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Abstract 10 

Background: Along with specialized functions, cells of multicellular organisms also perform 11 

essential functions common to most if not all cells. Whether diverse cells do this by using the same 12 

set of genes, interacting in a fixed coordinated fashion to execute essential functions, remains a 13 

central question in biology. Single-cell RNA-sequencing (scRNA-seq) measures gene expression 14 

of individual cells, enabling researchers to discover gene expression patterns that contribute to the 15 

diversity of cell functions. Current analyses focus primarily on identifying differentially expressed 16 

genes across cells. However, patterns of co-expression between genes are probably more indicative 17 

of biological processes than are the expression of individual genes. Using single cell transcriptome 18 

data from the fly brain, here we focus on gene co-expression to search for a core cellular network. 19 

Results: In this study, we constructed cell type-specific gene co-expression networks using single 20 

cell transcriptome data of brains from the fruit fly, Drosophila melanogaster. We detected a set of 21 

highly coordinated genes preserved across cell types in fly brains and defined this set as the core 22 

cellular network. This core is very small compared with cell type-specific gene co-expression 23 

networks and shows dense connectivity. Modules within this core are enriched for basic cellular 24 

functions, such as translation and ATP metabolic processes, and gene members of these modules 25 

have distinct evolutionary signatures. 26 

Conclusions: Overall, we demonstrated that a core cellular network exists in diverse cell types of 27 

fly brains and this core exhibits unique topological, structural, functional and evolutionary 28 

properties. 29 
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 33 

Background 34 

Life on Earth has gone through many transitions in organizational complexity (Smith and 35 

Szathmary 1997). Among these, the evolution of multicellularity stands out as a key milestone. 36 

This transition has occurred independently multiple times across the tree of life and paved the way 37 

for tremendous phenotypic expansion and biological diversification (Parfrey and Lahr 2013). 38 

Although this has led to the evolution of cell-type-specific regulatory pathways that define cells 39 

with vastly different functions, all cells in multicellular organisms also carry out common 40 

functions that are essential for cell survival. Whether these common functions are supported by a 41 

common core of genes functioning in all cells, coordinated to ensure survival in the face of diverse 42 

functional demands, remains a central question in biology (Lim, Lee, and Tang 2013; Hart and 43 

Alon 2013). In particular, do all cells utilize the same set of genes to accomplish common functions, 44 

and do these genes function in a fixed and coordinated fashion—a core regulatory network? 45 

Cellular phenomena can be characterized by different levels of biological organization, or -46 

omes, such as the genome, epigenome, transcriptome, proteome, etc. Investigating core functions 47 

from these different levels not only gives insight into essential functions of cellular life, but also 48 

helps to reveal the evolutionary forces acting at different levels of biological organization (Sorrells 49 

and Johnson 2015; Ghadie, Coulombe-Huntington, and Xia 2018; Wagner 2012). To identify core 50 
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functions at each level, researchers have used various strategies such as identifying constitutively 51 

active genes over temporal or spatial scales, and across environments. These genes are typically 52 

referred to as ‘housekeeping genes’ and are thought to perform essential functions. They tend to 53 

share aspects of sequence structure, chromatin environment and evolutionary history (Eisenberg 54 

and Levanon 2013; Rancati et al. 2018). For example, housekeeping genes are evolutionarily 55 

ancient (Zhu et al. 2008), exhibit a high level of evolutionary conservation (Zhang and Li 2004), 56 

and are enriched for several functions, including metabolism, RNA binding, protein degradation 57 

and cytoskeleton functions (Zhang and Li 2004; Lehner and Fraser 2004). 58 

While core functions are often described based on 'housekeeping genes', we recognize that 59 

genes do not work in isolation, but work with each other to carry out biological processes. 60 

Individual molecular abundances alone cannot adequately capture biological organizations. High-61 

throughput methods that generate high-dimensional ‘omic’ data have greatly increased our 62 

understanding of molecular and cellular function and organization, in particular through the 63 

analysis of molecular networks (Barabasi and Oltvai 2004; Proulx, Promislow, and Phillips 2005; 64 

Thompson, Regev, and Roy 2015; Promislow 2005). Studying core functions from a network 65 

perspective may provide novel insights into biological organization. Networks consist of nodes 66 

connected to one another by edges. In the search for the underlying molecular structure of cells, 67 

researchers have explored many different kinds of edges, including but not limited to gene co-68 

expression, protein-protein interactions (PPI), interactions among transcription factors (TF), TF 69 

chromatin occupancy, miRNA-target gene interactions, metabolites covariation, and metabolic 70 

reactions (Mitra et al. 2013). For example, co-expression network analysis of human and 71 

Arabidopsis bulk transcriptome data has found a substantial number of gene pairs whose co-72 

expression spans multiple datasets (Lee et al. 2004; He and Maslov 2016). In both analyses, gene 73 
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pairs expressed across samples were enriched in translation, DNA replication, and regulation of 74 

transcription functions, all generally considered to be core cellular functions. Recent studies of 75 

tissue-level transcriptome data have typically focused on tissue-specific networks (Greene et al. 76 

2015; Sonawane et al. 2017). For example, Skinnider et al. (2021) constructed tissue-specific PPI 77 

networks using co-immunoprecipitation within each of seven mouse tissues. They discovered core 78 

cellular modules, present in all mouse tissues, composed of evolutionarily ancient proteins, which 79 

contrasts with evolutionarily novel accessory modules that are found within individual tissues. 80 

