measure

the difference between the two groups. For each measurement, only the sample size for each

group larger than five was considered. For the shRNA data-based pipeline, cancer cell line gene
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dependency scores derived from DEMETER2 (version 6) from a combined dataset of Achilles

(Meyers et al., 2017), DRIVE (McDonald et al., 2017), and shRNA screen in breast cancer cell

lines (Marcotte et al., 2016) were used. The mutation data and sample annotation were for the

DepMap 20Q3 dataset. Significant differences are defined for gene pairs with BH-adjusted P

value smaller than 0.05. For the validation of the well-known synthetic lethal gene pairs,

BH-adjusted P values smaller than 0.1 were also considered to indicate significance. Significant

gene pairs with effect size smaller than 0 are predicted to be SLIs.

Effect size = Function 1
𝑀𝑒𝑎𝑛 (𝐸

𝑚𝑢𝑡
) − 𝑀𝑒𝑎𝑛(𝐸

𝑤𝑡
)

(𝑁
𝑚𝑢𝑡

 − 1) ×𝑆𝐷(𝐸
𝑚𝑢𝑡

)2 + (𝑁
𝑤𝑡

 − 1 ) × 𝑆𝐷(𝐸
𝑤𝑡

)2

where Emut and Ewt represent the vector of knockout effects (or dependency scores) in the

mutated and the wild-type groups, respectively. Nmut and Nwt are the numbers of samples in

the mutated and the wild-type groups, respectively. SD is the standard deviation.

Conserved genetic interaction (CGI) workflow

The basis of this pipeline is the identification of high-confidence SLIs from digenic knock-out

screens performed in S. Cerevisiae. Costanzo et al. measured double or single mutant colony

fitness using synthetic genetic arrays (Costanzo et al. 2016). Genetic interactions are inferred

by comparing double to single mutant colony growth as a measure of organismal fitness due to

gene essentiality. If the cell viability of a double mutant colony is higher or lower than that of two

single mutants then positive or negative genetic interactions are inferred using a quantitative

fitness metric or generic interaction score. Synthetic lethal interactions are defined as the

genetic interactions with low negative scores (< -0.35) at the extreme end of the interaction

score distribution. Leveraging this dataset, we mapped yeast to human genes using

yeast-human orthology information to identify presumed conserved human synthetic lethal pairs.

Pathway analysis of synthetic lethal partners of DNA damage repair genes

We downloaded a community-curated set of DNA damage repair (DDR) genes from

(Knijnenburg et al., 2018) and evaluated the synthetic lethal gene pairs for each gene from this

gene set with all available pipelines. To select synthetic lethal gene pairs corresponding to the

DDR genes, we chose the predicted pairs with FDR < 0.05. The resulting list of synthetic lethal

gene pairs was subjected to pathway and gene ontology enrichment analysis using the
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g:Profiler R Bioconductor package (Raudvere et al., 2019). Significant pathways or gene

ontology biological processes (GOBPs) were identified (P < 0.05; intersection size > 5). The

redundant GOBPs were reduced using REVIGO (Supek et al., 2011) based on the hierarchy of

GO terms and clustering analysis based on semantic similarity.

Tumor type specific SL analysis

Tumor type-specific SL analysis is possible with the MDSLP pipeline. We used ARID1A as an

example, ran the MDSLP-CRISPR and MDSLP-shRNA pipeline, and obtained the potential

synthetic lethal partner genes for ARID1A by estimating the significance of the difference in the

gene knockout or knockdown effects when comparing the cell lines in the ARID1A wild-type

group and the ARID1A-mutated group for one specific tumor type. Student’s t-test followed by

BH adjustment was used to estimate the significance. Only tumor types with at least five cell

lines with both ARID1A mutations (functional mutations same as those described in the

“Mutation-dependent synthetic lethality prediction” section) and gene knockdown or knockout

effects data are taken into consideration for this analysis. Significance is considered as BH

adjusted p-value smaller than 0.05.

The DAISY pipeline also enables tumor type-specific analysis. We manually added TCGA

subtypes according to the tumor-type annotation in the CCLE datasets. The TCGA Pan-Cancer

Atlas and CCLE samples were filtered based on the TCGA subtypes that are available in the

CCLE project, and the DAISY algorithm was applied to this subset of data, using the same

settings/thresholds as in the global analysis. For the functional examination and survival of

fittests modules, the analysis was performed only if the number of inactive samples was greater

than 5 and the overall sample size was greater than 20 per dataset individually. The pairwise

co-expression module was performed if the overall sample size was greater than 20.

