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Abstract: Species interactions can propagate disturbances across space, though
ecological and biogeographic boundaries may limit this spread. We tested whether large-
scale ecological boundaries (ecoregions and biomes) and human disturbance gradients
increase dissimilarity among ecological networks, while accounting for background
spatial and elevational effects and differences in network sampling. We assessed network
dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory
networks (encompassing 1,496 plant and 1,003 bird species) distributed across 67
ecoregions and 11 biomes. Dissimilarity in species and interactions, but not in network
structure, increased significantly across ecoregion and biome boundaries and along
human disturbance gradients. Our findings suggest that ecological boundaries contribute
to maintaining the world’s biodiversity of interactions and mitigating the propagation of

disturbances at large spatial scales.

One-Sentence Summary: Ecoregions and biomes delineate the large-scale distribution

of plant-frugivore interactions.

Main text:

Abiotic gradients underlie the existence of a wide array of natural ecosystems,
which are the cornerstone of biological diversity on Earth (1, 2). Ecoregion borders
delineate regional discontinuities in the environment and in species composition (3, 4),
whereas biomes mark these ‘break points’ at a global scale, such that ecoregions are
nested within biomes (1, 4 and fig. S1). Accordingly, ecoregion and biome maps have
been widely used for delimiting terrestrial ecosystems and guiding conservation planning
(4, 5), but the question of whether distinct ecoregions truly represent sharp boundaries for

species composition across several taxa was only recently answered on a global scale (3).
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There has been growing recognition that interactions among species are critical
for biodiversity and ecosystem functioning (6) and an important component of
biodiversity in themselves, such that interactions may disappear well before the species
involved (7). Species interactions also provide a pathway for the propagation of
disturbances via direct and indirect effects, such as secondary extinctions and apparent
competition (8, 9), potentially connecting species at a global scale. Thus, both natural and
human disturbances in local communities of interacting species might reverberate and
affect ecosystem functioning at multiple sites (10, 11). However, the spread of
disturbances may be hindered when interactions are arranged into distinct compartments
(12). Despite this importance, we are only beginning to understand whether such
discontinuities exist in ecological networks at very large scales (10, 11), such as across
ecoregions and biomes, potentially acting as a barrier to the global spread of disturbances.

Because species tend to be replaced across ecosystems (2, 3) and environmental
conditions can favour some types of interactions over others (13), we hypothesize that the
large-scale distribution of species interactions is punctuated by ecoregion and biome
boundaries. Alternatively, even though at smaller scales habitats may differ in their
interactions (14), interactions that occur across habitat boundaries can connect their
assemblages, causing multiple habitats to function as a single unit (9). Moreover,
ecological boundaries might be further blurred by the processes of species and interaction
homogenization, which accompany land-use change and biotic invasion (10, 15). Thus,
an alternative hypothesis would be that shared interactions and biotic homogenization
prevent any sharp discontinuities in interaction composition (i.e., the identity of
interactions). Importantly, natural and human-disturbance gradients are juxtaposed with
spatial processes that drive gradual changes in species and interaction composition (13).

Indeed, distance-decay relationships have been demonstrated across spatial and
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elevational gradients not only for species (16), but also for ecological networks (17-19),
and likely result from dispersal limitation and increasing environmental dissimilarity with
increasing geographic distance (16).

Here we evaluate whether significant changes in the composition of species, the
composition of interactions, and the structure of local networks of avian frugivory are
driven by large-scale ecological boundaries (ecoregions and biomes) and human
disturbance gradients, while accounting for background spatial and elevational effects.
Given known patterns of species turnover across environmental gradients (16), we
hypothesize a similar pattern of interaction dissimilarity, which could potentially lead to
changes in the whole structure of networks. We focused on frugivory networks because
of their importance for seed dispersal (20), promoting species diversity (21) and
regenerating degraded ecosystems (22). As such, mapping the large-scale distribution of
plant-frugivore interactions will be crucial to ensure ecosystem functioning and resilience
in a context of increasing global changes.

To test our hypotheses, we assembled a large-scale database comprising 196
quantitative local networks of avian frugivory (with 9,819 links between 1,496 plant and
1,003 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents (figs.
S1, S2 and table S1). To ensure that our results would not be driven by taxonomic
uncertainty and sampling effects, we standardized the taxonomy of plant and bird species
in our networks following a series of steps (figs. S3 to S6) and controlled statistically for
network sampling metrics in our analyses [see materials and methods (23)].