A major drawback of most previous studies is that the networks were inferred from bulk data, 81 

which profiles heterogeneous cell populations of an organism or in a tissue. Bulk samples face two 82 

main limitations for network construction. First, differences in cellular compositions between 83 

samples may confound covariation analysis (Farahbod and Pavlidis 2020). Second, measurements 84 

that are averaged over thousands of cells in bulk samples make it difficult to detect interactions 85 

between genes in individual cells, such as the presence of co-expression patterns and the cell-86 

specificity of these interactions. Co-expression in particular is an indicator of functional 87 

relationships (Hughes et al. 2000), which from a network perspective can provide valuable insight 88 

into cell function (Barabasi and Oltvai 2004). The compendium of core housekeeping genes, 89 

initially characterized based on the consistency of their expression, may change based on further 90 

analyses of gene-gene relationships. For example, does each commonly expressed gene interact 91 

with other genes in a fixed and static manner in all cell types, or do the interactions themselves, 92 

which define the gene network structure, differ depending on the local cellular contexts? We can 93 

gain a clearer understanding of core gene regulatory networks through the analysis of single-cell 94 

sequencing data from a network perspective. 95 
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With the advent of single-cell RNA sequencing (scRNA-seq), we have an unprecedented 96 

opportunity to reveal gene relationships in specific cellular contexts and probe cellular-level 97 

networks (Trapnell 2015; Tanay and Regev 2017). One recent study used single cell data from 98 

mouse brain samples to construct gene co-expression networks and compared the topology of 99 

networks built from different cell type hierarchy levels (i.e., from broad to specific class, subclass, 100 

and cluster labels of cell types; Harris et al. 2021). Their results show a high preservation of gene-101 

gene relationships at each hierarchy level and suggest the existence of a core co-regulatory network 102 

in the brain. However, they did not directly compare cellular networks across cell types to find 103 

commonality or describe a concrete core network with topological and functional features. 104 

Taking together, the prior findings, and the considerable amount of scRNA-seq data now 105 

available, lead us to ask several fundamental questions: Can we identify shared co-expression 106 

patterns between pairs of genes across different cell types, how common are these specific 107 

connections across different cell types, do these shared co-expressed genes define a core cellular 108 

network, and if so, what properties does this core network manifest?  109 

To investigate these questions, we used a published scRNA-seq dataset derived from whole 110 

fly brains (Davie et al. 2018) and constructed cell type-specific gene co-expression networks. 111 

Furthermore, we described the functional enrichment of this network, and the evolutionary age of 112 

its constituent genes. Gaining such information not only allows us to understand the composition 113 

and function of the detected core network, but also provides insight into the molecular organization 114 

of gene co-expression networks and the evolutionary origins of cellular functions. To our 115 

knowledge, this is the first study searching for a core cellular network among cell types using 116 

single cell data in the fly brain. 117 
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Results 118 

Construction of cell type-specific gene co-expression networks 119 

We selected an array of fly brain cell types and filtered expressed genes before network 120 

construction. The original dataset contained 17,473 gene expression profiles in 56,902 high-quality 121 

brain cells grouped into 116 cell clusters. We selected 33 known cell types that contained at least 122 

200 cells and filtered expressed genes in each cell type separately (Methods and Figure S1). 123 

Different cell types showed different numbers of expressed genes, ranging from a minimum of 124 

3,153 expressed genes in the Tm9 cell type, to a maximum of 6,725 expressed genes in the 125 

ensheathing glia cell type (Figure 1). In total, there were 8,013 genes expressed in at least one cell 126 

type, 2,368 of which were expressed in all 33 cell types (Figure 1). Throughout, we focus on these 127 

2,368 commonly expressed genes to identify covarying gene pairs within and across cell types. 128 

We used the bigScale2 algorithm (Iacono, Massoni-Badosa, and Heyn 2019) to identify the top 1% 129 

of highly correlated gene pairs within each cell type, which we then used to build cell type-specific 130 

networks (Figure S2 and S3, Table S1). Among these 2,368 genes, we identified 600,888 co-131 

expressed gene pairs (21.4% of all possible pairs) that occurred in at least one of the 33 cell type-132 

specific networks. 133 

 134 

Co-expression networks in fly brain cell types are highly context-dependent  135 

A network is made up of nodes connected by edges. Here, each node is a gene, and an edge 136 

between two nodes exists if the genes are significantly correlated with each other across cells 137 

within a specific cell type. If a core cellular network exists, we expect edges comprising this core 138 
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to be present in all cell types. We define the number of cell types in which each edge (i.e., each 139 

co-expressed gene pair) is detected as that edge’s ‘commonality’. The distribution of commonality 140 

scores exhibited a monotonic decline over most of the range, with more than 75% of the edges 141 

specific to one cell type and only 0.5% of edges common to more than 10 cell types (Figure 2). 142 

The largest observed commonality score was 29, and was observed for only one edge. The 143 

frequency of edge commonality initially decreased rapidly. However, this trend attenuated at 144 

approximately an edge commonality of 10. The frequency of commonality stayed at a roughly 145 

constant level until 22, before it finally dropped to 0 above 29 (Figure 2). That is, among the 33 146 

cell types we examined, no gene pairs were co-expressed in 30 or more cell types. 147 

As a complement to the observed edge commonality distribution, we also plotted the gene 148 

commonality distribution, where gene commonality indicates the number of cell types in which a 149 

given gene was found to be significantly co-expressed with at least one other gene (i.e., to have at 150 

least one edge). The gene commonality distribution showed that most genes had one or more edges 151 

in the majority of cell types, and 176 genes had at least one edge in all 33 cell types (Figure 2). 152 

Thus, commonly expressed genes are frequently utilized and wired into co-expression circuits, 153 

though the specific wiring varies among different cell types. 154 

 155 

Recurrently co-expressed genes in multiple cell types 156 

We next asked to what extent the observed decline in edge commonality distribution with 157 

increasing cell types (Figure 2) differed from the null expectation. The null hypothesis provides 158 

the expected distribution of edge commonality when genes in each cell type are randomly co-159 

expressed with each other, and we evaluate this in two ways. First, we derived a mathematical 160 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.09.19.460857doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460857
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

expectation for the probabilities of edge commonality using the binomial distribution (Methods). 161 

