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Abstract 11 

 12 

Leveraging prior viral genome sequencing data to make predictions on whether an unknown, 13 

emergent virus harbors a ‘phenotype-of-concern’ has been a long-sought goal of genomic 14 

epidemiology. A predictive phenotype model built from nucleotide-level information alone has 15 

previously been considered un-tenable with respect to RNA viruses due to the ultra-high intra-16 

sequence variance of their genomes, even within closely related clades. Building from our prior 17 

work developing a degenerate k-mer method to accommodate this high intra-sequence variation 18 

of RNA virus genomes for modeling frameworks, and leveraging a taxonomic ‘group-shuffle-19 

split’ paradigm on complete coronavirus assemblies from prior to October 2018, we trained 20 

multiple regularized logistic regression classifiers at the nucleotide k-mer level capable of 21 

accurately predicting withheld SARS-CoV-2 genome sequences as human pathogens and 22 

accurately predicting withheld Swine Acute Diarrhea Syndrome coronavirus (SADS-CoV) 23 

genome sequences as non-human pathogens. LASSO feature selection identified several 24 

degenerate nucleotide predictor motifs with high model coefficients for the human pathogen 25 

class that were present across widely disparate classes of coronaviruses. However, these motifs 26 

differed in which genes they were present in, what specific codons were used to encode them, 27 

and what the translated amino acid motif was. This emphasizes the importance of a phenetic 28 

view of emerging pathogenic RNA viruses, as opposed to the canonical phylogenetic 29 

interpretations most-commonly used to track and manage viral zoonoses. Applying our model to 30 

more recent Orthocoronavirinae genomes deposited since October 2018 yields a novel 31 

contextual view of pathogen-potential across bat-related, canine-related, porcine-related, and 32 

rodent-related coronaviruses and critical adaptations which may have contributed to the 33 

emergence of the pandemic SARS-CoV-2 virus. Finally, we discuss the utility of these predictive 34 

models (and their associated predictor motifs) to novel biosurveillance protocols that 35 

substantially increase the ‘pound-for-pound’ information content of field-collected sequencing 36 

data and make a strong argument for the necessity of routine collection and sequencing of 37 

zoonotic viruses.  38 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.18.460926doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460926
http://creativecommons.org/licenses/by-nc/4.0/


 

 2 

Introduction 39 

To date, the applicability of genomic sequencing data to zoonotic viral outbreaks and pandemics 40 

has primarily served in post-outbreak genomic epidemiology roles. When a novel viral pathogen 41 

emerges, genome sequence data is compared against prior data from other close relatives. From 42 

these analyses, public health risk and resourcing (1,2), transmission chains (3), and other 43 

response-related information (4) is inferred. Several studies have begun to address the utility of 44 

viral genome sequencing data in a pre-outbreak, predictive methodology through development of 45 

increasingly complex machine learning techniques that attempt to understand the emergence of 46 

particular viral phenotypes (5–12). However, while these works provide important novel 47 

biological characterization methods, their immediate applied utility for biosurveillance is limited 48 

due to the complexity of interpreting their outputs.  49 

 50 

The emergence of the SARS-CoV-2 virus, and the ensuing pandemic, has emphasized our 51 

continued vulnerability to zoonotic pathogens. Despite several smaller scale outbreaks of 52 

dangerous Betacoronaviruses (namely SARS and MERS), our preparedness and ability to 53 

forecast these emergent pathogens have made little advancement. Traditionally, the approach to 54 

understanding differences in viral phenotypes has involved problematic experimental evolution, 55 

or gain-of-function research through recombinant genetics system (13, 14). 56 

 57 

Our previous work developed a feature-agglomeration method adapted to “bag-of-words” style 58 

feature extraction in RNA viruses (15). We used this method to fit a binary logistic regression 59 

model for Orthocoronavirinae around a response variable of human pathogen vs non-human 60 

pathogen. While this method focused on explanatory modeling by emphasizing numerical 61 

stability and training-set accuracy as the model selection criteria, the original feature extraction 62 

and model fitting implementation limited its predictive power and resulted in overfitting to the 63 

training data. This dilemma of model extrapolation is an old problem in statistical analysis and 64 

machine learning (16, 17) and is still salient in biological data science applications. This has led 65 

to assertions that the goal of prediction for threat of viral emergence, directly from sequence 66 

data, is infeasible based on currently available data and biological knowledge (18). 67 

