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Abstract

It has been argued that one dimension of the cycle of poverty is that poverty is a state of chronic stress and
that chronic stress impairs decision-making. These poor decisions, made under chronic stress, might include
carrying high-interest loans, failure to buy health insurance, gambling or drug use. As such, these decisions
can contribute to the cycle of poverty. More specifically, a few studies suggest that increased stress may lead
to more risk-aversion and steeper delay-discounting. While the deleterious effects of chronic stress on brain
function are well established, much less is known about how chronic stress influences financial decision making
specifically. Here, in a longitudinal design within six weeks period we aimed to incorporate biological
mechanisms to improve our understanding of how stress influences economic decisions. We used a combination
of decision-making tasks, questionnaires, saliva and hair samples within-subject (N=41). We assessed time and
risk preferences using hierarchical Bayesian techniques to both pool data and allow heterogeneity in decision
making and compared those to cortisol levels and self-reported stress. We found only weak links between
endogenous variation in stress and model-based estimates of risk and time preferences. In particular, we found
that fluctuations in the stress level measured via hair sample were not only positively correlated with time
preferences in the short delay task and risk preferences, but also the decision noise in the risk task. However,
relationships for the risk task disappeared when an outlier was removed. Also, we found model-free task
measures in the short delay task to be moderately related to both hair cortisol as well as the stressful life
events questionnaire measure. For example, we observed that endogenous stress fluctuations and the life
change units were negatively correlated with the proportion of later choices. Finally, we established that for
the reaction times the curvilinear relationship was preferred to the linear one for those with increase in
biological stress level compared to the baseline: when cortisol level increased slightly, participants decided
slower, but when stress increased to higher levels, they decided quicker.

Introduction 1

Stress is known to have negative influence on physical health (Harvey et al., 2003; Association and others, 2

2010) and psychological well-being (Faravelli and Pallanti, 1989; Hammen, 2005; Kendler et al., 1999; Kessing 3

et al., 2003). Unfavorable effects of stress on behavior can be seen through overeating or undereating, angry 4

outbursts, and social withdrawal. There are a few dominant theories of how stress impacts the quality of 5

decision making (Kandasamy et al., 2014; Haushofer and Fehr, 2014; Mullainathan and Shafir, 2013; Cohn 6

et al., 2015; Lerner et al., 2012; Cornelisse et al., 2013). Still, many studies find no significant effect of acute 7

stress on economic choices (Sokol-Hessner et al., 2016; Lempert et al., 2012). Kandasamy et al. (2014) show 8

that cortisol tablets administered for over 1 week significantly increased risk aversion, whereas Cornelisse et al. 9

(2013) find that continuous administration of hydrocortisone significantly increased the number of impatient 10

choices. Studies in the field also show that chronic stress correlates with poor economic decisions. For example, 11
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chronically-stressed individuals carry high-interest loans, have higher incidences of substance abuse, display a 12

lower willingness to take risks and forgo current income for larger future incomes (Haushofer and Fehr, 2014; 13

Mullainathan and Shafir, 2013). However, all of these phenomena are tied to socioeconomic status, making it 14

very challenging to infer causal mechanisms. Although risk aversion typically is seen as benign, recent research 15

documents that people living in poverty are more risk averse and more likely to discount future payoffs 16

(Haushofer and Fehr, 2014; Ceccato et al., 2015; Cueva et al., 2015). Inadequate access to resources may also 17

significantly lower cognitive function reducing our ability to solve problems and to regulate our cognitive 18

activities and, therefore, may lead to stress (Shah et al., 2012). The resulting behavior may contribute to the 19

“cycle of poverty”: where children born into poverty tend to stay in poverty (Haushofer and Fehr, 2014). More 20

so, stress may cause maladaptive and dangerous behaviors, making this study relevant to the prevention of 21

substance dependence and various impulsivity disorders (Linsky and Straus, 1986; Lempert et al., 2012, 2018b; 22

Lopez-Guzman et al., 2019). 23

In our recent studies, we found that students’ delay discounting for offers in seconds and days was strongly 24

correlated and stable (Lukinova et al., 2019; Lukinova and Erlich, 2021). This longitudinal within-subject study 25

builds on our previous results about stability of time preferences and explores a biological basis for changes in 26

time preferences over time that may be due to individual responses to the environment (e.g., stressful negative 27

income shocks or non-economic stressors, like divorce, health problems, etc.) using a general population sample 28

(N = 41). We define stress as the “organism’s reaction to environmental demands exceeding its regulatory 29

capacity” (Haushofer and Fehr, 2014). When a stressor is perceived, the hypothalamic-pituitary-adrenal-axis 30

(HPA-axis) is activated and it releases (among other hormones) cortisol (Schepers and Markus, 2015). Called 31

“the stress hormone”, cortisol influences, regulates or modulates many of the changes that occur in the body in 32

response to stress. In healthy individuals, cortisol levels peak in the early morning, and gradually decrease 33

thereafter. To help overcome this challenge, most studies obtain multiple human specimen samples from the 34

time of waking up until sleep or collect samples at the same time for several days. 35

Several common measures of chronic stress used in the recent literature include questionnaires (Holmes and 36

Rahe, 1967; Goodman et al., 1998), collecting heart rate and blood pressure (Gooding et al., 2015), hair 37

(Ceccato et al., 2015; Karlén et al., 2011), and saliva samples (Pruessner et al., 2003; Inder et al., 2012; 38

Kandasamy et al., 2014). Stress questionnaires can track self-reported ‘stress’ traits or measure perceived 39

stress. Saliva samples provide a measurement of the cortisol concentration at a single point in time, thus, 40

being more useful to test acute changes, rather than long-term systemic cortisol exposure (Hellhammer et al., 41

2009). Instead, compared to all other biological stress measures hair samples have certain advantages, 42

including its ability to be stored and transported at room temperature and to reflect cortisol levels over the 43

period of hair growth (one month cortisol level per 1 cm of hair) that can possibly correspond to chronic, 44

rather than acute stress (Karlén et al., 2011). Still, instead of tracking the peak of the diurnal cycle of cortisol 45

release using saliva measure (Inder et al., 2012; Dietrich et al., 2013; Meggs et al., 2016), it is also possible to 46

track the level of cortisol over several days at the same exact time (Pruessner et al., 2003; González-Cabrera 47

et al., 2014). Importantly, when saliva cortisol is aggregated across several time points (after the peak) or 48

several days within a month it is moderately correlated with hair cortisol (Weckesser et al., 2019). Therefore, 49

saliva cortisol measured from a sample taken at the same day of the week and time and compared between 50

these measures might also represent the average change in chronic cortisol level (Lenow et al., 2017). All 51

measures of stress are prone to be collected with some error. Having several measurements in this study and 52

being able to extract a few, allows for better control and validation of the measurement system. 53

Here, we addressed the limitations of the previous literature and used a battery of decision-making tests 54

and stress measures in order to find out whether chronic stress and its variation account for any variability in 55

choice. To our knowledge, this is the first attempt to bring together intertemporal and risk tasks, hair and 56

saliva bio stress markers and self-reported stress measures in a within-subject longitudinal study using a 57

sample of healthy working adults. First, we assessed stability of time preferences across time horizons and 58

their relation to risk preferences. Then, we explored similarity of distinct stress measures via correlation and 59

principal component analysis. Finally, using stress measures together with behavioral results (both model-free 60

and model-based) allowed us to improve the scholarship on how time and risk preferences interact with 61

hormonal and neuromodulatory systems. 62
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Results 63

Subjects were recruited from the general population of Shanghai, China (n=41). They participated in a 64

battery of decision-making tasks and questionnaires, total three sessions bi-weekly (Figure 1A). All three 65

sessions were scheduled at approximately the same time for each participant. We collected one saliva sample 66

per participant per session and one hair sample per participant two weeks after session 3. 67
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Figure 1. Behavioral Tasks. All stimuli were in Chinese. (A) Timeline of experimental sessions and tasks.
(B) Stimuli examples in the short delay (left choice: “in 4 seconds, 10 gold coins”, right choice: “now, 4 gold
coins”) and long delay tasks (left choice: “today, 4 gold coins”, right choice: “in 14 days, 5 gold coins”). (C)
Stimuli example in the week delay task (left choice: “in 7 weeks, 5 gold coins”, right choice: “today, 4 gold
coins”). The stimuli for the day delay task were the same as for the long delay task. (D) Stimuli example in
the risk task (left choice: “4 gold coins, 100%”, right choice: “18 gold coins, 75%”).