For a gene pair to be co-expressed in 0, 1 or 2 cell types, the probability values were 0.7177, 0.2392 162 

or 0.0387, respectively, indicating most gene pairs would be expected to co-express in no cells, or 163 

only in one or two cell types. Given the 2,368 commonly expressed genes, we would expect to 164 

find 791,068 unique gene pairs to occur (Methods). Our observation of only 600,888 such gene 165 

pairs suggests that some genes recurrently co-express in multiple cell types. A full comparison of 166 

this analytically predicted distribution and the observed edge commonality showed that the two 167 

distributions agreed well at lower, more cell-specific commonality, but the discrepancy became 168 

obvious for gene pairs found in >3 cell types (Figure S4). Second, we compared the deviation 169 

between the observed edge commonality distribution and a null distribution using network 170 

randomization (Methods). This comparison showed that the observed distribution was enriched 171 

in high commonality edges. For instance, none of the randomizations generated an edge 172 

commonality larger than 15, while the observed distribution included hundreds of edges with 173 

commonality ≥15 (Figure 3). This pattern is robust to the percentile cutoff values used in network 174 

construction. When we applied a more stringent percentile cutoff and compared the observed with 175 

null distributions, the discrepancy became even more prominent, shown as the increasing distance 176 

between the two distributions measured using the Jensen–Shannon divergence (Figure S5). These 177 

results suggest that there exists a set of co-varying genes that occur more repeatedly than expected 178 

by chance across diverse cellular contexts. 179 

In sum, despite the very large number of cell type-specific gene co-expression edges, our 180 

analysis points to a core cellular network composed of genes that are co-expressed irrespective of 181 

cellular contexts. 182 

 183 
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Topology pinpoints a core cellular network 184 

By definition, co-expressed genes with high commonality are more likely to contribute to a 185 

core cellular network. Although we searched for a core network shared by all cells, we did not 186 

observe any edges shared by all cell types. This discrepancy may be due to the percentile cutoff 187 

that we used in network construction. Indeed, networks based on a less stringent cutoff value of 188 

the top 10% of expressed genes contained edges common to all cell types, and the enrichment of 189 

high commonality edges remained (Figure S5). Less stringent cutoffs come with a higher risk of 190 

false positive co-expression edges, as indicated by the presence of high-commonality edges in the 191 

randomized networks at low stringency (Figure S5). Therefore, we continued our analysis with 192 

only the top 1% of edges, and leveraged other information to identify co-expressed genes that 193 

might reside in a core cellular network. 194 

Previous network studies suggest that shared edges tend to be tightly connected with each other 195 

(Huttlin et al. 2021). We first evaluated the neighborhood density of high commonality edges and 196 

then measured the clustering coefficients of networks at different edge commonality cutoffs to 197 

determine an informative commonality cutoff value. We combined all cell type-specific networks 198 

into a pan-network whose edge weights reflected edge commonality and explored the relationship 199 

between edge commonality and edge clustering coefficient (Methods). To aid in comparison, we 200 

subsampled 10,000 edges for edge groups that contained >10,000 edges to make them more 201 

comparable to edge groups with <10,000 edges. The result showed that edge commonality and 202 

edge clustering coefficient were positively correlated (Figure 4A), supporting the idea that 203 

recurrently co-expressed genes tend to reside in dense subnetwork neighborhoods. 204 
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Next, we progressively extracted edges with increasing commonality cutoffs and calculated 205 

each resulting subnetwork’s clustering coefficient. The result showed that with cutoff values of 206 

increasing stringency, the clustering coefficient increased to a peak of 0.75 at a cutoff value of 14, 207 

declining thereafter (Figure 4B). Based on this result, we chose a commonality of 14 as the 208 

minimum value for including an edge in a core cellular network, which gave 1810 non-redundant 209 

edges among 179 genes (Figure 4C). 210 

To evaluate the connectivity of the core network, we calculated its clustering coefficient and 211 

compared it to an ensemble of coefficients from pseudo core networks each with the same number 212 

of genes, edges, and degree distribution as the observed one. The mean simulated clustering 213 

coefficient value was 0.15, with a range of 0.12 to 0.18, much smaller than the observed value 0.75 214 

(Figure S6). 215 

We noticed that edges in the defined core network were not present in every surveyed cell type. 216 

This could be due to our parameter value choices, such as correlation percentile cutoff or edge 217 

commonality cutoff, or alternatively, these edges or gene pairs are not co-expressed in all cell types. 218 

To examine these possibilities in detail, we looked at the rank of these edges’ correlation among 219 

the distribution of edge correlation values in cell types in which they were below the top 1%. In 220 

particular, did they show consistently high ranked correlations across these remaining cell types? 221 

To quantify patterns over cell types, we used a rank aggregation method and estimated a P value 222 

per edge (Method). The estimated P value ranges from 0 to 1 and serves as an upper bound of the 223 

computationally expensive exact P value, with a small value indicating one edge is ranked 224 

consistently higher across cell types and a larger value meaning one edge’s rank distribution over 225 

cell types follows a random pattern. Due to computational limitations, we randomly sampled 100 226 

edges in 10 edge commonality groups separately and computed their respective P values (Figure 227 
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S7). More than 94 percent of edges sampled from the core network (edge commonality ≥14) are 228 

highly ranked in the remaining cell types (P < 0.05), whereas none of the 100 cell type-specific 229 

edges (edge commonality=1) that were tested were significant (P > 0.05 in all cases), suggesting 230 

that although these core edges did not make to the top 1% correlations in a set of cell types, they 231 

are relatively highly co-expressed across the remaining cell types. 232 

 233 

Structure, function and evolutionary signatures of the core cellular network 234 

Having defined a core cellular network, we next examined its structure, functional enrichment 235 

and evolutionary signature. Many complex networks can be divided into modules, where genes 236 

are more highly interconnected within modules than between modules (Newman 2003). Modules 237 

identified from gene co-expression networks tend to take part in the same biological processes or 238 

pathways (Ruprecht, Proost, et al. 2017; Wolfe, Kohane, and Butte 2005). To explore the structural 239 

and functional organization of this core, we decomposed it into highly connected modules using 240 

the Markov Clustering Algorithm (Methods). In total, we identified seven modules with at least 241 

five gene members (Figure 5 and Table S2). We then annotated each module’s biological function 242 

through Gene Ontology (GO) enrichment analysis. The results revealed an array of ‘housekeeping’ 243 

and brain related functions enriched within different modules (Figure 5 and Table S3). The largest 244 

module (module 7) contained 78 genes, and was enriched for ribosome related functions, such as 245 

cytoplasmic translation, suggesting tight correlation of genes encoding ribosomal proteins across 246 

cells. The second largest module (module 6), contained 15 genes and was enriched for glycolysis, 247 

a process central to cellular energy homeostasis. Modules 1 and 2 appeared to facilitate ATP 248 

metabolic process and proton transport, and module 3 was related to synaptic signaling, perhaps 249 
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reflecting neuronal functions. Module 5 formed a fully interconnected subnetwork without any 250 

edges from outside, and its gene members were heat-shock proteins (HSP) or co-chaperones, key 251 

players in protein folding. The smallest of the modules, module 4, showed enrichment in the 252 

rhodopsin biosynthetic process. 253 

To characterize the evolutionary signature of each module, we used phylostratigraphy, 254 

assigning each gene in each module to one of 10 different evolutionary time periods (Table S4). 255 