Results

SL-Cloud

We present an overview of the SL-Cloud framework in Figure 1. This resource includes

pre-processed publicly available cancer genomics datasets hosted on a cloud resource platform

and a set of SL inference workflows implemented as Python scripts. Our framework collates
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commonly used public data resources relevant for SL inference and combines them with

analysis workflows that demonstrate how to infer SLIs by leveraging the cloud-based resources

stored on the ISB-CGC platform. These components represent an ecosystem that integrates

software and data to enable the large-scale prediction of SLIs from existing cloud-hosted

datasets. In the following sections, we briefly describe the publicly available datasets that we

identified as relevant for SL inference and we describe examples of use cases in which we

re-implemented published SL inference workflows using these cloud-stored datasets.

Large-scale datasets relevant for SL prediction.

We have developed an aggregated resource that takes advantage of democratized access to

public cancer genomics datasets through the National Cancer Institute’s Cancer Research Data

Commons. Specifically, we use existing data hosted by the ISB-CGC and stored as Structured

Query Language (SQL)-like database tables using Google BigQuery technology (Reynolds et

al., 2017). Example datasets include TCGA patient-level data on somatic mutations, gene

expression and copy number variation across 33 cancer types (Figure 1)(for details see Table

S1, which includes the URLs for specific resources). We identified additional data resources that

were pertinent for SL inference but were not yet available on the ISB-CGC platform. These

datasets include genetic interaction datasets derived from model organism interaction screens,

such as TheCellMap (Costanzo et al., 2016), and from human pan-cancer cell line molecular

characterization and functional screening datasets, primarily from the DepMap initiative

(Dempster et al., 2019; Ghandi et al., 2019; McFarland et al., 2018; Meyers et al., 2017).

Building on the infrastructure of the ISB-CGC, we established a new SL-focused cloud resource

project that incorporates resources not already present on the ISB-CGC (Google Cloud Project:

“syntheticlethality”, Table S1). This will enable researchers to upload private datasets and

analyze them alongside the wealth of public data.

Synthetic lethal interaction prediction workflows.

We re-implemented published SLI inference workflows and redistributed them as a set of

Python scripts embedded in a set of Jupyter notebooks with the appropriate documentation

describing the methodology. These notebooks offer code optimization and integration with the

ISB-CGC through the BigQuery interface to access the relevant pre-processed large-scale

cancer genomics datasets described above. The resource facilitates custom analyses for

particular research questions or disease contexts. Additionally, this framework provides
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extensibility by virtue of the modular design of the base framework shown in Figure 1.

End-users can combine high-quality public data with their own laboratory-generated data to

perform integrated analyses more easily without the need to download and pre-process

large-scale public cancer genomics data.

We implemented three workflows to demonstrate the utility and flexibility of this framework for

SL prediction. First, we re-implemented the published workflow, DAISY (Jerby-Arnon et al.,

2014), using up-to-date, large-scale data resources as described above (Figure 1; Table S1).

DAISY applies multiple inference procedures that include genomic survival of the fittest (SoF),

the detection of infrequently co-inactivated gene pairs by using somatic mutation, copy number

alteration and gene expression data; functional examination (FunEx), the identification of gene

pairs in which inactivation or over-activation of one gene induces essentiality of a partner gene,

using functional screening data; and pairwise gene co-expression, the detection of significantly

correlated gene pairs, thereby implicating genes in related biological functions. Inference of

synthetic dosage lethality (SDL), whereby overactivation of one gene causes its interaction

partner to become essential, is also implemented in DAISY. DAISY SL predictions are gene

pairs that are found by all three inference modules. Each individual module can also provide

evidence of SL potential independently. The pipeline we have implemented enables users to list

synthetic lethal pairs from each pipeline, for each dataset, and aggregate them or use them

independently. The DAISY pipeline enables users to perform pan-cancer or tissue type-specific

analyses.