In each session, subjects completed a series of intertemporal choice tasks. During the first two sessions, 68

subjects participated in tasks with delays in days and seconds (200 trials per task, Figure 1B). During the 69

third session, subjects participated in tasks with delays in days and weeks (100 trials per task, Figure 1C). In 70

each trial of delay-discounting task, subjects made a decision between the sooner and the later options. Only 71

in the short delay verbal task (delays in seconds), subjects experienced the delay whenever delayed option was 72

chosen at the end of each trial. Also, rewards from each trial were accumulated. In contrast, for other 73

delay-discounting tasks (delays in days or in weeks), subjects saw their choice confirmation and then proceeded 74

to the next trial. At the end of the session, a single trial was selected randomly to determine the payment. To 75

summarize, across three experimental sessions subjects participated in three distinct tasks: short delay verbal 76

task (delays in seconds, SV), long delay verbal task (LV, which was exactly the same as day delay verbal task 77

DV = LV) with delays in days, and week delay verbal task (delays in weeks, WV). 78

During the third session, after the delay-discounting tasks subjects also participated in the risk task (200 79

trials divided into two equal parts with a break in between, Figure 1D). On each trial the choice was made 80
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Table 1. Correlations of subjects’ discount factors

Reduced Model Noise Per Unit Model Reward Scale Model N
between tasks
sessions 1 & 2 (SV vs. LV) r = 0.49 r = 0.50 r = 0.46 41

p = 0.0010 p = 0.0009 p = 0.0026
session 1 (SV1 vs. LV1) r = 0.52 r = 0.53 r = 0.50 41

p = 0.0005 p = 0.0004 p = 0.0008
session 2 (SV2 vs. LV2) r = 0.47 r = 0.50 r = 0.48 40

p = 0.0022 p = 0.0010 p = 0.0019
session 3 (WV vs. DV (LV3)) r = 0.97 r = 0.97 r = 0.96 41

p < 2.2e−16 p < 2.2e−16 p < 2.2e−16

between sessions
SV1 vs. SV2 r = 0.60 r = 0.60 r = 0.66 40

p = 4.684e−05 p = 4.882e−05 p = 3.96e−06

LV1 vs. LV2 r = 0.53 r = 0.56 r = 0.52 40
p = 0.0004 p = 0.0002 p = 0.0006

LV2 vs. LV3 r = 0.89 r = 0.88 r = 0.87 40
p = 2.374e−14 p = 1.526e−13 p = 2.974e−13

LV1 vs. LV3 r = 0.54 r = 0.54 r = 0.54 41
p = 0.0002 p = 0.0002 p = 0.0003

Note. Fits for the main ‘reward scale’ model were done with a hierarchical Bayesian model and had six
population level parameters (log discount factor, log(k); decision noise, log(τ); and reward scale, rews; for each
of the two delay-discounting tasks per session or per group of sessions) and three parameters per subject
(log(kSV ), log(kLV ), log(τ)). In session 2, one subject was not sensitive to delay and was excluded from that
session fit (reflected in N).

between a risky option (a probabilistic reward) and a safe option (surebet). The was no feedback (on whether 81

the lottery was won or lost) during the Risk Task: after the choice subjects saw a confirmation of their choice 82

and proceeded to the next trial. After the task finished, two random trials were selected (one from each part), 83

the lottery realised and subject was paid. 84

Stability of time preferences across time and sessions 85

Subjects’ time preferences were estimated by fitting their choices with a Bayesian hierarchical model (BHM) of 86

hyperbolic discounting with decision noise and reward scaling (Materials and Methods). The delay-discounting 87

fits were done jointly for the first two sessions (DS, delays in days and seconds; 16,182 choices), split into two 88

consecutive DS sessions, and separately for the last session (DW, delays in days and weeks; 8,095 choices) 89

across 41 subjects in three delay-discounting tasks: SV, LV (=DV), and WV. The subjects’ choices were well 90

fit by the model as assessed using Bayesian r2 and reported in each of the subject delay plots (Figure 2 panels 91

E, F for example subjects or see SI for all subjects plots). 92

We find that time preferences are stable across time-horizons: between days and seconds, r = 0.46 and 93

between days and weeks, r = 0.96 (Figure 2A-D). Therefore, we are able to replicate our previous results 94

(Lukinova et al., 2019; Lukinova and Erlich, 2021) in a nonstudent population. We also report the between 95

tasks and between sessions Pearson correlations of subjects’ discount factors (log(k)) in Table 1 for all models 96

under consideration. The correlation coefficient between SV and LV tasks decreases with the increase in 97

number of parameters in the model (nonsignificant difference according to ‘cocor’ tests). The between session 98

correlation decreases slightly when reward scaling is used only between first and second sessions of the LV task. 99

The main model was compared to two additional models that reflected the reduced number of parameters. 100

Based on 10-fold cross validation criteria all comparisons favored the ‘reward scale’ model (Table 2). We 101

further used the ‘reward scale’ model (the main model) results in our analysis. 102
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Figure 2. Comparison of discounting across tasks. (A)-(B) DS, sessions 1 & 2 with delays in days and seconds.
(C)-(D) DW, session 3 with delays in days and weeks. (A)-(C) Each circle is one subject (N = 41). Discount
factors are estimated in days but then converted to the units of the task. The error bars are the SD of the
estimated coefficients. The solid line represents the perpendicular (or total) least squares (TLS) regression
line (Huang et al., 2013). The dotted line is the unity line (y = x). (A) The logs of discount factors (log(k))
in short delay verbal task (SV, x-axis) plotted against the logs of discount factors in long delay task (LV,
y-axis). (B) Distribution of posterior parameter estimates of population-level log(k), decision noise, log(τ),
and reward scale parameter, rews, from the model fit for the SV and LV tasks. (C) The logs of discount
factors in week delay verbal task (WV, x-axis) plotted against the logs of discount factors in day delay verbal
task (DV, y-axis). (D) Distribution of posterior parameter estimates of population-level log(k), decision noise
log(τ) and reward scale parameter, rews, from the model fit for the WV and DV tasks. (E)-(F) An example
softmax-hyperbolic fit of one subject. In each panel, the marker and error bar indicate the mean and binomial
confidence intervals of the subject’s choices for that offer. The smooth ribbon indicated the BHM model fits
(at 50, 80, 99% credible intervals). At the top of the subject plot we indicate the mean estimates of log(k),
log(τ) and rews for each task for that subject. We also indicate the Bayesian r2 for each task. (E) An example
subject fit for DS, sessions 1 & 2 with delays in days and seconds. (F) An example subject fit for DW, session
3 with delays in days and weeks.
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Table 2. Kfold model comparison

∆ELPD ∆SE
sessions 1 & 2
reward scale 0 0
noise per unit -439.8 60.2
reduced -483.8 56.5
session 1
reward scale 0 0
noise per unit -145.5 35.4
reduced -176.5 35.4
session 2
reward scale 0 0
reduced -277.5 40.5
noise per unit -288.6 48.3
session 3
reward scale 0 0
noise per unit -18.5 21.4
reduced -27.5 18.6

Note. 10-fold cross validation was done using the kfold function in the brms R package. The loo_compare

function in the brms package arranges the models in order, from best to worst. The second column shows the
difference between the expected log pointwise predictive density (∆ELPD, Vehtari et al., 2017) of the best
model with the model on that row.