Broadly speaking, genes involved in the core network were enriched for genes with ancient origins, 256 

compared with genes commonly expressed in the fly brain (Figure 6A). Looking in detail, 257 

different modules had different gene age compositions (Figure 6B). Gene members of the 258 

ribosomal (module 7) and protein folding (module 5) modules predated the divergence of the 259 

eukaryota, while those of the ATP metabolic (module 1 and 2), glycolysis (module 6) and synaptic 260 

signaling (module 3) modules included genes distributed across both ancient and relatively recent 261 

evolutionary time periods. Module 4 showed the youngest age signature, with all gene members 262 

emerging after eumetazoa. These diverse age signatures of different core modules suggest that 263 

they arose by integration of both young and old genes, perhaps involving step-wise recruitment of 264 

young genes into ancestral core modules. 265 

 266 

Discussion 267 

To what extent do all cells in an organism rely on a common core of interacting genes? To 268 

investigate this question, we examined cell type-specific gene co-expression networks using fly 269 

brain scRNA-seq data. We described a core gene co-expression network and found it to be small 270 

and more densely connected relative to the larger, more cell-specific gene co-expression networks. 271 
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The core is composed of numerous co-expression modules that appear distinct from each other in 272 

terms of functional enrichment and the distribution of gene age. 273 

Our study is distinct in at least three ways from previous work interrogating core networks. 274 

First, a large body of studies has relied heavily on protein interactions to derive biological networks 275 

and find commonalities. While these studies are informative, they suffer from the bias that protein 276 

interaction data are enriched for highly-studied proteins, which may lead to an incomplete picture 277 

of network structure (Skinnider, Stacey, and Foster 2018; Gillis, Ballouz, and Pavlidis 2014; 278 

Schaefer, Serrano, and Andrade-Navarro 2015). Moreover, these studies are typically lacking 279 

information on the cell specificity of such interactions. In our study, we analyzed transcriptome 280 

data, which interrogate almost all genes in the genome and are less biased with respect to 281 

knowledge from prior databases or existing literature. 282 

Second, instead of relying on expression levels of individual genes to identify genes common 283 

across cell types, we examined covariation between genes as the measure of functional 284 

commonality, which provides not only a stricter criterion to infer gene function (Hughes et al. 285 

2000), but also likely captures conserved gene regulatory networks (Yu et al. 2003; Stuart et al. 286 

2003; Segal et al. 2003). 287 

Third, we identified covarying gene pairs using scRNA-seq data, which unlike bulk tissue data, 288 

can be defined by cell type, even within a single biological sample. In contrast to bulk 289 

transcriptomic analysis and PPI data, where the cellular specificity of each interaction is largely 290 

ambiguous, scRNA-seq enabled us to build cell type-specific networks at a resolution that has 291 

hitherto not been possible. 292 

 293 
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Is there a core network active in all cells? 294 

To determine whether there is a core network common to all cells at the level of single-cell gene-295 

gene covariation, we focused our analysis on genes that were expressed across all cell types, which 296 

allowed us to directly compare the diverse co-expression patterns among a common set of genes. 297 

We limit the question to the fly brain, acknowledging that the core modules we identify might be 298 

absent in non-brain cells. Even among the genes expressed in all cell types, we found that the co-299 

expression of most genes was cell type-specific, and yet there also existed a significantly large 300 

number of genes whose co-expression occurred among multiple cell types. This enrichment of 301 

shared co-expressed genes suggests the existence of a core co-expression network across diverse 302 

cell types. We applied a relatively high statistical significance threshold to extract shared co-303 

expressed genes, which we defined as the core network. 304 

While we identified edges common to many cell types, our inferred core cellular network lacks 305 

edges shared by all cell types. We consider two alternative explanations for this observation. First, 306 

it is possible that a common core co-expression network for all brain cells does not exist, and that 307 

cell co-expression networks are so diverse as to lack such rigid network structure across the cells 308 

of the Drosophila brain. Alternatively, we considered the possibility that a core does exist, but that 309 

the statistical inference of gene co-expression and the threshold value we use to build the network 310 

might not fully resolve the core in all cells. To define the core, we specify multiple parameters, 311 

including a gene correlation metric, a correlation threshold to select co-expressed genes, and an 312 

edge commonality cutoff to extract a core network. Given that our definition of gene interactions 313 

is based on statistical inference of correlations, we might simply fail to observe a real interaction 314 

in one or more cell types due to type II error (false negatives). As we explored this parameter space, 315 

moving from relaxed to stringent parameter values, a few features of the network became apparent. 316 
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In particular, more relaxed parameter values revealed co-expressed gene pairs observed in all cell 317 

types in the brain, but this inherently increased the risk of false positive gene pairs (type I error), 318 

as revealed by network permutation. In an effort to reduce the risk of false positives, we examined 319 

a more conservative parameter space, which still yielded many edges shared widely across cell 320 

types, but did not identify edges shared by all cells. We looked in detail at those edges that were 321 

in our defined core cellular network, with edges present in ≥14 cell types, and yet were absent 322 

from the top 1% of most significantly correlated gene pairs in the remaining cell types. We found 323 

that almost all of these edges were in fact ranked among the most highly co-expressed, but below 324 

the initial threshold, in the remaining cell types. Thus, their absence from the core appeared to be 325 

due to their relatively weak co-expression strengths compared to the cell type-specific gene pairs. 326 

Together, our analysis indicates the existence of a core cellular network, though the size and 327 

composition that we define is conditional on parameter choices. 328 

 329 

Topological properties of the core network 330 

With our current parameter choices, the defined core network is remarkably small when 331 

compared to the much larger network of cell-specific interactions. In particular, only 0.5% of co-332 

expressed gene pairs are shared by ≥10 cell types in the fly brain. This number is at the lower end 333 

compared with previous studies of different biological networks. For example, Skinnider et al. 334 