 68 

We provide a solution to these problems specifically in the case of Orthocoronavirinae, while 69 

also demonstrating techniques that could be applied across the viral kingdom. We have 70 

developed a protocol for feature extraction and cross-validation that is specific to the viral 71 

genomics domain to produce actionable and predictive genotype-to-phenotype information for 72 

global health and pandemic preparedness experts, directly from genomic data. 73 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.18.460926doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.18.460926
http://creativecommons.org/licenses/by-nc/4.0/


 

 3 

Methods 74 

Data Labeling and Grouping 75 

We adopted the same data labeling assumptions regarding human-pathogen class membership 76 

that were stipulated in our previous work (15). To reiterate, bat coronaviruses are assumed to not 77 

be human coronaviruses. Civet SARS and camel MERS isolates are labeled as human 78 

coronaviruses (reflecting their suspected roles as facilitators of spillover), along with the rest of 79 

the known human coronaviruses. All other species of coronavirus are labeled as non-human 80 

pathogens. 81 

 82 

In the application of group labels for stratified resampling and cross-validation, we created a 83 

composite label that combined the species level taxid assigned for each virus sequence with its 84 

class label with regards to human-pathogen status. This approach attempts to capture the nuance 85 

in certain clades of coronaviruses, such as Betacoronavirus 1, where certain members of the 86 

species (e.g., PHEV and Bovine COV) appear to have well defined barriers with regards to their 87 

capabilities as human-pathogens but share a species designation with a known human-pathogen 88 

coronavirus like OC43 (19, 20). This method results in 63 group labels applied across the 89 

training set. 90 

 91 

Feature Extraction 92 

We previously developed a feature extraction method (15), Vorpal, to reconcile the k-mer-based 93 

sequence representations with the inter-example variance in RNA virus genomes.  This method 94 

worked by counting k-mers across the input sequences, removing k-mers that appear below a 95 

frequency quantile threshold, and performing hierarchical clustering on the remaining k-mers. 96 

Using hamming distance as the metric and producing flat clusters from the resulting k-mer tree at 97 

different branch lengths, we can produce de-facto k-mer alignments that can be re-encoded using 98 

International Union of Pure and Applied Chemistry (IUPAC) nucleic acid characters. This 99 

functions as a dimensionality-reduction technique that represents the higher dimensional k-mer 100 

space into a smaller vocabulary of degenerate motifs that retains information about observed 101 

variance in the training data. We can construct feature spaces using this technique that are 102 

influenced by three parameters: k size, k-mer frequency cutoff to proceed to clustering, and 103 

degeneracy cutoff for flat clustering of the k-mer tree. A simple example to illustrate this concept 104 

is depicted in Figure 1.  105 
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 106 

Figure 1. Example clustering of hypothetical 11mers with a 2.0 degeneracy cutoff parameter. 107 

Dashed line indicates maximum distance for flat clustering. This distance cutoff is calculated by 108 

dividing degeneracy allowance by k-length. In this example 2.0/11 ≈ .182. The four k-mers of the 109 

top branches are collapsed into a single ‘degenerate’ k-mer by substituting ‘H’ for the variable 110 

T, A, and C bases in the first position and ‘W’ for the variable T and A bases in the second-to-111 

last position. 112 

 113 

Cross-Validation and Resampling 114 

Expanding on this feature extraction technique, we employed several methods to transition this 115 

approach from an explanatory paradigm to a predictive one. To accomplish this, we utilized two 116 

key strategies to reduce possible sources of model variance. First, we used a cross-validation 117 

technique to guide model selection that leverages the intrinsic modal organization of genomics 118 

data imparted by phylogenetic relationships. This characterizes the problem of predictive 119 

phenotype modeling as one where generalization of the model would mean maintaining accuracy 120 

to a novel mode of the sample distribution, or in other words, a new species or clade of the viral 121 

family. Therefore, we leverage taxonomic organization of the training data to implement a 122 

group-shuffle-split (GSS) cross-validation approach (21). This simulates the problem of having 123 

several species of each class represented in the training set and allows a search over model 124 

parameters that maximize the ability to generalize to a withheld species in the validation set. In 125 