We also implemented a mutation-dependent synthetic lethality prediction (MDSLP) workflow

based on the rationale that, for tumors with mutations that have an impact on protein expression

or structure (functional mutation), the knockout effects or inhibition of a partner target gene show

conditional dependence for the mutated molecular entities (Figure 1). Leveraging the public

cancer cell line datasets including gene mutation data from CCLE, and functional screening

data generated by either shRNA or CRISPR technology from DepMap (Dempster et al., 2019;

Ghandi et al., 2019; McFarland et al., 2018; Meyers et al., 2017), we integrated these data

modalities to evaluate mutation-based conditional dependence. This pipeline enables users to

test statistically whether the knockout or knockdown effects for one gene will be altered if

another gene is mutated in specific contexts, such as in pan-cancer, or tumor type-specific cell
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lines. The increase in gene knockout or knockdown sensitivity provides evidence to support

potential SLIs.

Finally, we present a workflow that leverages cross-species conservation to infer experimentally

derived SLIs in yeast to predict relevant synthetic lethal pairs in humans. We implemented the

conserved genetic interaction (CGI) workflow based on published methods described in (Srivas

et al., 2016). In SL-Cloud, we downloaded and preprocessed TheCellMap dataset, the most

comprehensive S. Cerevisiae genetic interaction network inferred from synthetic genetic array

(SGA) screens from (Costanzo et al., 2016) (see details in Table S1). Genetic interactions are

inferred if the combined effect of a double mutant on cell viability differs from that of the

combination of single mutant effects. SLIs are defined as negative genetic interactions in which

the cell viability of a double-mutant colony is lower than that of the respective single-mutant

colonies. We provide the inferred SLIs in humans by yeast-to-human ortholog mapping.

Use cases

To demonstrate the utility of SL-Cloud, we will present representative examples of the type of SL

inference and analysis enabled by this cloud-based platform and highlight opportunities for

performing SL discovery.

In silico validation of known or suspected SLIs

Synthetic lethality between BRCA deficiency and PARP1/2 is well documented and is the

rationale behind the design of PARP inhibitors such as olaparib, rucaparib, and niraparib

(Ashworth and Lord, 2018). These agents are approved for treating BRCA-mutated ovarian

cancer and advanced breast cancer. To perform an in silico validation analysis of this

well-established SLI, we applied MDSLP to gene mutation and essentiality screen data from

pan-cancer cell lines (Dempster et al., 2019; Ghandi et al., 2019; McFarland et al., 2018;

Meyers et al., 2017). As shown by the MDSLP-shRNA workflow and consistent with our

expectations, functional mutations of BRCA2 showed significant sensitivity to PARP1

knockdown (two-sided t-test, P < 0.01, FDR < 0.1) (Figure 2A). We applied the same pipeline

to gene essentiality data derived from CRISPR screens, but did not find this expected

interaction. The MDSLP workflow using CRISPR-derived datasets revealed that the functional

mutation of BRCA2 shows a synthetic lethal partnership with PARP2 (P < 0.01, FDR < 0.05).
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shRNA-derived and CRISPR-derived BRCA2 synthetic lethal pairs showed limited overlap

(Figure 2B). Only 6.6% (48 out of 729) of the BRCA2-related synthetic lethal pairs nominated

from shRNA-derived inference with threshold of FDR < 0.1 were also predicted using CRISPR

essentiality screens. From among the 1433 potential partner genes predicted by any of the

resources, only 48 partner genes were predicted by two resources (Figure 2A). Of these, WRN,

TSC2, RPL22L1 showed the most significance with both CRISPR-derived and shRNA-derived

inference (FDR < 0.01 for both inference procedures).

Interestingly, we did not predict any BRCA2-related synthetic lethal pairs from the other two

workflows implemented in SL-Cloud. BRCA2 has no yeast homolog and, therefore, conserved

interactions could not be inferred by the CGI pipeline. DAISY nominated no synthetic lethal

partners for BRCA2 with its default settings but predicted potential BRCA1-PARP1/2 SLIs

across all three of its component inference modules with non-default parameter settings. Both

gene pairs, BRCA1-PARP1 and BRCA1-PARP2, showed statistically significant co-expression,

with their correlation coefficients ranging from 0.26 to 0.59 across patient-derived and cancer

cell line datasets [Figures S1A(i,ii) and S1B(i,ii)] (P < 0.01). In addition, we found statistical

support for a BRCA1 and PARP1/2 SLIs by the SoF inference procedure [Figures S1A(iii) and

S1B(iii,iv)] ( P < 0.05), whereas the FunEx module found statistical support for a BRCA1-PARP1

SLI [Figure S1A(iv)] ( P < 0.01), but not for a BRCA1-PARP2 SLI, based on the cancer cell line

gene-dependency CRISPR or shRNA datasets. In summary, the BRCA1-PARP1 interaction is

supported by all three DAISY inference modules, whereas only two modules support the

BRCA1-PARP2 interaction.