(2021) constructed tissue-specific PPI networks for seven mouse tissues and found 0.7% of all 335 

detected PPIs were shared by all tissues. Neph et al. (2012) built TF interaction networks for 41 336 

cell types in humans and found that five percent of interacting TFs were common to all cell types. 337 

Almass et al. (2005) used flux-balance analysis to study active metabolic reactions of Escherichia 338 
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coli in 30,000 diverse simulated environments and found 90 of 758 (11.9%) reactions were always 339 

active. 340 

What are the factors that contribute to the size of a core network? From a statistical perspective, 341 

the number of co-expressed genes change along with parameter choices, which in turn modify the 342 

observed core network size. From a biological perspective, different biological contexts, such as 343 

organ, sex, genotype and age, might have condition-specific co-expressed gene pairs, which would 344 

affect the core network edge compositions and hence its size. Our defined core network was 345 

discovered using fly brains, a complex organ with highly heterogeneous cell type composition. 346 

Projecting such an analysis to more organs, or even to a whole fly, would very likely reveal an 347 

even smaller core, as the inclusion of a larger set of diverse cells would lead to a smaller set of 348 

universal edges. Furthermore, some of the modules that we find in the core we describe here appear 349 

to be related to the brain in particular, and so it seems reasonable to presume that those modules 350 

would not be found in an analysis that includes more organs or tissues. We therefore speculate that 351 

the relative core size of 0.5% that we observe is an overestimate of the true core network size for 352 

all cells found in Drosophila melanogaster. While the 1810 edges and 179 genes in the core might 353 

decrease in an organism-wide analysis, we postulate that such an analysis could ultimately identify 354 

modules with a low but constant number of co-expressed genes due to the presence of a small core 355 

network common to all cells in an individual. 356 

Another prominent feature of this core network is its dense connectivity. The gene network 357 

architecture we observed, which embodies extensive cell-type specific interactions along with a 358 

shared and densely connected core, echoes findings from other types of biological networks. For 359 

example, Liu et al. (2020) identified 13,764 PPIs in yeast across nine environments and found that 360 

60% of PPIs were found in only one environment. They also show that PPIs, present in ≥8 361 
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environments, form 'tight' modules of high node degree, while PPIs in ≤3 environments form less-362 

connected modules of smaller node degree (Liu et al. 2020). Protein interaction networks based on 363 

just two human cell lines revealed that shared interactions tend to reside in dense subnetworks and 364 

correspond to known protein complexes such as the exosome and the COP9 signalosome (Huttlin 365 

et al. 2021). Similarly, network analyses of gene co-expression from bulk transcriptomics in 366 

Arabidopsis and humans suggest a highly connected core, which appears alongside an extensive 367 

number of condition-specific gene interactions (He and Maslov 2016; Lee et al. 2004). Taken 368 

together, these results suggest a universal organizing principle in biological systems, where widely 369 

shared components of interaction networks are relatively small and densely connected (Milo et al. 370 

2004; 2002; Csermely et al. 2013). 371 

 372 

An evolutionary perspective of the multi-part core network 373 

Previous work suggests that biological systems evolve and function in a modular fashion, 374 

where groups of genes that share functional relationships tend to co-evolve independently of genes 375 

in other functional groups, and where genes and proteins that share function tend to be co-regulated 376 

(Hartwell et al. 1999; Schlosser and Wagner 2004; Ryan et al. 2012; Ge et al. 2001; Martin and 377 

Fraser 2018). Consistent with this, we find the core network is modularly structured. Modules 378 

within the core network have different evolutionary signatures and enrich different biological 379 

functions. In our analysis of the age distributions of module gene members, we found some 380 

modules with genes of ancient origin, and others with a mixture of ancient and young genes, and 381 

at least one having a surprisingly young signature. 382 
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It is obviously of great interest to determine the origination time and evolutionary dynamics of 383 

the core network modules. As a first step, we dissected the module gene members into 384 

phylostratographic age groups. However, this gene age information is not sufficient to infer 385 

module ages, as the mere presence of two ancient genes is not equivalent to ancient co-expression, 386 

genes can be co-opted to generate new functions by changing their patterns of regulation (Ruprecht, 387 

Vaid, et al. 2017; Thompson, Regev, and Roy 2015). To better estimate the evolutionary origin of 388 

each module, we would need to apply a phylogenetic analysis of gene co-expression, and thus 389 

module dynamics, across multiple species. Given the focus here on a single species, we cannot 390 

infer the degree of evolutionary conservation of the co-expression relationships themselves, and 391 

so we cannot determine if the network modules we describe are themselves of different ages. That 392 

said, there is still some evolutionary inference we can draw based on the evolutionary ages of the 393 

genes within each module. Gene modules with a young age signature are only feasible after those 394 

young genes emerged. Thus, gene age sets an upper bound on module origination time. For 395 

example, the ages of genes in module 4 are distributed among ‘Bilateria’, ‘Protostomia’, and 396 

‘Arthropoda’ evolutionary periods. The most recent of these groups, the Arthropoda, thus sets an 397 

upper bound on module age—it must have arisen sometime after the origin of arthropods. 398 

Our observation of core modules with genes of different ages is in line with previous 399 

comparative studies based on bulk transcriptomics, which suggest that core modules may have 400 

evolved at different times (Pembroke, Hartl, and Geschwind 2021; Stuart et al. 2003). Our work 401 

however points toward a more limited core network, both in size and in function, than these studies. 402 

At the resolution afforded by bulk transcriptomic analysis, ancient co-expression modules 403 

preserved across species appear quite broad in function, including ribosome, proteasome, energy 404 

generation, cell cycle, secretion, transcription and translation functions (Stuart et al. 2003), while 405 
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less evolutionarily conserved modules are naturally involved in an even broader range of functions 406 

(Pembroke, Hartl, and Geschwind 2021; Stuart et al. 2003). We show however that even in a single 407 

species, the conserved core network is enriched in a smaller range of functions, and we argue that 408 

this is an overestimate of the core network that may be conserved across a whole organism, much 409 

less across species. Of the two modules that we describe that consist of evolutionarily ancient 410 

genes, one was functionally enriched for ribosome biogenesis and the other for protein folding. 411 