Figure 2, a visualization of this modality in the sample space is demonstrated through a two-126 

dimensional t-distributed Stocastic Neighbor Embedding (tSNE) using the features for the 127 

selected model discussed in the Results. 128 

 129 

HGGGATACAWA
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 130 

Figure 2. tSNE embedding with features used in the 15mer 4.0 degeneracy-cutoff model 131 

examined in results. This visualizes the modality of virus sequences in the sample space. 132 

 133 

The second key factor in this predictive modeling approach is the implementation of a stratified 134 

resampling technique. Since we chose to use a high-bias model such as logistic regression, what 135 

remained was the management of other possible sources of model variance. One substantial 136 

source of variance is the skewed representation of complete Orthocoronavirinae genomes from 137 

clades with clinical and/or other human-related interest. We combat this source of variance by a 138 

stratified resampling method (22). This resampling method is used at training time to uniformly 139 

resample instances from the training set based on the same taxonomic organization utilized in the 140 

GSS cross-validation strategy. Additionally, since the Vorpal feature extraction methodology is 141 

sensitive to this representation bias as a result of the quantile cutoff for k-mer clustering, we use 142 

this same resampling technique in the generation of the clustered k-mer motifs. Leveraging this 143 

taxonomically-guided resampling at all steps in the process where model variance could 144 

potentially be introduced as a side effect of sampling biases allows for effective model training 145 

routines to find a closer approximation of the “true” function relating the predictor variables with 146 

the response variable. 147 

 148 

 149 

 150 

 151 

 152 

 153 
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Training and Test Set Data 155 

All viral genome sequences for feature extraction and model training were derived from 156 

RVDB14, published October 1
st
, 2018 (23). Of course, given the publication date cut-off, SARS-157 

CoV-2 records were not present in this data. Additionally, Swine Acute Diarrhea Virus (SADS) 158 

sequences were removed from the training data, while bat-HKU2 sequences were left in and 159 

labeled non-human pathogens consistent with the rest of the labeling criteria. 160 

 161 

In the generation of the test set, SADS and SARS-CoV-2 sequences were downloaded from 162 

NCBI Virus (24). We subsampled 10 sequences representing each W.H.O. variant-of-concern 163 

(VOC) from these downloaded sequences. The test set was completed by adding the RefSeq 164 

SARS-CoV-2 reference sequence as well as WA1, to provide representative diversity of 165 

sequences across the duration of the COVID-19 pandemic. A total of 42 complete SARS-CoV-2 166 

genomes comprised the full test set of ‘positive’ examples (i.e., human pathogen class label). A 167 

total of 34 complete SADS genomes comprised the full test set of ‘negative’ examples (i.e., non-168 

human-pathogen class label). The designation of SADS as a true negative was supported by the 169 

apparent zoonotic barrier between humans and porcine coronaviruses in general, as well as 170 

reporting of SADS outbreaks in pig farms in China resulting in no documented human sickness 171 

in workers exposed to sick pigs (25).  172 

 173 

Models were fit in triplicate to estimate variance in model accuracy and test set probability as a 174 

result of training set resampling and random initialization of coordinate descent. Parameters for 175 

GSS were .10 splits, meaning 10% of groups were separated for validation with each split, with 176 

100 training and validation splits produced for each training session. The training set of 2276 177 

sequences was randomly super-sampled to 4000 instances using the stratified resampling method 178 

described above. P-values for coefficients were not estimated, as predictive power to withheld 179 

data is the preferred model evaluation criteria in this context. 180 

 181 

Model selection was performed by first producing degenerate motifs across combinations of two 182 

feature extraction parameters; k-mer size and degeneracy cutoff. Then, each of these feature sets 183 

was used to fit models with a grid search cross-validation routine that searched over the L1 184 

regularization parameter C using GSS as the cross validator, where C is the inverse of the L1 185 

regularization term λ. Quantile cutoff for k-mer clustering was selected for each k-size based on 186 

available system memory constraints (2TB) and are stipulated in Supplementary Table 1. The 187 

complete list of parameters and their values is summarized in Table 1. The best estimator was 188 

chosen using mean validation set score, where negative Brier score was the scoring function. 189 