This example demonstrates how a platform such as SL-Cloud can easily facilitate the

exploration of the SLIs for a particular gene by using orthogonal SLI prediction workflows and

multiple datasets to assess the stability (relative to algorithmic settings and parameters) and

reproducibility of particular SLIs of interest. For the established SLI between BRCA deficiency

and PARP1/2 enzymes, we see variation in the output of multiple prediction approaches and

datasets in confirming this bona fide SLI. These analyses highlight some of the challenges

related to SL prediction, including unaccounted-for variation resulting from differences in the

datasets used to make the SL prediction and the implicit or explicit assumptions made by the

underlying analytical approaches. These findings inform a better understanding of the

mechanisms driving SLIs and inform algorithmic development for improving SLI prediction.
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Pathway-based SL analysis

SLI partners tend to form functional interaction networks (Costanzo et al., 2016; Jerby-Arnon et

al., 2014). For example, Ku et al. report that synthetic lethal screen hits are reportedly more

robust at the pathway rather than at the gene level (Ku et al., 2020). To demonstrate

pathway-based SLI analysis, we analyzed SLI-related genes in the DNA damage and repair

(DDR) pathway. DDR deficiency due to loss-of-function alterations by mutation, deletion, or

epigenetic silencing is prevalent across lineages affecting approximately 33% of all cancers in

TCGA (Knijnenburg et al., 2018). Impaired DDR leads to genomic instability, and tumors

exhibiting DDR loss are prone to DNA-damaging agents and, therefore, potentially vulnerable to

inhibitors that target compensatory DDR pathways via a synthetic lethal mechanism (Lord and

Ashworth, 2012). Using a well-curated set of 276 genes annotated for involvement in DNA

damage repair from (Knijnenburg et al., 2018) we predicted synthetic lethal partners from the

three workflows described above (Figure 1).

Consistent with our expectations, different SL prediction approaches led to a diverse set of

predicted SLIs. As shown in Figure S2, each workflow identified more than 1,000 synthetic

lethal/synthetic dosage lethal partner genes, except for CGI, which identified only 67 synthetic

lethal partner genes. Predicted SLI gene sets largely did not overlap; however, functional

enrichment analysis showed shared pathway involvement in the interactions identified (Figure

3A; Table S2). In particular, we found significant KEGG pathway enrichment in synthetic lethal

partner genes for the cell cycle, RNA metabolism, splicing machinery, chromatin organization,

and transcriptional regulatory pathways (FDR < 0.05). Interestingly, several of these results are

broadly related to genomic stability maintenance, and as such, confirm previously published

reports from (Ku et al., 2020) and others that genes involved in SLIs tend to belong to related

pathways. Gene ontology biological processes (GOBPs) enriched by synthetic lethal partner

genes vary, but a clustering analysis based on hierarchical structure and semantic similarity of

GOBPs showed the synthetic lethal partner genes identified via the different approaches were

associated with similar biological processes (Figure 3B; Table S3). A clustering analysis

summarized 350 GOBPs that were initially identified via four approaches into 25 representative

GOBP groups. The 25 GOBP groups are associated with synthetic lethal partner genes

identified by at least two workflows, and their biological functionality is mirrored by the pathway

enrichment results presented above, with enrichment in genes involved in the cell cycle,
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transcriptional regulation, chromatin organization, and the DNA damage response. In summary,

we have demonstrated that pathway-based SL prediction is easily implemented in this

framework and can quickly generate useful insights beyond the single-gene level.