We generated several distance matrices (N x N, where N is the number of local
networks in our dataset) to be our variables in the statistical models (23). Specifically, we
used ecoregion, biome, local human disturbance [measured using the human footprint

index (24)], spatial, elevation and sampling-related (i.e., hours, months, years, intensity
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and methods; figs. S7, S8 and table S2) distance matrices as predictor variables, and facets
of network dissimilarity as the response variable. We constructed two distinct versions of
the ecoregion and biome distance matrices: in the binary version, pairs of networks were
given a dissimilarity of zero if they came from localities within the same
ecoregion/biome, otherwise one; in the quantitative version, we calculated a continuous
measure of environmental distance between the ecoregions and biomes where the
networks were located (23). We used three response variables: species turnover (PBs),
which estimates the pairwise dissimilarity in species composition between networks (25),
interaction dissimilarity (Bwn), which represents the pairwise dissimilarity in the identity
of interactions between networks (25), and network structural dissimilarity, which
captures differences in the number of links in the networks, their relative weightings, and
their arrangement among species. To generate this latter metric, we combined several
network descriptors (weighted connectance, weighted nestedness, interaction evenness,
PDI and modularity) using Principal Component Analysis (23). To evaluate the effect of
each of our predictor distance matrices on our response variables, we employed a
combination of Generalized Additive Models and Multiple Regression on Distance
Matrices (26). Finally, we explored the unique and shared contributions of our predictor
variables to network dissimilarity using deviance partitioning (23).

As expected based on the definition of ecoregions and biomes, the turnover of
plant and frugivorous-bird species composition was strongly affected by ecoregion and
biome boundaries (tables S4 and S5; fig. S9, A and B). Similarly, there was an overall
trend of networks located at different positions along the human disturbance gradient
having different species composition (tables S4, S5 and fig. S9C). Despite these effects,

spatial distance alone accounted for the greatest proportion of deviance explained in
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species turnover across networks, followed by the shared contribution of spatial distance
and ecoregion boundaries (fig. S10).

We found that plant-frugivore interaction dissimilarity increased significantly
across ecoregions, biomes, and different levels of human disturbance, even after
accounting for the effects of spatial distance, elevational differences, and sampling-
related metrics (Table 1 and table S6). This provides strong support to the hypothesis that
large-scale ecological boundaries mark spatially abrupt changes in plant-frugivore
interactions (Figs. 1, 2 and fig. S11). Importantly, a great proportion of the deviance
explained by biomes was shared with ecoregions (Fig. 3 and fig. S12), which suggests
that changes in interaction dissimilarity across biome boundaries mostly reflect the
variation occurring at a finer (ecoregion) scale. In fact, crossing an ecoregion boundary
induced an average 7% increase in interaction dissimilarity, while crossing a biome
boundary induced only an additional 0.2% change. As with species, networks located at
opposite ends of the human disturbance continuum usually exhibited very different
interactions (Fig. 4 and fig. S13).

In addition to the importance of ecological boundaries and human disturbance
gradients in driving plant-frugivore interaction dissimilarity, these effects were observed
against a background of increasing interaction dissimilarity through space. Indeed,
interaction dissimilarity increased sharply until a threshold distance of around 2,500 km
between network sites, beyond which few networks shared any interactions and
dissimilarity remained close to its peak (Fig. 5 and fig. S14). In the cases where spatially
distant networks shared interactions, these typically involved species that had been
introduced in at least one location. For instance, the interaction between the Blackbird

Turdus merula and the Blackberry Rubus fruticosus was shared between networks located
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more than 18,000 km apart: while both species are native in Europe, they have been
introduced to Aotearoa New Zealand.

The shared effect of ecoregion boundaries and spatial distance explained the
greatest proportion of the variability in plant-frugivore interaction dissimilarity, followed
by the unique contributions of these two variables (Fig. 3). This indicates that gradual
increases in interaction dissimilarity over space are made significantly steeper when
crossing ecoregion boundaries; this combined effect better describes the variation in
plant-frugivore interactions at large spatial scales than any of the other analysed variables.

Despite significant turnover in species and interaction composition, structural
dissimilarity of frugivory networks did not change consistently across large-scale
ecological boundaries and human disturbance gradients, being only affected by spatial
and sampling intensity distances (tables S7 and S8). All the above findings held true when
evaluating both the binary and quantitative versions of ecoregion and biome distance
matrices (Table 1 and tables S4 to S8). Furthermore, all our main results were robust to
different processes of assigning unigueness to problematic species (i.e., species without
a valid epithet) (tables S9 to S33). Finally, most reported patterns were robust to the
removal of individual studies from the dataset (figs. S15 and S16; tables S34 and S35).