Due to the gene-age distribution of these modules relative to the others we identify, we speculate 412 

that these two modules are most likely to be conserved across the widest range of cells and of 413 

species. The ‘hybrid’ modules, containing both young and old genes, enrich ATP metabolic 414 

processes, oxidative phosphorylation, glycolysis, and chemical synaptic transmission. This pattern 415 

points to these hybrid core modules being important for energy metabolism, perhaps in brain cells 416 

in particular, but regardless, we suspect that these modules would be less conserved across cells 417 

and species. To obtain a more complete understanding of the emergence, assembly and 418 

evolutionary dynamics of the core cellular network and its conserved functions, future studies 419 

should focus on obtaining single cell data from more tissues and from multiple species. 420 

 421 

Limitation and future directions 422 

In this study, we sought a core of interacting genes found across cell types in the fly brain. 423 

While the work described here benefits from access to high quality single-cell transcriptome data, 424 

there are still several caveats worth noting. First, the fly brain cell atlas (Davie et al. 2018) was 425 

generated using a mixture of two genotypes, and with cells from both female and male fly brains 426 

and from individuals of several ages. Thus, genotype, sex or age-specific gene co-expression 427 
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patterns are hidden. Future studies targeting individual genotypes, separate sexes, and/or specific 428 

age groups might identify core networks that differ by age, sex or genotype. Second, we inferred 429 

co-expressed gene pairs from gene expression data statistically. Gene co-expression is not 430 

equivalent to gene co-regulation, which may be more indicative of functional relationships. Further 431 

experimental work is needed to validate the functional implications of these gene pairs. Lastly, we 432 

note that this analysis is based on scRNA-seq data, rather than single nuclear RNA-seq. These two 433 

approaches might capture different aspects of cell activity (H. Wu et al. 2019; Denisenko et al. 434 

2020; Thrupp et al. 2020). 435 

To fully understand the molecular basis of cell functions, we need to integrate biological 436 

networks from different domains—e.g., transcriptome, proteome, or metabolome. It would be of 437 

considerable interest to compare core networks defined for each domain and to study their 438 

relationships. For example, it has been shown that genes whose protein products physically interact 439 

tend to be co-expressed together, suggesting an interdependence of network structure between 440 

biological domains (Fraser et al. 2004; Ge et al. 2001; Lemos, Meiklejohn, and Hartl 2004). A 441 

number of challenges exist however, such as how to define core networks for different types of 442 

data, and how to relate networks between domains (Civelek and Lusis 2014; Mitra et al. 2013). 443 

Future studies addressing these challenges may identify a systematic approach to comprehensively 444 

survey and compare core networks in different domains. Such an analysis could elucidate the 445 

organizing principles of cellular networks and provide deeper insight into the evolutionary origin 446 

and molecular functions shared by all cells. 447 

 448 
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Conclusions 449 

In summary, we leveraged single cell transcriptome data to reveal a core cellular network in fly 450 

brains, and deciphered its topological, structural, functional, and evolutionary properties. Our 451 

study demonstrates that studying single cell data through a network approach can provide novel 452 

insights into understanding cellular functions in a complex organ. It would be valuable to apply 453 

our analysis to similar data from different organs, and in multiple species, to reveal the most 454 

conserved network components, and the core networks that exist in cells of all multicellular 455 

organisms. 456 

 457 

Materials and Methods 458 

Dataset collection and preprocessing 459 

We downloaded the fly brain atlas data from NCBI Gene Expression Omnibus with GEO 460 

accession ‘GSE107451’. The original dataset contains 17,473 gene expression data in 56,902 high-461 

quality brain cells grouped into 115 cell clusters. As a quality control step, we first removed 668 462 

cells in a cell cluster named ‘Hsp’ as they represent stressed cells (Jasper Janssens, personal 463 

communication). We then removed cells that had either less than 200 expressed genes, less than 464 

500 total unique molecular identifier counts, or a total fraction of mitochondrial gene expression 465 

exceeding 30%. These criteria led to the removal of another 42 cells, leaving 56,192 cells. These 466 

cells were annotated to 115 cell clusters (Davie et al. 2018). We selected 33 cell clusters which 467 

had at least 200 cells and were annotated to known brain cell types in the following analyses 468 

(Figure S1). 469 
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We filtered genes for each cell type individually by removing genes that were expressed in less 470 

than 15 cells, or in fewer than 0.5% of cells in that cell type. This gene filtering procedure led to 471 

8013 genes as expressed in at least one cell type, 2368 of which were commonly expressed in all 472 

33 cell types (Figure S1). 473 

 474 

Constructing cell type-specific gene co-expression networks 475 

We used the bigScale2 algorithm (Iacono, Massoni-Badosa, and Heyn 2019) to compute a 476 

gene-gene correlation matrix for each cell type (Figure S2). This algorithm was tailored to mitigate 477 

the impact of sparse counts at the single-cell level. It first groups cells into homogenous cell 478 

clusters, then performs differential expression (DE) analysis between all pairs of clusters. With N 479 

clusters, we obtain N*(N-1)/2 unique comparisons and each comparison generates one Z-score for 480 

each gene, indicating the likelihood of an expression change between the corresponding two 481 

clusters. Finally, bigScale2 uses transformed Z-scores instead of original expression values to 482 

calculate Pearson correlation coefficients (Figures S3). For each cell type, we ranked gene pairs 483 

by their absolute correlation values and placed the top 1% of correlated gene pairs into a co-484 

expression network, with the corresponding absolute correlation values ranging from 0.53 to 0.93. 485 

Network summary statistics, including major component size, average path length, and clustering 486 

coefficient were calculated using functions from the R package iGraph (Csardi and Nepusz 2006) 487 

(Table S1). 488 

 489 
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Computing gene and edge commonality distributions 490 