Tumor-specific SL analysis

Current evidence suggests that reproducible SLIs can be exquisitely context sensitive, e.g.,

being limited to a particular tissue type (Nijman and Friend, 2013; Ryan et al., 2018). We show

that the MDSLP pipeline and our re-implementation of the DAISY algorithm can be applied to

restricted subsets of the underlying data that represent samples or cell lines arising from the

same cancer type. The rationale behind this type of analysis is that samples from the same

cancer type could represent similar cellular origins, having a characteristic genetic interaction

network that is tissue-type specific.

To illustrate this principle, we investigated the previously reported SLI between ARID1A and

ARID1B. Functional loss of ARID1B is a specific vulnerability in ARID1A-mutated cancers, as it

affects the composition of the SWI/SNF complex (Helming et al., 2014). In addition, protein

levels of the core catalytic ATPase subunits such as SMARCA4, SMARCC2, and SMARCB1,

were decreased with the deletion of ARID1B in an ARID1A-mutated ovarian cancer cell lines

(Helming et al., 2014). We applied MDLSP and DAISY to finding synthetic lethal partners for

ARID1A. Via the MDLSP pipeline, we found statistical evidence of differential dependency for

ARID1B between ARID1A-mutated and wild-type cell lines in various cancer types, suggesting

the potential for a SLI between the two genes across tissue types with the most reproducible SL

potential in ovarian cancer (Figure 4A). Similar to our findings with the BRCA-related synthetic

lethal partners, we also see differences in the strength of the relationship based on whether

ARID1B was knocked down via shRNA or knocked out using the CRISPR-Cas9 system. The

pan-cancer result is robust (shRNA/CRISPR), with more than 160 cell lines with ARID1A

functional mutations. However, when constraining analysis to cell lines from a single cancer

type, we have reduced power to detect differential effects due to limited sample size.

Nevertheless, as there is strong and compelling evidence for this SLI, we still find support for

the interaction occurring across multiple cancer types, even if the evidence comes from

shRNA-derived or CRISPR-derived dependency datasets alone.
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DAISY does not predict an SLI between ARID1A and ARID1B when applied strictly, that is,

when the requirement is set for statistically significant evidence across all three DAISY inference

modules (Figure 4B). However, when considering each module individually, we see strong

support for the interaction, with strong positive correlation (Spearman rho in the range [0.3,

0.77]) between these two genes across almost all cancer types considered (Figure 4B, C).

Similar to the findings with MDSLP, we find evidence for the interaction between these two

genes in ovarian cancer by using the functional examination module and shRNA-derived

dependency dataset. This is unsurprising, as the underlying rationales for the DAISY and

MDSLP inference strategies are quite similar and both approaches are applied to the same

dataset. This further reinforces the tissue-specificity of the interaction, and is consistent with our

expectations given the context in which that SLI was first described. We found no statistical

support for the interaction via genomic SoF inference, which may be explained by the fact

neither of those genes is inactivated by recurrent focal deletions that underpin that inference

module.

Our findings suggest SL between ARID1A and ARID1B in some contexts but not in others. This

illustrative example showcases the flexibility of the SL-Cloud framework in that it is relatively

easy to compare the results of different SL prediction approaches, while varying algorithmic

parameters, using the same or different data types, or to restrict analysis to a given tumor type

for further elucidation of context specificities in SL.

Discussion

The synthetic lethality concept presents a systematic framework with which to identify and

nominate potential targets for cancer treatments. It is, therefore, critical to identify robust

context-specific SLIs that provide insights into cancer vulnerabilities that can be nominated as

targets for further therapeutic development. Although the SL concept offers a compelling

rationale by which to inform drug target identification, systematically testing all potential SLIs in

a given tissue or disease context is experimentally intractable. Therefore, it is necessary to

develop reproducible computational inference and prioritization frameworks to nominate the

most likely SLIs for experimental follow-up or to aid in functional screen design. We designed

SL-Cloud to be a flexible framework to facilitate computational prediction of synthetic lethal

genetic interactions to support investigations of potentially targetable cancer dependencies. We
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envisioned SL-Cloud as a tool with which computationally adept scientists could couple

customized SL inferences pipelines and a seamless connection to large-scale datasets offered

through cloud resources to facilitate customizable analysis, prediction, and nomination of novel

SLIs.