Our results support the hypothesis that large-scale ecological boundaries drive
abrupt changes in species and interaction composition of avian frugivory networks.
Specifically, on top of the gradual effect of spatial distance on interaction dissimilarity
(whereby networks > 2,500 km apart had very few interactions in common), transitions
across ecoregions and biomes promoted divergence in species interactions. These results
show that ecoregions and biomes, classically defined based on environmental conditions
and species occurrences (1, 3, 4), also carry a signature within biotic interactions. This

means that species biogeography is matched by a higher-order biogeography of
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interactions. In parallel, human disturbance gradients promoted shifts in species and
interaction composition, which might be partly attributed to the filtering of sensitive
species and their interactions from disturbed sites (17, 27). In fact, while networks from
natural ecosystems usually contain interactions between native species, which better
reflect natural biogeographic patterns (10) and are more susceptible to human
disturbances (27), interactions from high-disturbance regions are generally performed by
generalist and introduced species (17, 27, 28). Nevertheless, we found that the structure
of avian frugivory networks was relatively consistent across large-scale environmental
gradients. Similar results have been reported at smaller scales (28), indicating that
assembly rules may generate common structural patterns in plant-frugivore networks (29)
despite the shifts in species and interaction composition that usually accompany
environmental changes (13).

Because most of the variation in interaction dissimilarity across biome borders can be
explained by ecoregion boundaries, preserving the distinctness of ecoregions (3, 4) will
likely contribute to maintaining the natural barriers that limit the spread of disturbances
across the global network of frugivory. Unfortunately, the unique assemblages that
comprise ecoregions have been increasingly threatened by global changes (4, 5). Biotic
homogenization, in particular, has contributed to blurring biogeographical signatures (10,
15) and the effect of spatial processes on interaction dissimilarity (10). This notion is
reinforced by the fact that all long-distance (>10,000 km) connections (shared
interactions) between local networks of frugivory involved at least one region where
novel interactions performed by introduced species have largely replaced those performed
by native species, such as Aotearoa New Zealand and Hawai’i (28, 30). Interestingly,
these long-distance connections tend to occur more frequently within than across biomes,

despite a greater proportion of network comparisons being cross-biome (fig. S17). This
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indicates that biomes may represent meaningful boundaries not only for species, but also
for novel interactions resulting from species introductions around the world (10). Taken
together, these results suggest that disturbances in local networks of frugivory are much
less likely to impact networks from distant sites or elevations, especially if the networks
are located within distinct ecoregions and biomes.

Although species turnover and interaction dissimilarity responded to similar
ecological drivers, species might interact differently across environmental gradients not
only because of changes in species composition, but also because of partner switching
associated with shifts in species abundance (i.e., the probability of random encounters),
foraging behaviour and co-evolutionary patterns (13). To evaluate whether interaction
rewiring [i.e., the extent to which shared species interact differently (25)] increases across
large-scale environmental gradients, we used data limited to pairs of networks sharing
plant and bird species (n = 1,314) (23). Of these, 93% had some degree of interaction
rewiring, while around 30% did not have any interaction in common. We found that
interaction rewiring increased significantly across human disturbance, spatial, and
elevational gradients (table S36), partially explaining why interactions tend to turn over
faster than species at large spatial scales (figs. S9D and S14C). Indeed, networks shared
considerably more species than interactions (Fig. 1 and fig. S18), reinforcing previous
findings that plant and bird species are flexible and tend to switch among their potential
partners, even when networks have similar species composition (28). Surprisingly, we
did not find an effect of ecoregion boundaries on interaction rewiring, probably because
of their collinearity with our other predictor variables (tables S36 and S37).

As with other studies [e.g., (10, 31)], our data were not evenly spread across the
globe, which likely affected the observed patterns. For instance, around 59% of our

networks were located within a single tropical biome (fig. S2). Because ecoregions tend

11
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to be more distinct in tropical than in temperate zones (32), the greater number of
networks from tropical ecosystems [which also possess most of the world’s ecoregions
(4)] may have contributed to the strong observed effect of ecoregion boundaries on
interaction dissimilarity. Nevertheless, both species richness and the proportion of
frugivorous birds reach their peaks in the Tropics (33), suggesting that the distribution of
networks in our dataset partially mirrors the global distribution of avian frugivory.
Importantly, the extent to which our results apply for other frugivorous taxa (such as
mammals and reptiles) and interaction types remains to be investigated. Previous
findings, however, indicate that less mobile taxa tend to show a stronger adherence to
ecological boundaries (32), a pattern that is likely to be reflected in species interactions.