To evaluate commonality and specificity across cell type-specific networks, we plot the node 491 

and edge commonality distributions. The commonality of a node (gene) refers to the number of 492 

cell types in which this gene was found to be co-expressed (edge) with at least one other gene. The 493 

commonality of an edge linking a given pair of genes refers to the number of cell types in which 494 

this edge is detected. 495 

 496 

A mathematical approximation of the edge commonality distribution 497 

We derived a mathematical approximation for the probability of a gene pair to be co-expressed 498 

in a given number of cell types. As we focused on 2,368 commonly expressed genes and selected 499 

the top 1% highly correlated genes in each cell type, a gene pair has a probability of 0.01 as being 500 

co-expressed in any one cell type. Examining 33 cell types and using the binomial distribution, the 501 

probability P(k) of a gene pair co-expressed in k cell types equal 502 

𝑃(𝑘) = 𝐶(33, 𝑘) ∗ 	0.01/ ∗ (1 − 0.01)112/  503 

with the first term representing the combinatorial number describing the number of ways of 504 

picking k items from a pool of 33 cell types. Following this equation, the probability of a gene pair 505 

not co-expressed in any cell type is 0.7177 at k = 0. Given the 2,368 commonly expressed genes, 506 

𝐶(2358,2) ∗ (1 − 0.7177) = 791,068 non-redundant gene pairs were expected to co-express in at 507 

least one cell type. 508 

 509 
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Network randomization 510 

To obtain a null distribution for edge commonality distributions, we used a network 511 

randomization approach. We randomized the edges in each cell type-specific network individually 512 

keeping the gene connectivities fixed using the rewire function in iGraph. A set of randomizations 513 

for all 33 cell types resulted in one pseudo edge commonality distribution. We performed the 514 

randomization procedure 100 times and used the ensemble of the 100 pseudo edge commonality 515 

distributions as the null distribution. We computed the null distribution with different percentile 516 

cutoff values and used Jensen–Shannon divergence with the JSD function from the R package 517 

Philentropy (Drost 2018) to measure the distance between two distributions. 518 

 519 

Calculation of clustering coefficient per edge 520 

To determine the topological properties of edges with different levels of commonality, we 521 

calculated a clustering coefficient for each edge following the approach in Huttlin et al. 2021. We 522 

combined all cell type-specific networks into a pan-network whose edge weights reflected edge 523 

commonality. For each edge in the pan-network, we extracted all first-degree neighbors of the two 524 

genes constituting this edge. These neighbors and the two focal genes defined a subgraph from the 525 

whole pan-network. For each subgraph, we calculated the clustering coefficient as the number of 526 

triangles (3 vertices with three edges) divided by the number of connected triples (3 vertices with 527 

two edges). As the clustering coefficient of a graph is related to its connectivity, or edge density, 528 

a high local clustering coefficient indicates that this edge is located in a dense subnetwork. 529 

 530 
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Rank aggregation analysis 531 

Each gene pair or edge has an rank based on its absolute correlation value in a given cell type. 532 

To quantify if one edge is ranked consistently higher across a set of cell types based on its absolute 533 

correlation value, we used the aggregateRanks function from the R package RobustRankAggreg 534 

(Kolde et al. 2012). This function is based on a probabilistic model of order statistics and computes 535 

a derived P value for each edge. The derived P value ranges from 0 to 1 and serves as an upper 536 

bound of the computationally expensive exact P value, with a small value indicating one edge is 537 

ranked consistently higher across cell types and a larger value meaning one edge’s rank 538 

distribution over cell types follows a random pattern. We chose 10 edge commonality groups: 1, 539 

4, 8, 10, 12, 14, 16, 18, 20, and 22. Within each edge commonality group, we randomly sampled 540 

100 edges. For each edge, we first collected the cell types that this edge was absent (didn’t make 541 

to the top 0.1% correlations), and then calculated the derived P values on these cell types. The 542 

derived P values were corrected for multiple testing using the p.adjust function in R with the 543 

Benjamini-Hochberg method, referred to as adjusted P values hereafter. We plotted the adjusted P 544 

value distribution of the 100 sampled edges for each edge commonality group separately. 545 

 546 

Module decomposition and functional annotation of the core 547 

To decompose the core cellular network into highly connected modules, we used the mcl 548 

function from the R package MCL (Jäger 2015) which implements a Markov cluster algorithm to 549 

identify clusters in networks. After module detection, we performed Gene Ontology (GO) 550 

enrichment analysis of genes in each module using the R package clusterProfiler (T. Wu et al. 551 

2021) with a Bonferroni correction and an adjusted P value cutoff of 0.05. Significant GO terms 552 
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were identified and refined to reduce redundant GO terms via the simplify method from the 553 

clusterProfiler package. 554 

 555 

Assigning genes into evolutionary age groups 556 

We downloaded data from a previous study to assign genes into different evolutionary age 557 

groups using a phylostratigraphy framework (Domazet-Lošo et al. 2017). This framework allows 558 

us to date the evolutionary origination time of a gene by identifying its homologs across the tree 559 

of life. There were 13,794 genes assigned to 12 age groups in the original publication, 2,222 of 560 

which overlapped with the 2,368 expressed genes in this study, including 1,021 genes in the oldest 561 

age group “CellLife”, 707 in “Eukaryota”, 88 in “Opisthokonta”, 140 in “Metazoa”, 34 in 562 

“Eumetazoa”, 78 in “Bilateria”, 15 in “Protostomia”, 17 in “Arthropoda”, 16 in “Pancrustacea”, 563 

46 in “Insecta”, 48 in “Diptera” and 12 in the youngest age group “Drosophila”. 564 
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 764 

Figure legends 765 

Figure 1. Number of expressed genes per cell type and the number of expressed cell types 766 

per gene. 767 

The number of expressed genes for each brain cell type (left) and the number of cell types one 768 

gene was detected as expressed (right). The dotted vertical line on the left panel indicates the 2,368 769 

commonly expressed genes. 770 

 771 

Figure 2. Gene and edge commonality distributions.  772 

The commonality of an edge indicates the number of cell types one edge was detected (top). The 773 

commonality of a gene refers to the number of cell types one gene was detected as co-expressed 774 

with at least one another gene (bottom). The y-axis shows the frequency of genes or edges in the 775 

corresponding commonality score group, the numbers on top of each bar shows the counted 776 

number of genes or edges. 777 

 778 
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Figure 3. The observed edge commonality distribution compared with the null from network 779 

randomization. 780 

The yellow dots show the observed edge commonality distribution and the grey dots the null 781 

distribution from network randomization. Network randomization was performed 100 times for 782 

each cell type individually with network size (number of nodes and edges) and gene degree 783 