SL-Cloud is designed to leverage existing cloud-based genomics infrastructure that takes

advantage of the scalability of this technology and democratizes access to public large-scale

cancer genomics datasets (Birger et al., 2017; Lau et al., 2017; Reynolds et al., 2017). In

particular, SL-Cloud uses data resources and tools provided through the ISB-CGC, such as

BigQuery, an SQL-based data warehousing solution that provides fast access through

database-like queries. We have integrated publicly available omic and functional screening

datasets for SL inference, and have demonstrated the key analytic steps needed to store

analysis-ready processed data from data sources not currently hosted on the ISB-CGC. Users

can analyze multiple large-scale datasets while circumventing the need to download and

maintain a local copy of these petascale datasets or to perform extensive data management

tasks. Overall, SL-Cloud offers an ensemble of methods and datasets that enables users to

collate evidence for SLIs more easily, leveraging both the richness of existing publicly available

datasets and facilitating the integration of smaller user-generated custom or private datasets

into the same analysis framework.

There has been a concerted effort to develop novel SL prediction algorithms and to collect

known and predicted SLIs in various databases (Deng et al., 2019; Guo et al., 2016; Han et al.,

2019; Li et al., 2014; Wappett et al., 2021). In contrast to those approaches, we developed a

framework for SLI discovery that is more flexible, that can incorporate state-of-the art algorithmic

developments, and that can easily apply these methods to datasets generated with

newer-generation screening technologies with increasing throughput. For example, our

re-implementation of the DAISY pipeline is comprehensive in scope and expands on the initial

report by using the most up-to-date versions of cloud-hosted datasets including patient-derived

multi-omic cancer genomics datasets (TCGA) and cancer cell line characterization datasets

(CCLE, shRNA, and CRISPR screens from DepMap) (Figure 1, Table S1), while giving the user

the ability to adjust algorithmic settings and parameters.
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Although the SL-Cloud framework is organized in a novel way that takes advantage of

cloud-based data storage and computing, some of the limitations inherent in any one SL

prediction strategy remain. Specifically, our ability to predict SLIs with high confidence is

dependent on the size of the training dataset and on the underlying limitations of any one

inference approach. For example, cancer type-specific analysis of the synthetic lethal potential

of the ARID1A/B genes was in some cases limited by not having enough representative

samples in a given cancer type with the target lesion in question.

In conclusion, we have presented here a community resource, SL-Cloud, that provides a

practical framework to support investigations of context-specific SLIs. SL-Cloud is a unique

implementation that brings together established SLI prediction workflows with the most

up-to-date versions of large-scale multi-omics datasets to enable customizable SLI prediction.

This organizational structure obviates the need for large local data downloads or extensive data

management. So far, we have focused on axes such as prevalence of genomic alterations in

human samples or interactions limited to specific pathways. However, the conceptual design of

the framework is optimal for continued modular development and extensibility. We anticipate

that this resource will enable investigators to integrate their own data with publicly available data

to look for corroborating evidence for synthetic lethal genetic interactions with therapeutic

potential and to explore such interactions in specific biological contexts.
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Figure Legends

Figure 1. Overview of the Synthetic Lethality Cloud (SL-Cloud) framework. Schematic

overview of the computational pipelines and data resources aggregated in this framework to

facilitate investigation of synthetic lethal interactions. Users with specific research questions

(top-left) reuse inference pipelines from the provided scientific computing notebooks to query

public cancer genomics datasets from the vast resources provided by the ISB-CGC and

additional datasets pre-processed in SL-Cloud. Three candidate synthetic lethal pair inference

pipelines were implemented, including the data mining synthetic lethality identification pipeline

(DAISY), mutation-dependent synthetic lethality prediction (MDSLP), and conserved genetic

interaction (CGI). Different data resources and data types were used for different inference

pipelines. For example, the DAISY and MDSLP pipelines rely on statistical testing over the

multiple omics data and functional screening data such as CRISPR and shRNA datasets for

human cancers, whereas the CGI pipeline is based on an ortholog mapping of the SL

interactions identified in yeast.
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Figure 2. Predicted synthetic lethal interaction partners of BRCA2 based on cancer cell

line dependency datasets. A. Network-based representation of predictions generated by the

mutation-based conditional dependency pipeline using either shRNA (upper panel, orange) or

CRISPR (lower panel, blue) functional screening datasets. B. Potential synthetic lethal partners

of BRCA2 as predicted by both the CRISPR and shRNA functional screening data. Each node

represents a gene, and edges represent potential synthetic lethal interactions. The node color

encodes overlap between the gene-dependency assay type, with yellow representing synthetic

lethal pairs detected in both the CRISPR data and the shRNA functional screening data. The

node size and font size indicate the strength of the statistical relationship, with high-confidence

pairs having larger node sizes or font sizes. FDR levels: 0.01 (largest), 0.05 (median), and 0.1

(smallest).