Evidence of context dependent temporal processing 103

The three experimental sessions under consideration were within-subject. This allowed us to compare the delay 104

discounting in days between DS and DW sessions (LV vs. LV3). The discount factors (log(k)) were highly 105

correlated (Pearson r = .74, p < .001), but at the same time significantly different according to a permutation 106

test (MDS = −3.06 & MDW = −4.53, p < 0.001). Or, if taken apart, in Table 1 the correlation between delay 107

discounting in the long delay task was significantly higher between sessions 2 and 3, than between sessions 1 108

and 2 (Pearson r = .87 compared to r = .52, respectively; significant difference according to ‘cocor’ tests, 109

Materials and Methods). This result can be attributed to the increase in stability of the time preferences over 110

the gained experience with the task, rather than any dependence on the temporal context. 111

In order to additionally check for context dependent temporal processing, we took a further look at early 112

trials. If choices are dependent on temporal context then it may take some number of trials in each task for a 113

participant to stabilize his behavior. Accordingly, we tested for the existence and stability of this adaptation 114

effect in early trials for both DW and DS sessions. As in Lukinova et al. (2019), we found that in DS there was 115

a small adaptation effect: subjects were more likely to choose the later option in early trials (first four) of SV 116

task in Figure 3A, than in the late trials. In DW, weeks were not interpreted differently than days (Figure 3B). 117

We also did fits jointly for all three delay sessions combined. The best model, according to the 10-fold cross 118

validation criteria was also the ‘reward scale’ model (SI, Table S2). According to the model point estimates, 119

the correlation size between log(k) in different units increased not significantly for SV vs. LV, but decreased 120

significantly for LV vs. WV, according to ‘cocor’ tests, compared to when estimated separately (Figures 3D-E). 121

The correlation between jointly and separately estimated log(k) in the long delay task was almost perfect and 122

higher between joint and DS sessions estimation (Pearson r = .96, p < 2.2e−16) than correlation between 123

log(kLV ) combined sessions and DW session (Pearson r = .87, p < .001). Using the joint fits the adaptation 124

effect from early trials (after the change of temporal context) to late trials remained: participants interpreted 125

seconds as smaller than days and weeks with this model fits (Figure 3C). 126
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Figure 3. Early trials adaptation effect. (A)-(C) The offers for each subject were converted into a subjective
utility, U, based on the subjects’ discount factors in each task. This allowed us to combine data across subjects
to plot psychometric curves of the probability of choosing the later option, P(later), for SV and LV averaged
across all subjects comparing late trials (Trial in task > 5) (first facet) to the first four trials (early trials,
second facet). (A) DS sessions fits; (B) DW session fits; (C) joint DS & DW session fits. (D)-(E) Sessions
1, 2 & 3 (DS & DW) joint fits with delays in days, seconds, and weeks. Each circle is one subject (N = 41).
Discount factors are estimated in days but then converted to the units of the task. The error bars are the
SD of the estimated coefficients. The solid line represents the perpendicular (or total) least squares (TLS)
regression line. The dotted line is the unity line (y = x). (D) The logs of discount factors (log(k)) in short
delay task (SV, x-axis) plotted against the logs of discount factors in long delay task (LV, y-axis). (E) The logs
of discount factors in week delay task (WV, x-axis) plotted against the logs of discount factors in day delay
(long delay) task (DV = LV, y-axis).
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Risk preferences are stable and consistent with the age group 127

The risk fits were done using the ‘rho-beta’ (standard power utility) and ‘kappa-beta’ (Balasubramani et al., 128

2014) Bayesian hierarchical models jointly for general and student (not considered in the paper) populations 129

(Materials and Methods, Figure 4D&E). The comparison between the models was based on leave-one-out 130

cross-validation criteria (using the loo function in the loo R package Vehtari et al., 2017) and favored the 131

rho-beta model (∆ELPD = -578.7, ∆SE = 64.3 for the kappa-beta model compared to the rho-beta model). 132

Given that ρ and κ (risk preference parameters) are strongly correlated (Pearson r = −.95, p << 0.001), we 133

used the standard power utility model (rho-beta) point estimates further in Results. The subjects’ choices 134

were fit well by the rho-beta model as accessed using Bayesian r2 and reported in each of the example subject 135

risk plots in Figure 4A-C (see SI for all subject plots). 136

Subjects were consistent with the general notion of human subjects being risk averse and with previously 137

reported risk preferences in the gains domain. Our subjects chose lottery 44.0% of the time and their average 138

risk preference, Mρ = 0.75 was slightly higher than expected (e.g., midlife adults choose lottery 42.9% of time; 139

Mρ≈ 0.6 for the same age group in Tymula et al., 2013). 140

Subjects’ risk behavior was stable. We found no evidence that there was a difference in proportion of 141

lottery choices between the two parts of the Risk task (Mr1 = 0.45 & Mr2 = 0.44, p = 0.455). Also we 142

accessed subjects’ rationality by presenting them with choices, in which one option was objectively better than 143

the other. In these trials, subjects chose between a certain gain (surebet) of 4 coins and a lottery that offered a 144

risky opportunity for gaining 4 or less coins. Since it is impossible to benefit by choosing the lottery, from 145

economic standpoint the rational subjects must always choose the surebet regardless of their risk preferences. 146

The frequency of first-order stochastic dominance violations (e.g., choosing any lottery with reward <= 4 147

coins) was negligible: 1.6% (which is much less than ∼5% reported for the same age group in Tymula et al., 148

2013) and not significantly different between two parts of the Risk task according to permutation test 149

(Mr1 = 0.014 & Mr2 = 0.016, p = 0.737). Overall, 37% of subjects violated dominance at least once. 150

Subjects’ risk preferences were not correlated with time preferences in seconds (log(kSV ) vs. ρ, Pearson 151

r = −.02, p = 0.912). Nevertheless, there was a small nonsignificant correlation of risk preferences with time 152

preferences in days (log(kLV ) vs. ρ, Pearson r = −.29, p = 0.069) and with difference between time 153

preferences across time horizons (log(kSV )− log(kLV ) vs. ρ, Pearson r = −.31, p = 0.052). Therefore, we 154

checked whether there is any difference between subjects’ risk preferences for whom log(kSV ) (after converting 155

units to seconds) was higher than log(kLV ) compared to the opposite. Although the shift was visible in Figure 156

4F, the difference between risk preferences divided in that way was not significant (permutation test, 157

Mlog(kSV )>log(kLV ) = 0.795 & Mlog(kSV )<log(kLV ) = 0.642, p = 0.219). 158

Stress measures convey distinct meanings and do not differ across genders 159

Apart from the experimental tasks, we also took several measures of stress from our participants. Importantly, 160

we did not stress the subjects. Instead we collected the base level of stress using i) three questionnaires before 161

the decision-making tasks during session 1 (PSS, BEPSI, LCU in Figure 5, Materials and Methods); ii) saliva 162

samples before the decision-making tasks for each session that happened at approximately the same time and 163

the same day of the week per participant (three samples per three sessions: log-transformed ls1-ls3 in Figure 164