This work provides evidence that ecological boundaries and human disturbance
gradients delineate the large-scale distribution of species and their interactions.
Nevertheless, network structure remained consistent across environmental gradients,
suggesting that the ecological processes underlying the architecture of frugivory networks
may be independent of species and interaction composition. By demonstrating the validity
of the ecoregion-based approach (4, 5) for species interactions, our results have important
implications for maintaining the world’s biodiversity of interactions and the myriad

ecological functions they provide.
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=== Same biome === Distinct biomes

B Cc D

Fig. 1. Plant-frugivore interactions shared among local networks, ecoregions and
biomes. (A) World map with points representing the 196 local avian frugivory networks
in our dataset. Colors of shaded areas represent the 67 ecoregions where networks were
located, with similar colors indicating ecoregions that belong to the same biome. Lines
represent the connections (shared interactions) plotted along the great circle distance
between networks, with most of these connections occurring within (blue lines) rather
than across (red lines) biomes. Stronger colour tones of lines indicate higher similarity of
interactions (1-pwn) between networks. Connections across continents were mostly
attributed to introduced species in one of these regions. Photos show some of the
frugivorous birds present in our dataset. Inset maps depict three regions with many
networks and connections (especially within biomes). (B) South America. (C) Europe.
(D) Aotearoa New Zealand. [Photo credits: R. Heleno (top left and bottom right); R. B.

Missano (bottom left); J. M. Costa (top right)].
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Fig. 2. The effects of ecological boundaries on interaction dissimilarity. Histograms
and inset quantile-quantile plots showing differences in the distributions of interaction
dissimilarity values between pairs of networks located within (‘same’) and across
(‘distinct’) ecoregions and biomes. The effects of ecoregion and biome boundaries were
significant, even after controlling for the other predictor variables in the model. We square
root transformed the x-axis scale to allow a better visualization of the distribution of data

points (pairs of networks) with interaction dissimilarity values < 1.
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Fig. 3. Venn diagrams showing the relative contributions (%) of our main predictor
variables to explaining the variation in interaction dissimilarity, calculated using
deviance partitioning. Overlapping areas represent deviance that is jointly explained by
one or more predictor variables. (A) The relative contributions of ecoregions, biomes,
spatial distance and human disturbance (i.e., footprint). In (B), we replace human
footprint distance with elevational difference; we show these two separate diagrams for
visualization purposes, but fig. S12 shows the effect of all our main predictor variables
together. Note that we only plot our predictor variables of interest (i.e., not those used for

controlling sampling effects). Terms that reduce explanatory power are not shown.
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Fig. 4. The effect of human disturbance gradients on interaction dissimilarity. The
relationship between human disturbance (i.e., footprint) distance and interaction
dissimilarity, with a fitted line obtained from a generalized additive model (GAM) with
human footprint distance as the only predictor variable (fig. S13 shows the partial effects
plot for the model including all predictors). Each data point (pair of networks) is coloured
according to the mean of the human footprint values from the two networks. The
histogram above the plot shows the distribution of data points across the human
disturbance gradient. We further divided our data into three equal sized groups (top three
histograms) based on their mean footprint values: ‘Less’ disturbed (low mean footprint),
‘Mix’ (medium mean footprint) and ‘More’ disturbed (high mean footprint). Dashed lines
mark the 90" percentile position in each histogram. Note that data points from less
disturbed site pairs are skewed towards low values of human footprint distance, whereas

pairs of more disturbed sites also had a larger average distance.
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Fig. 5. Partial effects plot of the relationship between spatial distance and interaction
dissimilarity. Here, we show the fit (solid line) of a generalized additive model (GAM)
with interaction dissimilarity as response variable and all our predictor variables included.
Thus, this plot shows the effect of spatial distance on interaction dissimilarity, while
controlling for the effect of the other predictors in the model. The gray area represents the
95% confidence interval of the fitted GAM. The histogram above the plot shows the
distribution of data points across the spatial gradient. Note the sharp increase in
interaction dissimilarity until a threshold distance of around 2,500 km (dotted red line),

beyond which few networks shared interactions (also see fig. S14).
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Table 1. Multiple drivers of plant-frugivore interaction dissimilarity. Here, we used
the binary version of ecoregion and biome distance matrices. P values were calculated
using a combination of generalized additive models and multiple regression on distance
matrices. EDF represents the effective degrees of freedom for each smooth term in the

model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks

=19,110.

Parametric coefficients Estimate t p

Intercept 0.997 2964.191 0.001
Ecoregion (same) -0.070 -36.401 0.001
Biome (same) -0.002 -3.323 0.044
Smooth Terms EDF F p

s (local footprint distance) 8.534 29.988 0.001
s (spatial distance) 8.785 65.378 0.001
s (elevational difference) 6.168 47.707 0.001
s (hours distance) 1.558 5.449 0.290
s (months distance) 5.482 6.902 0.075
s (years distance) 7.208 11.848 0.019
s (sampling intensity distance) 1.018 5.182 0.259
s (methods distance) 8.632 16.002 0.005
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