Figure 3. Pathway enrichment of predicted synthetic lethal partners of DNA damage

repair (DDR) genes. Heatmaps depicting A. the KEGG or REACTOME pathway and B. Gene

Ontology Biological Process (GOBP) enrichment for predictions made using four different

approaches (columns). Increasing color intensity represents increasing statistical significance (P

< 0.05, calculated by a hypergeometric test) for enrichment. Pathways or GOBPs were labelled

if they were enriched by synthetic lethal partner genes identified by at least two prediction

approaches. The redundant GOBPs were further reduced by REVIGO. The 398 GOBPs (Table

S1) enriched by at least one approach were reduced to 172 GOBPs based on their semantic

similarities and then summarized into 27 representative groups whose enrichment significance

is represented in the heatmap. Clustering analysis was performed for GOBPs inside and outside

of the 27 representative groups, separately. The red line down the left side of panel B indicates

the separation between the clustering analyses. DAISY, data mining synthetic lethality

identification pipeline; MDSLP-CRISPR, mutation-dependent synthetic lethality prediction

pipeline with CRISPR; MDSLP-shRNA, mutation-dependent synthetic lethality prediction

pipeline with shRNA; CGI, conserved synthetic lethal interactions from yeast screens

      Figure 4. SL-Cloud enables cancer type-specific synthetic lethal inference for ARID1A

and ARID1B. A. Evidence for synthetic lethality generated from the mutation-dependent

synthetic lethality prediction (MDSLP) workflow as applied to cancer cell line dependency

datasets when comparing the gene dependency scores (effects) for the shRNA and CRISPR
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datasets between the ARID1A-mutated group and wild-type group for different cancer types and

across all cell lines (pan-cancer analysis). The threshold for statistical significance is FDR <

0.05. B. Statistical evidence for a synthetic lethal relationship between ARID1A and ARID1B

from the data mining synthetic lethality identification pipeline (DAISY), with the results for each

inference module being represented in the columns. Column heatmaps summarize the datasets

used for each procedure. An asterisk (*) indicates that a test passed the FDR threshold (0.05);

gray shading represents an invalid test or a lack of data availability. C. Heatmap visualization

depicting the Spearman correlation between ARID1A and ARID1B for the annotated cancer

type for a patient derived sample (Pan-Cancer Atlas) or cancer cell line (CCLE) (rows) across

different cancer types (columns). Gray shading represents an invalid test.

Figure S1. Evidence for BRCA1-PARP1/2 synthetic lethal relationship based on the data

mining synthetic lethality identification pipeline (DAISY). A. Evidence for a BRCA1-PARP1

synthetic lethal relationship by pairwise co-expression in i) Pan-Cancer Atlas and ii) CCLE

datasets respectively; iii) by survival of the fittest in in CCLE data; and iv) by functional

examination in DepMap CRISPR. B. Evidence for a BRCA1-PARP2 SL relationship by pairwise

co-expression in i) Pan-Cancer Atlas and ii) CCLE datasets and by survival of the fittest in iii)

Pan-Cancer Atlas and iv) CCLE datasets. R, Spearman correlation coefficient; p, P value by the

Wilcoxon rank-sum test;  * P < 0.05;  ** P <0.01; **** P < 0.0001.

Figure S1. Relatedness of synthetic lethal partners of DDR genes as predicted by

different approaches. Each set represents the number of synthetic lethal partner genes

identified by different approaches. The numbers in parentheses are the numbers of partner

genes predicted by each approach. MDSLP, mutation-dependent synthetic lethality prediction;

CGI, conserved genetic interactions.

Table Legends

Table S1. Publicly available cancer genomic and molecular profiling datasets relevant for SL

inference
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Table S2. Pathways enriched by synthetic lethal partners of DDR genes

Table S3. Gene ontology biological processes enriched by synthetic lethal partners of DDR

genes
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