Brier score is equivalent to mean squared error when the outcome is a binary probability 190 

estimate.  191 

 192 

 193 
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Tested K-mer k size Tested Degeneracy Cutoffs     Tested L1 Regularization Parameters (C)  
11  1.0, 2.0     .01, 0.1, 1, 10, 100, 1000, 10000 

13  1.0, 2.0, 3.0, 4.0     .01, 0.1, 1, 10, 100, 1000, 10000 

15  1.0, 2.0, 3.0, 4.0     .01, 0.1, 1, 10, 100, 1000, 10000 

 194 

Table 1. Parameters for feature extraction and LASSO model hyperparameters. Combinations 195 

for k-size and degeneracy cutoff resulted in 15 extracted feature sets. These feature spaces were 196 

fit in triplicate with Grid Search over these values for C. This resulted in 45 fitted models for 197 

comparison. 198 

 199 

The code for feature extraction and model fitting, training and test data sets, and corresponding 200 

metadata can be accessed at https://github.com/mriglobal/vorpal. The repository also contains a 201 

persistent version of the down-selected model described in the Results (15mer_4.0) and a series 202 

of scripts to begin predicting on novel sequences. This software is provided under an MIT 203 

license. A complete list of accession numbers contained in the training and test sets can be found 204 

at https://github.com/mriglobal/vorpal/tree/master/data in the tab-separated text files containing 205 

‘label’ and ‘group’ assignments for each sequence. 206 

 207 

Results 208 

Following an exhaustive search over feature extraction parameters and the L1 regularization-209 

term hyperparameter, several models were identified that correctly classified the test set at 100% 210 

accuracy – specifically, the 15-mer models with 2.0 and 4.0 degeneracy cutoff, and the 17-mer 211 

models with 2.0 and 4.0 degeneracy cutoff for k-mer clustering (Figure 3).   212 

 213 

Parameter search over L1 regularization terms was similar to our previous effort. Uniformly, 214 

models were selected by the Brier score criterion (26) for the strongest regularization term 215 

evaluated, which was .01. In Supplementary Figure 1, mean cross-validation score is shown to 216 

reach an inflection point at this value across all models.  217 

 218 

We selected one of the 15mer 4.0 model replicates to examine in further detail and deploy as part 219 

of the software repository. This model has many interesting properties that provide potential 220 

insights into what the models have learned about the genomic determinants of human 221 

pathogenicity in coronaviruses. Predictor motifs and their corresponding coefficients are 222 

provided in Table 2. The coefficients in logistic regression can be interpreted as the linear effect 223 

of each unit of the predictor variable on the log-odds of the response variable. 224 

 225 
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 226 
Figure 3. Human pathogen class probabilities for the test set virus genomes across each all model replicates for each combination of  227 
feature extraction parameters. Models are titled according to their k-mer length and allowable k-mer degeneracy (e.g.,“15- 228 
mer_4.0”). The classification threshold of 0.5 is shown as a dashed line. Models that correctly classified all 42 SARS-CoV-2 genome 229 
assemblies in the test set as a human pathogen are indicated by light-purple-shaded boxes. Ineffective models are gray-shaded. All 230 
models correctly classified all 34 SADS test-set genome assemblies as a non-human pathogen. Red asterisk identifies the feature 231 
extraction parameters from which the selected model described in the Results was drawn. 232 
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 233 

 234 
A comparison between different 235 
coronaviruses and their respective 236 
utilization of the predictor motifs 237 
allows for interpretation of the 238 
functional origin. As an example, 239 
Table 3 provides a comparative 240 
mapping of the model predictor 241 
motif, RATGTTRTTMDWCDA, 242 
across a variety of coronavirus 243 
species, the corresponding codons for 244 
that motif in its genomic context, and 245 
the amino acids encoded. The first 246 
observation is that these motifs 247 
appear in association with human 248 
pathogenicity across distantly related 249 
coronaviruses across several genera, 250 
but in varied genomic loci. Secondly, 251 

some motifs provide increased class probability mostly through a binary presence/absence (e.g., 252 
DTTGYTTHYTYTRAW), while others, such as NTRNWRNTSNWSHTA, act through 253 
frequency enrichment, appearing up to 45 times in some human-pathogen HKU1 isolates and as 254 
few as 4 times in Sparrow Coronavirus HKU17. The reuse of these motifs in various genomic 255 
contexts, while remaining consistently associated with human pathogenicity in these viruses, 256 
suggests phenetic similarity in their function, as well as underscores the importance of the 257 
alignment-free characterization of the prediction problem in identifying these phenomena. 258 
 260 