(number of co-expressed gene partners per gene) fixed. 784 

 785 

Figure 4. Topological properties of shared edges and the determination of edge commonality 786 

cutoff value defining a core. 787 

A. Edge commonality was plotted against edge clustering coefficient. Edge commonality 788 

measures the number of cell types one edge was detected. Edge clustering coefficient 789 

shows one edge’s neighborhood edge density. 790 

B. The clustering coefficient values of the subgraphs (y-axis) change with increasing edge 791 

commonality cutoff values (x-axis). Progressive increasing edge commonality cutoff 792 

values were applied to the pan-network and edges whose commonality were equal or larger 793 

than the cutoff value were retained, the clustering coefficient of each resulting subgraph 794 

was calculated. 795 

C. The edges composing a core cellular network at edge commonality cutoff 14 were 796 

highlighted in red. 797 

 798 
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Figure 5. Decomposing the core subcellular network into modules. 799 

A. The heatmap of gene co-expression relationships and decomposed modules in the core 800 

cellular network. Modules which have at least 5 gene members are highlighted in different 801 

colors and numerically indexed. Gene symbols are shown on the right side of the matrix 802 

with colors matched to the corresponding module. 803 

B. Network visualization of the core modules. 804 

C. Enriched GO terms for each core module. We used the R package ‘clusterProfiler’ to 805 

perform gene set enrichment analysis of Gene Ontology with a Bonferroni correction and 806 

an adjusted P value cutoff of 0.05. In each module, the top terms are shown (up to 6). A 807 

full list of enriched GO terms for each module is provided in Table S3. 808 

 809 

Figure 6. Distinct evolutionary signatures of core modules. 810 

A. We assigned fly genes into different evolutionary age groups in a phylostratigraphy 811 

framework. The number of genes in each evolutionary age group were compared between 812 

commonly expressed genes and genes constituting the core using a one-sided fisher exact 813 

test. Multiple-testing was adjusted using the p.adjust function in R with the Benjamini & 814 

Hochberg method. ***, p.adjust < 0.001. 815 

B. The age distribution of gene members of each core module. The size of each circle 816 

represents the proportion of genes in that evolutionary age group in the corresponding 817 

module. 818 
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Figure 1. Number of expressed genes per cell type and the number of expressed cell types 

per gene. 

The number of expressed genes for each brain cell type (left) and the number of cell types one 

gene was detected as expressed (right). The dotted vertical line on the left panel indicates the 2,368 

commonly expressed genes.
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Figure 2. Gene and edge commonality distributions.  

The commonality of an edge indicates the number of cell types one edge was detected (top). The 

commonality of a gene refers to the number of cell types one gene was detected as co-expressed 

with at least one another gene (bottom). The y-axis shows the frequency of genes or edges in the 

corresponding commonality score group, the numbers on top of each bar shows the counted 

number of genes or edges. 
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Figure 3. The observed edge commonality distribution compared with the null from network 

randomization. 

The yellow dots show the observed edge commonality distribution and the grey dots the null 

distribution from network randomization. Network randomization was performed 100 times for 

each cell type individually with network size (number of nodes and edges) and gene degree 

(number of co-expressed gene partners per gene) fixed. 
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Figure 4. Topological properties of shared edges and the determination of edge commonality 

cutoff value defining a core. 

A. Edge commonality was plotted against edge clustering coefficient. Edge commonality measures 

the number of cell types one edge was detected. Edge clustering coefficient shows one edge’s 

neighborhood edge density. 

B. The clustering coefficient values of the subgraphs (y-axis) change with increasing edge 

commonality cutoff values (x-axis). Progressive increasing edge commonality cutoff values were 

applied to the pan-network and edges whose commonality were equal or larger than the cutoff 

value were retained, the clustering coefficient of each resulting subgraph was calculated. 

C. The edges composing a core cellular network at edge commonality cutoff 14 were highlighted 

in red.
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Figure 5. Decomposing the core subcellular network into modules. 

A. The heatmap of gene co-expression relationships and decomposed modules in the core cellular 

network. Modules which have at least 5 gene members are highlighted in different colors and 

numerically indexed. Gene symbols are shown on the right side of the matrix with colors matched 

to the corresponding module. 
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B. Network visualization of the core modules. 

C. Enriched GO terms for each core module. We used the R package ‘clusterProfiler’ to perform 

gene set enrichment analysis of Gene Ontology with a Bonferroni correction and an adjusted P 

value cutoff of 0.05. In each module, the top terms are shown (up to 6). A full list of enriched GO 

terms for each module is provided in Table S3. 
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Figure 6. Distinct evolutionary signatures of core modules. 

A. We assigned fly genes into different evolutionary age groups in a phylostratigraphy framework. 

The number of genes in each evolutionary age group were compared between commonly expressed 

genes and genes constituting the core using a one-sided fisher exact test. Multiple-testing was 
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0.00

0.25

0.50

0.75

1.00

CellL
ife

Euk
ary

ota

Opis
tho

ko
nta

Meta
zo

a

Eum
eta

zo
a

Bilat
eri

a

Prot
os

tom
ia

Arth
rop

od
a

Pan
cru

sta
ce

a

Ins
ec

ta

Dipt
era

Dros
op

hila

Gene age (old<−>young)

Fr
eq

ue
nc

y 
of

 g
en

es
commonly.expressed.genes core genes

●

●

●

●

●

● ●

●

●

●

●

1

2

3

5

6

7

4

Ce
llLi
fe

Eu
ka
ryo
ta

Op
isth
ok
on
ta

Me
taz
oa

Eu
me
taz
oa

Bil
ate
ria

Pro
tos
tom
ia

Ar
thr
op
od
a

Pa
nc
rus
tac
ea

Dip
ter
a

Gene age (old<−>young)

M
od

ul
e

Percentage
● 0.2

0.4
0.6
0.8

A

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2021. ; https://doi.org/10.1101/2021.09.19.460857doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460857
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

adjusted using the p.adjust function in R with the Benjamini & Hochberg method. ***, p.adjust < 

0.001. 

B. The age distribution of gene members of each core module. The size of each circle represents 

the proportion of genes in that evolutionary age group in the corresponding module. 
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