5); iii) ‘scarcity’ questions at the start of decision-making task (ms and ts in Figure 5, Materials and Methods); 165

and iv) hair samples two weeks after session 3 (three 1cm-segments analyzed separately: log-transformed lh1, 166

lh2 and lh3 in Figure 5 from the stress level two months before collection to one-month-before stress and now, 167

respectively). Due to voluntary nature of sample collection, we only had 34 subjects with all stress data. 168

Stress questionnaires can track ‘stress’ traits, saliva samples may provide a measurement of the cortisol 169

concentration at a single point in time and cortisol of hair samples divided into 1cm length segments can 170

correspond to chronic stress (one month of stress per one 1cm segment following Gow et al., 2010). According 171

to the literature, we expected significant medium level correlation between hair and saliva measures around 172

r = 0.4 (Vanaelst et al., 2012; van Holland et al., 2012; Zhang et al., 2018; Weckesser et al., 2019) and low level 173

to no correlation between biological measures and questionnaires (Vanaelst et al., 2012; Stalder et al., 2017; 174

Prado-Gascó et al., 2019). Some scholars suggest log-transformation of cortisol values to better approximate a 175

Gaussian distribution of cortisol values across subjects (Lenow et al., 2017; Lempert et al., 2018a). Indeed, we 176
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Figure 4. (A)-(C) An example rho-beta risk (power utility) fit of several subjects. In each panel, the marker
and error bar indicate the mean and binomial confidence intervals of the subject’s choices for that offer. The
smooth ribbon indicated the BHM rho-beta model fits (at 50, 80, 99% credible intervals). At the top of the
subject plot we indicate the mean estimates of risk preference parameter, ρ, and decision noise, 1/β. We
also indicate the Bayesian r2. (A) A highly risk-averse subject; (B) a slightly risk-averse subject; and (C) a
risk-seeking subject. (D) Distribution of posterior parameter estimates of the population-level risk preference
parameter, ρ and decision noise, 1/β, from the rho-beta risk model fit for the risk task. (E) Distribution of
posterior parameter estimates of the population-level risk preference parameter, κ and decision noise, 1/β, from
the kappa-beta risk model fit for the risk task. (F) Density estimation of risk parameter, ρ, split by positive or
negative difference between discount factors in short and long delay task.
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decided it is reasonable to modify all of our cortisol values based on the distributions before and after 177

log-transformation (SI, Figure S5). From the correlation analysis where we combined all stress measures, 178

cortisol levels were not associated with questionnaire scores, but questionnaire scores were associated with the 179

‘scarcity’ average self-reported ratings. Overall, we found more significant correlations within the stress 180

measure groups (which may validate stress measures per se), compared to across stress measure groups (Figure 181

5A). Still, saliva cortisol averaged across three sessions (ls123) and from the third session (in Figure 5A) was 182

positively correlated with two hair cortisol samples as literature suggests (ls123 vs. lh2: Pearson r = 0.38, 183

p = 0.024; ls123 vs. lh3: Pearson r = 0.35, p = 0.039). With the multiple comparison correction (10 184

comparisons per stress variable) only positive correlations between lh2 and lh3 (Pearson r = 0.46, p = 0.005); 185

PSS and BEPSI questionnaires (Pearson r = 0.78, p < 0.001); and BEPSI and ms (Pearson r = 0.52, 186

p < 0.001) remained significant. 187

We also ran two principal component analyses (PCA). First, we used PCA to visualize the relationships 188

across the stress groups. To this end, we used the eleven stress-vectors (three saliva, three hair, three 189

questionnaire data points and two ‘scarcity’ ratings averages) for each subject in Figure 5B-C. Above 65% of 190

variance was explained by the first four principle components and the first 4 components had an eigenvalue > 1 191

(Figure 5C). The second principle component along the eleven stress-vectors distinguished between human bio 192

samples (hair and saliva) and questionnaires, whereas the third principle component distinguished between 193

hair and saliva (Figure 5B). According to the angles (calculated from the positive x-axis following the four 194

quadrants of 2D plane) in Table 3 we got some evidence that clusters of stress groups were different. However, 195

we could not say the same for the gender groups: no clustering was visible. Literature suggests that because 196

gender is associated with neuroendocrinological substrates (e.g., cortisol, Takahashi, 2004; Barel et al., 2017), 197

the relationships between stress hormones and decision making should control for gender. Moreover, there are 198

studies that only include males due to reported menstrual and contraceptive effects on cortisol levels (Lempert 199

et al., 2012; Stalder et al., 2017). First, we visually assessed the differences between samples (by gender), given 200

PC1-PC2 and PC2-PC3 planes and found that the gender ellipses as well as the data are highly overlapping. 201

Second, we used permutation tests to compare stress measures between gender categories. We did not find 202

effects of gender for most of the stress variables (p > .1). The stress measures were significantly different 203

between genders only for saliva cortisol for session 1 (s1, Mf = 0.89 & Mm = 1.51, p = 0.013). 204

Second, PCA was used to reduce the dimensionality of the stress data and its changes (including 205

fluctuations) while retaining most of the variation in the data. To this end, we used the 23 stress-vectors (nine 206

saliva: three cortisol levels log-transformed, three deltas, and three fluctuations; nine hair; three questionnaire 207

data points; and two ‘scarcity’ ratings averages) for each subject. The first eight components had an 208

eigenvalue > 1 and explained more than 82% of variance. However, even the first four components explained 209

more than 56% of variance. We used the first four principal components from this analysis for results further. 210

Table 3. PCA angles

PC1-PC2 plane PC2-PC3 plane
ls1 207◦ 148◦

ls2 239◦ 141◦

ls3 244◦ 160◦

lh1 180◦ 270◦

lh2 223◦ 209◦

lh3 247◦ 188◦

pss 143◦ 13◦

bepsi 164◦ 27◦

lcu 137◦ 293◦

ms 161◦ 47◦

ts 127◦ 24◦
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Figure 5. N = 34 (A) Correlation plot across all stress measures. The color intensity (vertical colorbar)
signifies the correlation r coefficient. The insignificant correlations, e.g. where p >= 0.05 are indicated with an
‘x’. The black borders are meant to highlight different types of stress measures and correlations within each
stress measure. (B) Two 2D planes with axes being three first principle components (PCs) (Top: PC1-PC2
plane; Bottom: PC2-PC3 plane). These are PCA biplots that combine standardized data and the stress
variables loadings (dark red arrows, with directions of corresponding eigenvectors). The data color is based on
the gender group. The ellipses surrounding the data points (with color corresponding to the gender group) are
drawn around clusters identified after automatic classification, based on PCA scores. (C) Top: Screeplot of
the Eigenvalues of all PCs. The eigenvalue (y-axis) of each PC (x-axis - PC number). The cutoff is drawn at
eigenvalue that equals 1. Bottom: Cumulative variance plot. The total variance explained (y-axis) depending
on how many PCs to account for. The cutoff is drawn as dashed vertical line at 4 PCs.
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Only hair cortisol is associated with model-based measures 211

We did not find significant correlations between model-based measures of economic preferences and saliva 212

cortisol, questionnaire scores, or scarcity ratings. The only significant associations we found were between short 213

delay discount factor and change (including absolute change) in cortisol level from hair sample (e.g., log(kSV ) 214

vs. ∆lh32 Pearson r = −0.41, p = 0.012); between decision noise in the risk task and change (including 215

absolute change) in cortisol level from hair sample (e.g., 1/β vs. ∆lh32 Pearson r = −0.50, p = 0.002); and 216

between risk aversion parameter and fluctuation (i.e. absolute change) in cortisol level from hair sample (ρ vs. 217

flh32 Pearson r = 0.48, p = 0.003). Also, log(kSV ) was negatively correlated with PC2 (one of the PCs 218

following dimensionality reduction from 23 to 8 across all stress measures and their changes). All significant 219

correlations are highlighted in bold in Table 4. Still, most of the significant correlations (especially in the risk 220

task) were driven by a single outlier in the risk task, both risk-seeking and decision noise for whom were 221

extreme (SI, Figure S7). The only significant relationship that remained was a positive correlation between 222

stress fluctuations using hair sample and delay discounting in the short delay task (Pearson r = 0.40,p = 0.020. 223