Predictor Motif Coefficient 

WWRATKTKGRVGDYB -0.509663863818094 

HKTWDKHWATTTRDA -0.458805349994644 

TGWYGHBRNNGYHGY -0.437080939216503 

NKTKGTNGAYGNNDT -0.114321994201719 

TBHTGRTRVHRYWGB -0.049309692085244 

NNVMAAAAAAAAAAA -0.013079147572843 

NTRNWRNTSNWSHTA 0.00161762886654 

WDGABGGYGKTVAWW 0.008217364487264 

KWTWBTSTTTNTGTG 0.046266885640273 

WSAHDTTTHTKNTKT 0.161843716501627 

DTTWTGATTTTAARK 0.162031904207787 

TYDMTRATKWHAAVC 0.211909992935733 

BTDDTGYKGTHANAC 0.214019319277427 

GRTWBWGATBTTRWK 0.262700119920708 

KTACTGRTGMCAATG 0.278025606363307 

ABTWBTKVTKKTAAR 0.40624835993548 

RATGTTRTTMDWCDA 0.542923469132282 

DTTGYTTHYTYTRAW 0.747300228144597 

Table 2. Predictor motifs with non-
zero coefficients after LASSO 
feature selection for the selected 15-
mer with 4.0 degeneracy model. 
Positive coefficients correspond to 
an increase in the probability of 
human-pathogen class membership. 
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 261 
Table 3. A table showing the predictor motif RATGTTRTTMDWCDA and the various genomic 262 
contexts in which it appears across Alpha-, Beta- and Gammacoronaviruses. The motif always 263 
appears in the same reading frame in Alpha- and Betacoronaviruses while it appears in the +1 264 
position in Turkey Gammacoronavirus, a non-human pathogen. 265 
 266 

Interpretation of misclassified instances in the training set, especially for the models that 267 
correctly classified the test set sequences, show several interesting patterns. First, proximal 268 
phylogenetic ‘near-neighbors’ of known coronaviruses are also proximal in terms of class 269 
probability. For instance, WIV16 (27), which shares >96% sequence identity to SARS-CoV-1, 270 
has a class probability of 0.78 while the civet SARS examples like HC/GZ/32/03 271 
have class probabilities of 0.89 (Supplementary Data). This trend continues with late-SARS 272 
isolates such as WHU having a predicted class probability of 0.95. Of course, this relationship 273 
would be expected for the training data, but this relationship is maintained in the new SARS-274 
CoV-2-related sequences published since the beginning of the pandemic. We used the model to 275 
predict the class probabilities of these, as well as other novel coronavirus sequences published 276 
throughout 2020 and 2021. These results are shown in Table 4. Bat coronaviruses with proximity 277 
in sequence identity to SARS-CoV-2 (28, 29), such as RmYN02, RpYN06 and RaTG13, exhibit 278 
human pathogen class probabilities that are proximal to the class probability of SARS-CoV-2.  279 
This demonstrates that the model has learned a class definition that extends outside of the 280 
observed phylogenetic relationships seen at training time. 281 
 282 
 283 
 284 
 285 
 286 
 287 

Coronavirus Accession Position Sequence Level Gene/Domain
23071 Codon GTT GTT AAT CAA Spike HR1

Amino acid V V N Q

23516 Codon GTT GTT AAT CAA Spike HR1

Amino acid V V N Q

5312 Codon GTT GTT CTA CAA NSP3 Plpro

Amino acid V V L Q

19594 Codon GTT GTT AAA CAA NSP15 NendoU

Amino acid V V K Q

20065 Codon GTT GTT AAA CAA NSP15 NendoU

Amino acid V V K Q

10866 Codon GTT GTT AGA CAA NSP5 Mpro

Amino acid V V R Q

21854 Codon GTT GTT ATA CGA Spike NTD

Amino acid V V I R

10936 Codon GTT GTT AGA CAA NSP5 Mpro

Amino acid V V R Q

16560 Codon GTT GTT AAA CAA NSP13 Helicase

Amino acid V V K Q

11626 Codon TGT TAT TAT ACT A-- NSP9

Amino acid C Y Y T NTurkey GammaCOV NC_010800.1

-AA

K

SARS-CoV-2 NC_045512.2

DAT

D

AcCOV-JC34 NC_034972.1

GAT

D

SARS-CoV-1 NC_004718.3

GAT

D

AAT

N

NL63 NC_005831.2

GAT

D

MERS NC_019843.3

GAT

D

AAT

N

GAT

D

RATGTTRTTMDWCDA

229E NC_002645.1

GAT

D
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Virus Name Human Pathogen Probability 

Betacoronavirus 1 strain GCCDC4 0.02 
Rodent coronavirus isolate GCCDC5 0.03 
Porcine DeltaCOV 0256-1 0.04 
Betacoronavirus 1 isolate GCCDC3 0.05 
Porcine DeltaCOV 0081-4 0.06 
Porcine DeltaCOV 0329-4 0.06 
Canine coronavirus isolate CCoV-HuPn-2018 0.12 
PrC31 0.15 
Rc-o319 0.16 
Ra7909 0.2 
Rs7907 0.21 
Rs7931 0.22 
Rs7905 0.24 
RsYN03 0.32 
PCoV_GX-P2V 0.32 
RacCS203 0.37 
RaTG13 0.63 
RpYN06 0.68 
RmYN02 0.73 
SARS-CoV-2 0.76 
 288 
Table 4. Human Pathogen class probabilities for novel coronavirus sequences published after 289 
the beginning of the COVID-19 pandemic (including SARS-CoV-2), produced from the down-290 
selected 15mer_4.0 degeneracy model. 291 
 292 
Another interesting pattern observed in the training set was a group of Bat SARS-like and 293 
MERS-like viruses that were routinely classified as human pathogens – specifically, members of 294 
Jinning mine group of viruses such as Rs4231 and Rs4874, as well as the MERS-likes NL13845 295 
and NL140422 sampled from a cave in Guangdong (30,31). These class designations seem to be 296 
supported by serological evidence of positivity to SARS-likes reported in the area surrounding 297 
the Jinning cave from which these SARS-like viruses were sampled (30). Finally, human enteric 298 
coronavirus 4408 was classified as a non-human pathogen in 35 of the 45 trained models, 299 
including those that were 100% accurate on the test set. Complete tables of misclassified training 300 
set accession numbers and class probabilities for each model replicate are available in 301 
Supplementary data. The frequency of this misclassification is potentially explained by 4408’s 302 
status as a strictly child-associated coronavirus (32). Similarly, the novel Canine 303 
alphacoronavirus isolated from a child in Malaysia (33) in 2018 shares a similar, negative 304 
prediction as can been seen in Table 4. The implications of this nuance in data labeling and the 305 
characterization of the problem as a binary classification are examined in the Discussion. 306 
 307 
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Discussion 308 
 309 
Through examination of the model training results, it is possible to see the key determinants of 310 
the success of our approach. First, the choice of model – regularized logistic regression – is 311 
critical to the success of the models. The 17mer, 3.0 degeneracy models are examples where the 312 
models failed to generalize to the test set, but had highest accuracy scores on the training data 313 
(i.e., >99%). Controlling this tendency to overfit, especially where certain nuance or ambiguity 314 
may exist regarding the virus phenotype that is not captured by the binary response variable, is 315 
much more difficult to achieve outside of high bias model families like generalized linear 316 
models. Second, the positionally-independent representation of the feature space provided by the 317 
Vorpal feature extraction methodology allows for identification of genome thematics that emerge 318 
as a result of convergent evolution. Finally, the degenerate characteristic of these motif 319 
representations introduced by the k-mer clustering clearly contribute to success in extrapolation. 320 
This is explained by observing several instances where the models did not successfully 321 
generalize to the test set. In many models that were fit with lower degeneracy cutoff parameters, 322 
test set probabilities for SARS-CoV-2 were 0.50 because none of the predictor motifs selected 323 
during training mapped to SARS-CoV-2 (Figure 3).  Higher degeneracy feature spaces still 324 
identified predictive motifs, and these motifs continued to be present in the test set. 325 
  326 
To understand the underlying biological function of the predictor motifs, we examined their 327 
genomic context. As an example, RATGTTRTTMDWCDA, shown in Table 2, is located in both 328 
SARS-CoV-1 and SARS-CoV-2 at the domain boundary in NSP5, the Main Protease (Mpro), 329 
between the catalytic domain and the dimerization domain. The arginine that is coded for in the 330 
motif has been demonstrated experimentally in SARS-CoV-1 as critical to dimerization (34). 331 
This motif appears a second time in SARS-CoV-1, in the same reading frame, but in the N-332 
terminal domain of Spike protein, at a position immediately following an N-linked glycosylation 333 
site.  We previously reported the association of N-linked glycosylation sites and motifs 334 
explanatory for host isolate phenotypes in Influenza A as a result of host specific rare codon 335 
selection (15).  The identification of both N-linked glycosylation sites and protein domain 336 
boundaries as being sites of rare codon enrichment provides evidence of a translational 337 
efficiency adaptation to facilitate co-translational machinery (35, 36). The identification of 338 
translational efficiency adaptations as critical to viral fitness has started to significantly expand 339 
in the scientific literature (37–39). 340 
 341 
Properties of the NTRNWRNTSNWSHTA motif that led to its association with human 342 
pathogens are not obvious, but examining its patterns of occurrence provides potential hints. As 343 
mentioned, this motif is most abundant in HKU1. However, in addition to this frequency, it also 344 