Next, we looked at associations between the change in discount factors for short and long delay tasks across 224

sessions and stress measures. We found significant positive correlations between the change in the short delay 225

discount factor (log(kSV 2)− log(kSV 1)) and saliva cortisol for the second session (ls2), hair cortisol change 226

(∆lh3), and time scarcity (ts). Also, the change in the long delay discount factor (log(kLV 2)− log(kLV 1)) was 227

positively correlated with time scarcity. Nevertheless, these correlations were moderate (Pearson r ∼ 0.34, all 228

p > 0.01) and would no longer be significant if we used the multiple comparison correction. 229

The model-free short delay task measures are moderately related to stress 230

measures 231

Previous studies have shown that the magnitude of the physiological response to stress can predict behavior in 232

PFC-dependent tasks, importantly, with both linear (Goldfarb et al., 2017; Maier et al., 2015) and curvilinear 233

(Luksys and Sandi, 2011; Lempert et al., 2018a) relationships being possible. To that end, we explored several 234

other per task / session measures, including subjects’ profit, total waiting time (wait), proportion of later 235

choices (PL, or lottery choices for risk task) and reaction time (RT) in relation to stress levels and their change. 236

It is important to note that the total waiting time and the profit variables were experienced only in the short 237

verbal task (SV) and in the other tasks only represent potential outcomes (hypothetical total) compared to 238

only one random outcome selected for payout. 239

Across these behavioral measures (except the RTs) there were strong positive significant relationships (as 240

measured by correlation analysis, Figure 6). This was expected from the delay task design, since the more 241

often a subject chose a later option, the more she would earn and the more she would have to wait (if all trials 242

are counted towards the total, e.g., between profitS and waitS, Pearson r = 0.99, p < 2.2e−16). Interestingly, 243

RTs in SV were positively correlated with other model-free measures: the more subject spent time on decision 244

the more he earned or chose later option in the session 1 (e.g., RT S1 vs. profitS1, Pearson r = 0.38, 245

p = 0.015). In other tasks the relationship between RT and other behavioral variables was not observed. 246

Between these model-free task measures and stress variables significant correlations were observed only for 247

the short delay task compared to other tasks, with the only exception of proportion of lottery choices in the 248

risk task being positively correlated with the fluctuation of cortisol across hair samples (PL R vs. lfh32: 249

Pearson r = 0.36, p = 0.032). For example, the proportion of later choices in SV (PL S) was negatively 250

associated with LCU (Pearson r = −0.34, p = 0.038), but positively associated with changes in hair cortisol 251

level (∆lh32, Pearson r = 0.38, p = 0.023) and the second principle component (PC2, Pearson r = 0.42, 252

p = 0.015). In addition, we tested the changes of model-free task measures (i.e. PL) over time against stress 253

deltas. We found just a few significant relationships: changes in hair cortisol were strongly and negatively 254

associated with changes in choosing later option in SV (∆PL S2 = PL S2 - PL S1 vs. ∆lh2 Pearson r = −0.34, 255

p = 0.046; ∆PL S2 vs. ∆lh3 Pearson r = −0.49, p = 0.003). Nevertheless, the significance of all of these 256

relationships would not hold if one used a multiple comparison correction (e.g., Bonferroni p = 0.05/27 = 0.002 257

for 27 stress variables being compared at each time). 258

We did not stress our subjects and only looked at changes in cortisol levels compared to baseline session or 259

month. Still, following Lempert et al. (2018a) we checked whether we can find any curvilinear relationships for 260
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Table 4. Correlations of subjects’ decision-making parameters with stress variables
log(kSV ) log(kLV ) log(τSV ) ρ 1/β

Saliva cortisol: N = 41
log(s1) r = −0.16 r = 0.02 r = −0.06 r = 0.15 r = 0.02

p = 0.310 p = 0.905 p = 0.721 p = 0.347 p = 0.902
log(s2) r = −0.10 r = −0.03 r = −0.05 r = 0.23 r = 0.20

p = 0.527 p = 0.869 p = 0.733 p = 0.157 p = 0.203
log(s3) r = −0.07 r = 0.15 r = 0.05 r = 0.05 r = −0.15

p = 0.671 p = 0.364 p = 0.776 p = 0.747 p = 0.360
∆ls2 = log(s2)−log(s1) r = 0.07 r = −0.03 r = 0.01 r = 0.02 r = 0.11

p = 0.658 p = 0.840 p = 0.934 p = 0.925 p = 0.494
∆ls3 = log(s3)−log(s1) r = 0.09 r = 0.10 r = 0.09 r = −0.09 r = −0.13

p = 0.564 p = 0.552 p = 0.588 p = 0.556 p = 0.412
∆ls32 = log(s3)−log(s2) r = 0.02 r = 0.14 r = 0.08 r = −0.12 r = −0.27

p = 0.918 p = 0.381 p = 0.627 p = 0.457 p = 0.090
fls2 = abs(log(s2)−log(s1)) r = −0.17 r = −0.04 r = 0.11 r = 0.03 r = 0.05

p = 0.293 p = 0.824 p = 0.504 p = 0.875 p = 0.780
fls3 = abs(log(s3)−log(s1)) r = 0.02 r = 0.02 r = 0.13 r = 0.12 r = 0.09

p = 0.899 p = 0.900 p = 0.411 p = 0.467 p = 0.578
fls32 = abs(log(s3)−log(s2)) r = −0.11 r = −0.18 r = 0.23 r = −0.06 r = 0.07

p = 0.480 p = 0.260 p = 0.156 p = 0.701 p = 0.650
Hair cortisol: N = 36
log(h1) r = 0.23 r = −0.02 r = 0.16 r = 0.28 r = 0.27

p = 0.183 p = 0.890 p = 0.366 p = 0.097 p = 0.105
log(h2) r = 0.25 r = 0.20 r = 0.05 r = 0.28 r = 0.34

p = 0.136 p = 0.239 p = 0.769 p = 0.102 p = 0.043
log(h3) r = −0.17 r = 0.13 r = −0.27 r = 0.02 r = −0.17

p = 0.311 p = 0.458 p = 0.117 p = 0.909 p = 0.323
∆lh2 = log(h2)−log(h1) r = −0.01 r = 0.17 r = −0.10 r = −0.04 r = 0.01

p = 0.941 p = 0.327 p = 0.570 p = 0.807 p = 0.958
∆lh3 = log(h3)−log(h1) r = −0.29 r = 0.10 r = −0.29 r = −0.21 r = −0.32

p = 0.088 p = 0.570 p = 0.088 p = 0.213 p = 0.054
∆lh32 = log(h3)−log(h2) r =-0.41 r = −0.08 r = −0.30 r = −0.26 r = -0.50

p = 0.012 p = 0.624 p = 0.080 p = 0.127 p = 0.002
flh2 = abs(log(h2)−log(h1)) r = 0.23 r = −0.01 r = −0.08 r = −0.23 r = −0.09

p = 0.177 p = 0.952 p = 0.625 p = 0.174 p = 0.614
flh3 = abs(log(h3)−log(h1)) r = 0.50 r = 0.03 r = 0.31 r = 0.03 r = 0.24

p = 0.002 p = 0.848 p = 0.065 p = 0.847 p = 0.157
flh32 = abs(log(h3)−log(h2)) r = 0.23 r = −0.23 r = 0.20 r = 0.48 r = 0.58

p = 0.170 p = 0.180 p = 0.247 p = 0.003 p = 0.0002
Stress questionnaires: N = 38
PSS r = 0.15 r = −0.13 r = −0.05 r = 0.05 r = 0.01

p = 0.384 p = 0.430 p = 0.760 p = 0.762 p = 0.942
BEPSI r = 0.20 r = −0.03 r = −0.10 r = 0.11 r = 0.02

p = 0.231 p = 0.856 p = 0.534 p = 0.511 p = 0.917
LCU r = 0.31 r = 0.02 r = −0.07 r = 0.04 r = 0.04

p = 0.056 p = 0.893 p = 0.683 p = 0.820 p = 0.832
money scarcity (N = 40) r = −0.08 r = −0.19 r = −0.03 r = 0.26 r = 0.12

p = 0.603 p = 0.233 p = 0.870 p = 0.102 p = 0.452
time scarcity (N = 40) r = 0.05 r = 0.01 r = −0.22 r = 0.21 r = 0.15

p = 0.746 p = 0.971 p = 0.182 p = 0.191 p = 0.355
PCs: N = 34
PC1 r = 0.21 r = −0.15 r = 0.20 r = 0.04 r = 0.26

p = 0.232 p = 0.396 p = 0.268 p = 0.843 p = 0.144
PC2 r = -0.43 r = −0.04 r = −0.10 r = −0.34 r = −0.33

p = 0.011 p = 0.833 p = 0.577 p = 0.051 p = 0.056
PC3 r = −0.22 r = −0.15 r = −0.33 r = −0.05 r = −0.10

p = 0.206 p = 0.405 p = 0.060 p = 0.784 p = 0.567
PC4 r = 0.06 r = −0.33 r = −0.06 r = −0.02 r = −0.02

p = 0.724 p = 0.055 p = 0.719 p = 0.904 p = 0.922
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Figure 6. Correlation analysis across model-free measures in short verbal task and stress measures. The color
intensity (horizontal colorbar) signifies the magnitude of the correlation. If the cell does not have a cross on it,
this correlation is significant at .05 level.

those with increase in biological stress level compared to the baseline. There were only 13 subjects with such 261

positive changes from lh1 to lh2 (∆lh2), 16 subjects from lh1 to lh3 (∆lh3) and 17 subjects from lh2 to lh3 262

(∆lh32). Out of many possible comparisons we found just a few inverted-U-shaped relationships between hair 263

stress deltas and model-free parameters. Out of six potential relationships selected in the exploratory analysis 264

(SI, Figure S6), only one held after likelihood ratio tests (change in likelihood was significant using a χ2
265

statistic). The complex model (polynomial of degree 2) was preferred to the nested one (behavior ∼ ∆stress) 266

and, therefore the curvilinear was preferred to the linear relationship for: 267

RT S ∼ ∆lh2 + (∆lh2)2, P (> χ2) = 0.054, β(∆lh2)2) = −0.62, p = 0.100. 268

Discussion 269

We confirmed that in the general population discount factors across time-horizons were highly related as in the 270

students population in our studies before (Lukinova et al., 2019; Lukinova and Erlich, 2021). In this paper, 271

however, we improved our modeling. The best hierarchical Bayesian model was the one that allowed re-scaling 272

reward and at the same controlling for the units of the task in both discount factor and decision noise. Also, 273

this time (compared to Lukinova et al., 2019) all tasks were done within subject, so we were able to compare 274

behaviors in the long delay task (delays in days) when the other task was in seconds (sessions 1 & 2) and in 275

weeks (session 3). We observed a temporal effect that makes the delays in days in the long delay task paired 276

with the delay task in seconds seem longer than the delays in weeks in Figure 3C. 277

Many scholars point to benefits of accounting for risk preferences in the delay discounting (Lempert et al., 278

2018c). Here, risk task was also included in the battery of decision-making tasks. We found risk preferences to 279

be more correlated with the time preferences from the long delay task, but not short delay task. Once we used 280

power utility model inside the delay discounting model in order to de-correlate the risk preferences and time 281

preferences in days (Lopez-Guzman et al., 2019), the opposite relationship appeared: risk parameter ρ was 282

correlated with the discount factor in the short delay task and not correlated with that in the long delay task 283

(SI). Therefore, we suggest that a more complex model of joint estimation is required, since risk preferences 284

should be accounted for in ‘postponing’ but not in ‘waiting’ tasks. We found some evidence towards the 285

‘waiting/postponing story’: those who had smaller discount factor in the long delay task than predicted 286

through the discount factor in the short delay task were more risk-seeking (Figure 4F). This was indeed, 287

embedded in our design, since the short delay task did not include risk: participant received the sum of all 288
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coins she earned from all trials and had already waited for all delays in seconds to get those coins. On the 289

contrary, in the long delay task, one random choice was chosen and by choosing the later option participant 290

would risk to be paid at a much later date: from several days to several months. 291

In our study, biological stress measures were moderately correlated between each other as seen in the 292

literature before, further validating the stress measurement system (Vanaelst et al., 2012; van Holland et al., 293

2012; Zhang et al., 2018; Weckesser et al., 2019). However, overall we found more significant relationships 294

within stress groups, rather than across them. Also, following our principle component analysis, distinct stress 295

measures were well clustered on the 2D planes of the first three principle components. This gives more 296

evidence that self-reported stress, saliva cortisol and hair cortisol might affect decision making and operate via 297

distinct channels. 298

We found only nominal relationships of model-based parameters with stress. In particular, we found that 299

stress measured via a hair sample was more related to the estimated parameters, especially for the short delay 300

task: e.g., the higher was the fluctuation, i.e. the absolute change, in the stress level the steeper was the 301

discounting in the short delay task, whereas significant relationships between stress and the risk task estimates 302

were driven by an outlier. 303

Previous literature accepts both linear and curvilinear relationships between changes in cortisol as a 304

physiological response to stress and behavior (Goldfarb et al., 2017; Maier et al., 2015). Model-free task 305

measures constructed for testing such relationships, indeed, showed significant associations with all stress 306

variables, including self-reported stress via questionnaires. Importantly, most of the significant results from 307

this analysis were between model-free measures in the short delay task and stress variables. This is the only 308

task where all trials contributed to the total profit (and waiting time, for delay tasks). In other words, baseline 309

stress level and its fluctuations were more prone to influence behavior in ‘real’ experiential task rather than in 310

a task with potential outcomes determined by a random draw in the end of the experimental session. We 311

observed that the smaller were changes in hair cortisol level between the months of the study and higher were 312

the life change units (from the questionnaire) the less subjects were choosing the later option. Among 313

curvilinear relationships we did not confirm previous results about subjects’ earnings (Lempert et al., 2018a), 314

but found some evidence for the reaction times: when chronic stress level increased slightly, it took longer for 315

participants to decide in the short delay task, but when the cortisol measure from hair samples increased to 316

higher levels, they decided quicker whether to pick a sooner or later option. Nevertheless, tests for curvilinear 317

relationships included only a small portion of participants, those for whom there was an increase in biological 318

stress level compared to the baseline. 319

The longitudinal within-subject design allowed us to compare changes in biological stress markers over time 320

to changes in behavior. We did not find evidence that changes in model-based parameters for the 321

intertemporal choice task were associated with the changes and fluctuations of stress from the baseline. Nor 322

did we find any stress-recency effects using model-free task measures by creating the model-free task deltas for 323

the short delay task. 324

In our study we did not stress our participants. Instead, we were looking at cortisol levels, its changes and 325

fluctuations from the baseline that may be due to individual responses to the environment. This is rather new. 326

Previously in control groups random fluctuations of cortisol did not yield the same behavioral patterns 327