occurs concurrently in the genome with another unique feature of HKU1 for which the functional 345 
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purpose is not understood – this motif tracks each instance of the Acid Tandem Repeats (ATRs) 346 
that occur at varying copy number in the hypervariable region of NSP3 in different strains of 347 
HKU1 (40).  This motif also appears to be tracking the abundance of consecutive third-position-348 
thymine codons. The preference of these codons is a well described phenomenon in 349 
coronaviruses, but its functional provenance is not well understood and its enrichment 350 
specifically in human coronaviruses has not been described (41, 42). 351 
 352 
The models also appear to describe a human-pathogen class definition that only includes viruses 353 
that can readily transmit between adults. There are now a series of coronaviruses that appear to 354 
have the capability to cause clinical illness in children, but the children act as terminal hosts for 355 
the virus. This list now includes Canine Alphacoronaviruses observed in Thailand in 2007 (43) 356 
and Malaysia in 2018 (33), Murine Hepatitis Virus detected in SRA datasets from children with 357 
febrile illness (44), Porcine Deltacoronaviruses in children in Haiti in 2014 and 2015 (45), as 358 
well as human enteric coronavirus 4408 (32).  359 
 360 
Nuance to class labeling 361 
There is also a well-documented divide in the symptomology observed in juveniles and adults for 362 
SARS-CoV-2 (46), that is partially described by lower permissivity of infection not attributable 363 
to ACE2 or TMPRSS2 expression levels (47). The models, notably, do not contain predictor 364 
motifs that pertain to these child-specific coronaviruses as they are routinely classified as non-365 
human. While we are modeling a binary response variable in this work, where ‘human pathogen’ 366 
is the positive class, a more accurate description of the class labels we have applied might 367 
include a likelihood of observance. There appears to be some stratification, where sustained 368 
transmission of the virus in humans is de facto included as part of the phenotype definition. 369 
Viruses that may be capable of spilling over into humans, but who are, for the virus, terminal 370 
hosts, have genotypic features which are not captured in our models. 371 
 372 
A Universal Framework 373 
While this effort represents a specific procedure with respect to this feature extraction technique, 374 
the theoretical framework is one that can be generally applied. The task for supervised learning 375 
on biological sequence data is to transform to a feature subspace where the learner is 376 
interpolating over the feature space as it pertains to the response variable, and is no longer 377 
extrapolating. We believe these methodologies are applicable not just across the RNA virus 378 
genome domain, but also across multiple feature spaces such as protein and RNA secondary 379 
structure. We will explore this in future work. 380 
 381 
 382 
 383 
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 384 
Improving Biosurveillance Protocols 385 
The implications of the models support a potential reimagining of biosurveillance efforts and 386 
pandemic prevention. The ability to predict pathogenic phenotypes of viruses well ahead of 387 
spillover, directly from sequence data, can enable more effective focusing of resource allocation 388 
for ecological monitoring and prevention. The results described in this work are, to our 389 
knowledge, the first demonstration of this capability. Determination of the biological function of 390 
model predictors may yield a more detailed understanding of why certain organisms, such as 391 
Camels and Civets, seem to act as keystone species for the spillover of certain viral families like 392 
Orthocoronavirinae. This could produce a road map to understand the host genomic 393 
determinants that condition these viral genomes for emergence from their natural reservoirs.  394 
 395 
Leveraging predictive motifs in field-forward ‘sequence-search’ missions can enable genomic 396 
epidemiologists to identify problematic viruses more quickly on site. Despite the criticality of 397 
genome assembly and phylogenetic analyses during emerging outbreak scenarios, their 398 
cumbersome and time-consuming nature limits the utility and feasibility of sequencing 399 
operations in field-forward surveillance efforts and prevents investments in such infrastructure 400 
and programs. Predictive motifs can be modeled directly in raw voltage disturbance signals from 401 
nanopore platforms (48). Searching for predictive motifs from raw electrical signal obviates the 402 
need for in-field basecalling, enabling more streamlined field-forward sequencing infrastructure. 403 
Such infrastructure can alleviate sample bottlenecks at central reference laboratories and 404 
establish a more efficient public health response network. 405 
 406 
As the COVID-19 pandemic has made abundantly clear, the time is now for investments in these 407 
types of next-generation biosurveillance ecosystems. Predictive feature-extraction genome 408 
modeling frameworks, such as those described here, are poised to underwrite this emerging 409 
paradigm. 410 