(Lempert et al., 2018a). However, most of the previous studies were using saliva measure (Takahashi, 2004; 328

Linz et al., 2018). Most of our significant relationships between stress and decision making included hair 329

cortisol measure. We conclude that for subtle changes in behavior due to random cortisol fluctuations hair 330

stress measure might be more reliable. 331

Hormones are tricky to measure and administer. They change across the day and across the month. For 332

example, stressors that are uncontrollable tend to produce a high overall level of daily cortisol release, whereas 333

controllable stressors - higher-than-normal morning cortisol (Miller et al., 2007). As a result, many studies 334

involving hormones and decision-making produce conflicting results or fail to be replicated and, therefore, are 335

not able to advance the current state of the discipline. Our results did not support the hypotheses that 336

increased stress leads to steeper discounting and increased risk aversion. Instead, we found that endogenous 337

subclinical variation in cortisol only weakly correlates with economic preferences. Moreover, the strongest link 338

we found was that fluctuations in cortisol levels correlated with steeper discounting in the short delay task. 339

Additional multi-task and multi-stress studies with higher N are required to establish effects discovered in 340
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this paper. An accurate understanding of the biological processes that lead people to be more risk averse and 341

more likely to discount future payoffs is still tenuous at best. Unraveling mechanisms of how chronic stress 342

spreads unfavorable effects to behavior is of critical importance to policymakers and of strong interest to the 343

general public. 344

Materials and Methods 345

Participants 346

In this study, we recruited 44 participants total (26 female, 17 male, 1 other) including 15 participants from 347

NYU Shanghai staff and 29 participants from Chinese working population around New York University (NYU) 348

Shanghai and East China Normal University (ECNU) campuses. We pre-screened subjects before recruitment 349

and excluded smokers, drinkers, and subjects taking medicine, or suffering from acute or chronic hormonal 350

dysregulations. Three participants withdrew after the first session and the rest (41: 23 female, 17 male, 1 351

other, Mage = 30) completed the whole experiment. All of our participants shared a similar socioeconomic 352

status, but had diverse consumption level (SI, Figure S1A). 31 participants (out of 41) had no siblings, 22 (out 353

of 41) were not married and 32 (out of 41) did not have any chronic illnesses. The data collection for the study 354

was done in spring and summer of 2018. The study was approved by the IRB of NYU Shanghai. All subjects 355

gave informed consent before participation in the study. 356

Experimental Tasks 357

There were three behavioral task sessions in total. They were scheduled approximately every two weeks and 358

took place in the NYU Shanghai Behavioral and Experimental Economics Laboratory, or the experimental 359

room in the Geo Building at ECNU. Each session consisted of a two-alternative choice task. In the first two 360

sessions, participants participated only in the intertemporal choice task and made their choices between a later 361

option (delay in seconds and days) and an immediate option (now and today). The last session involved the 362

intertermporal choice task comprising choices between a later option (delay in days and weeks) and an 363

immediate option (today) and the risk task, where choice was made between a risky option (a probabilistic 364

reward) and a safe option (surebet). Participants received a 30 CNY ($4.3 USD) per session participation fee as 365

well as up to an additional 70 CNY ($9.9 USD) per session based on their individual performance in the tasks. 366

Stress 367

We used three questionnaires to measure perceived stress. The 10-item version of the Perceived Stress Scale 368

(PSS, Cohen et al., 1983) was used to assess an individual’s subjective appraisal of particular life 369

events/situations as being unpredictable, uncontrollable, and/or overloaded. On a 5-point Likert scale ranging 370

from 0 ‘never’ to 4 ‘very often’, participants rated how often in the previous month they felt or thought as 371

described in 10 examples. The Brief Encounter Psychosocial Instrument (BEPSI, Frank and Zyzanski, 1988) 372

usually consists of 6 questions. We omitted the first open-ended question and used the rest: 5 closed-ended 373

questions. Subjects were asked to respond yes or no to each item and if yes, to rate the impact of these 374

stressors on a scale of 1 to 10. The Social Readjustment Rating Scale (SRRS, Holmes and Rahe, 1967) was 375

used for identifying major stressful life events. Each one of the 43 stressful life events was awarded a Life 376

Change Unit (LCU) depending on how traumatic it was felt to be by a large sample of participants. The total 377

then was calculated by adding all LCUs for the events a subject experienced. Thus, in all questionnaires higher 378

scores were associated with higher levels of perceived stress. All questionnaires were administered in Chinese. 379

We also asked three ‘scarcity’ questions in Chinese in the beginning of each session since lacking money or 380

time resources could also lead to stress (Mullainathan and Shafir, 2013): 381

• To what extent did you feel that you were out of money in the last two weeks? 382

• To what extent did you feel that you were out of time in the last two weeks? 383

• To what extent are you in a hurry today? 384
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Subjects answered the above questions using a 7-point rating scale (from lowest = 1 to highest = 7). The 385

answers for the same question across sessions as well as between the last two questions were highly correlated 386

(all p < 0.005), so we decided to keep two averages across three sessions for the money and time scarcity (ms 387

and ts, respectively). 388

In order to obtain another measure of participant’s stress level, in the beginning of each session, we 389

collected a saliva sample from each participant. For each participant, the collection time remained the same 390

during three sessions (as in Pruessner et al., 2003; González-Cabrera et al., 2014). Therefore, we could 391

compare saliva cortisol levels to the baseline (session 1) and attribute these ∆s to the changes from the base 392

cortisol level. Saliva samples were collected using the Salivette systems. The Salivette systems (Sarstedt, 393

Shanghai) came with synthetic swabs. Subjects were asked to refrain from eating, drinking and/or brushing 394

teeth for at least 1 hour before sampling and to rinse their mouth 10 minutes before arriving to the 395

experimental facility. Before each experimental session, experimenter asked a subject to place the swab in the 396

mouth, chew it for 1 min and then transfer it into the tube. All subjects had three saliva samples of necessary 397

quality. The samples were stored on ice till the end of the experimental day, then, were centrifuged and stored 398

at -20 °C until analysis at NYU Shanghai Molecular Biology Lab. On the day of analysis, we measured 399

salivary cortisol by enzyme-linked immunosorbent assay (ELISA, IBL International, Germany). Saliva samples 400

were assayed in duplicate (40 * 2 samples per ELISA kit) and measured according to the instructions of the 401

kits. The controls were within expected bounds. 402

Two weeks after all three experimental sessions were completed by subjects, we also collected their hair 403

samples to measure the levels of chronic stress. 36 subjects returned to provide hair samples. Hair samples 404

were collected by cutting two strands of hair (with the total thickness of a toothpick) from posterior vertex 405

area. All samples were stored in aluminium foil at room temperature. LC-MS/MS atmospheric pressure 406

chemical ionization (ACPI, MRM mode) was used to analyse cortisol in hair samples. The analysis was 407

performed by Dr. Huihua Deng’s lab at Southeast University using their standard approach (Chen et al., 408

2013). Hair strands longer than 3 cm were cut as close to the scalp as possible and segmented into three 409

1cm-long parts. All segmented samples were labelled as SXxx-01- SXxx-03 from bottom (closest to the scalp) 410

to top. Totally 36*3 = 108 samples were analysed. Recovery rate was within 90-105%, and intra-day and 411

inter-day coefficients of variation were below 10%, which satisfied measurement requirement. 412

Analysis 413

The discount factors were estimated using a softmax-hyperbolic fit (i) in a similar way as in Lukinova et al. 414

(2019), i.e. a four population level and three subject level parameters model - reduced model; (ii) with a noise 415

per unit model; and (iii) with a reward scale model, where an additional parameter ‘rews’ scaled the delayed 416

reward per unit. All mixed-effects models were done after conversion of all delays to days (resulted in the same 417

fits as fits in the units of the task) with the ‘brms’ package in R (Bürkner, 2017) that allows to do BHM of 418

nonlinear multilevel models in Stan (Carpenter et al., 2016) with the standard R formula syntax. 419

The reduced model (M4p,3s) had 4 population level parameters (log(k), and decision-noise, log(τ) for each 420

of the two intertemporal choice tasks) and 3 parameters per subject: log(kSV ), log(kLV ) and log(τ). 421

n_chose_later | trials(n_trials) ∼ 422

(later_reward/(1 + exp(logk)*delay)-sooner_reward)/exp(logtau), 423

logtau ∼ unit + (1 | subjid), 424

logk ∼ unit + (unit | subjid) 425

The noise per unit model (M4p,4s) had 4 population level parameters (log(k), and decision-noise, log(τ) for 426

each of the two intertemporal choice tasks) and 4 parameters per subject: log(kSV ), log(kLV ), log(τSV ) and 427

log(τLV ). 428

n_chose_later | trials(n_trials) ∼ 429

(later_reward/(1 + exp(logk)*delay)-sooner_reward)/exp(logtau), 430

logtau ∼ unit + (unit | subjid), 431

logk ∼ unit + (unit | subjid) 432

The reward scale model (M6p,3s) had 6 population level parameters (log(k), reward scale parameter, rews, 433

and decision-noise, log(τ) for each of the two intertemporal choice tasks) and 3 parameters per subject: 434

log(kSV ), log(kLV ) and log(τ). 435
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n_chose_later | trials(n_trials) ∼ (exp(rews)*later_reward / (1 + exp(logk) * delay) - sooner 436

_reward) / exp(logtau), 437

logtau ∼ unit + (1| subjid), 438

logk ∼ unit + (unit|subjid), 439

rews ∼ unit 440

where later_reward is the later reward, sooner_reward is the sooner reward; logk is the natural logarithm of the 441

discounting parameter k and logtau (log(τ)) is the natural logarithm of the decision noise; in the binomial 442

specification (the bernoulli specification resulted in the same fits, SI) the data was grouped and summarized 443

by distinct trial types, where n_chose_later is the count of choices when the later reward is selected and 444

n_trials is the number of trials for a particular trial type. All model syntaxes above were valid for fitting two 445

sessions or one session that include two delay-discounting tasks (three session fits are detailed in SI), where SV 446

and LV will be changed to DV(LV) and WV for session 3. 447

The risk preferences were estimated using a rho-beta (power utility) and kappa-beta risk models. The 448

models (M2p,2s) had 2 population level parameters: ρ (or κ), risk preference parameter, and decision-noise, 449

1/β and the same 2 parameters per subject. All mixed-effects models are done with the ‘brms’ package in R 450

with the standard R formula syntax: 451

n_chose_later | trials(n_trials) ∼ beta*(probability*(lottery_mag)^r - (sb_mag)^r), 452

beta ∼ (1| subjid), 453

r ∼ (1| subjid) 454

n_chose_lot | trials(n_trials) ∼ beta*(probability*(lottery_mag)-kappa*sqrt(lott_var) - sb_ 455

mag), 456

beta ∼ (1| subjid), 457

kappa ∼ (1| subjid) 458

where lottery_mag is the probabilistic reward, sb_mag is the surebet; r is ρ (or kappa is κ) - the risk preference 459

parameter, with ρ values higher than 1 (or κ < 0) values indicative of increased risk tolerance and less than 460

one of risk aversion (or κ > 0, which strictly speaking is indicative of variance aversion) and inverse beta is the 461

decision noise; lott_var, or lottery variance was calculated asymptotically as 462

lott_var = probability * (1 - probability) * (lottery_mag)^2 463

As before for delay-discounting models, for the binomial specification the data was grouped and summarized 464

by distinct trial types, where n_chose_later is the count of choices when the later reward is selected and 465

n_trials is the number of trials for a particular trial type. One disadvantage of the rho-beta model is stronger 466

correlation between ρ and respective β (Pearson r = −.42, p = 0.007) compared to that for the kappa-beta 467

model (Pearson r = −.22, p = 0.159). 468

The significant difference in correlations was tested using R package ‘cocor’ (Diedenhofen and Musch, 2015) 469

assuming overlapping (correlations that have one variable in common) or nonoverlapping dependent 470

correlations. The visualizations of the correlation matrices were done via R package ‘corrplot’ (Friendly, 2002). 471

The principle component analysis was performed with R function ‘prcomp’ from package ‘stats’. The regression 472

analysis and tests of curvilinear relationships used R package ‘lme4’ (Bates et al., 2015). The permutation tests 473

of differences between the means of two groups were done by shuffling the group label and computing the mean 474

between the shuffled groups 10000 times. This generated a null distribution which was used to estimate the 475

probability of observing the true difference between groups (bootmean in https://github.com/erlichlab/elutils). 476

Software 477

The code for the delay-discounting and risk tasks was written in Python using the ‘PsychoPy’ toolbox (version 478

1.83.04; Peirce, 2007) available at https://www.github.com/erlichlab/gpstress/src/task. All analyses and 479

statistics were performed either in Matlab (version 9.3, or higher, The Mathworks, MA), or in R (version 3.6.1, 480

or higher, R Foundation for Statistical Computing, Vienna, Austria). 481

Data Availability 482

Software for running the task, as well as the data and analysis code for regenerating our main results and 483

figures are available as a Zenodo release (https://doi.org/10.5281/zenodo.5513429) of a GitHub repository 484
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(https://github.com/erlichlab/gpstress). 485
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aversion: an experiment with financial professionals. The American Economic Review, 105(2):860–885, 2015.

Sandra Cornelisse, Vanessa Van Ast, Johannes Haushofer, Maayke Seinstra, and Marian Joels.
Time-dependent effect of hydrocortisone administration on intertemporal choice. preprint, SSRN, 2013.
URL http://dx.doi.org/10.2139/ssrn.2294189.

Carlos Cueva, R Edward Roberts, Tom Spencer, Nisha Rani, Michelle Tempest, Philippe N Tobler, Joe
Herbert, and Aldo Rustichini. Cortisol and testosterone increase financial risk taking and may destabilize
markets. Scientific reports, 5:11206, 2015.

Birk Diedenhofen and Jochen Musch. cocor: A Comprehensive Solution for the Statistical Comparison of
Correlations. PLOS ONE, 10(4):e0121945, April 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.0121945.
URL http://dx.plos.org/10.1371/journal.pone.0121945.

Andrea Dietrich, Johan Ormel, Jan K Buitelaar, Frank C Verhulst, Pieter J Hoekstra, and Catharina A
Hartman. Cortisol in the morning and dimensions of anxiety, depression, and aggression in children from a
general population and clinic-referred cohort: an integrated analysis. The TRAILS study.
Psychoneuroendocrinology, 38(8):1281–1298, 2013.

Carlo Faravelli and Stefano Pallanti. Recent life events and panic disorder. Am J Psychiatry, 146(5):622–6,
1989.

Scott H Frank and Stephen J Zyzanski. Stress in the clinical setting: the Brief Encounter Psychosocial
Instrument. The Journal of family practice, 26(5):533–9, June 1988.

Michael Friendly. Corrgrams: Exploratory Displays for Correlation Matrices. The American Statistician, 56(4):
316–324, November 2002. ISSN 0003-1305, 1537-2731. doi: 10.1198/000313002533. URL
http://www.tandfonline.com/doi/abs/10.1198/000313002533.
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Vicente Prado-Gascó, Usue de la Barrera, Sandra Sancho-Castillo, José Enrique de la Rubia-Ort́ı, and
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