 411 
 412 
 413 
 414 
 415 

 416 

 417 

 418 
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SUPPLEMENTARY INFORMATION 554 

 555 

 556 

Supplementary Table 1. Training set and test set accuracy across all modeled feature 557 
parameter combinations (in triplicate). Pink-shaded are those models that correctly classified all 558 
42 SARS-CoV-2 test-set assemblies as a human pathogen and correctly classified all 34 SADS 559 
test-set assemblies as non-human-pathogens.  560 

k_size degeneracy quantile_cutoff training_set_accuracy test_set_accuracy
11 1.00 0.80 0.99 0.45
11 1.00 0.80 0.98 0.45
11 1.00 0.80 0.99 0.45
11 2.00 0.80 0.99 0.45
11 2.00 0.80 0.99 0.45
11 2.00 0.80 0.99 0.45
13 1.00 0.90 0.98 0.45
13 1.00 0.90 0.98 0.45
13 1.00 0.90 0.98 0.45
13 2.00 0.90 0.99 0.93
13 2.00 0.90 0.99 0.93
13 2.00 0.90 0.99 0.93
13 3.00 0.90 0.99 0.45
13 3.00 0.90 0.98 0.45
13 3.00 0.90 0.99 0.45
13 4.00 0.90 1.00 0.45
13 4.00 0.90 1.00 0.45
13 4.00 0.90 1.00 0.45
15 1.00 0.90 0.98 0.45
15 1.00 0.90 0.98 0.45
15 1.00 0.90 0.98 0.45
15 2.00 0.90 0.98 1.00
15 2.00 0.90 0.98 1.00
15 2.00 0.90 0.98 1.00
15 3.00 0.90 0.98 0.58
15 3.00 0.90 0.98 0.58
15 3.00 0.90 0.98 0.58
15 4.00 0.90 0.99 1.00
15 4.00 0.90 0.99 1.00
15 4.00 0.90 0.98 1.00
17 1.00 0.95 0.96 0.45
17 1.00 0.95 0.96 0.45
17 1.00 0.95 0.97 0.45
17 2.00 0.95 0.98 1.00
17 2.00 0.95 0.98 1.00
17 2.00 0.95 0.98 1.00
17 3.00 0.95 0.99 1.00
17 3.00 0.95 0.99 0.45
17 3.00 0.95 0.99 0.45
17 4.00 0.95 0.99 1.00
17 4.00 0.95 0.99 1.00
17 4.00 0.95 0.99 1.00
17 5.00 0.95 0.98 0.45
17 5.00 0.95 0.99 0.45
17 5.00 0.95 0.99 0.45
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 561 

 562 

Supplementary Figure 1.  Mean Cross Validation Scores for the validation splits across all k-563 
sizes and degeneracy cutoffs for clustering. Almost every model show dramatic improvements in 564 
Brier score as the regularization parameter gets stronger. 565 
 566 
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