New Results
High Resolution Ancestry Deconvolution for Next Generation Genomic Data
Helgi Hilmarsson, Arvind S. Kumar, Richa Rastogi, View ORCID ProfileCarlos D. Bustamante, View ORCID ProfileDaniel Mas Montserrat, View ORCID ProfileAlexander G. Ioannidis
doi: https://doi.org/10.1101/2021.09.19.460980
Helgi Hilmarsson
1Stanford University, Institute for Computational and Mathematical Engineering, Stanford, 94305, USA
Arvind S. Kumar
1Stanford University, Institute for Computational and Mathematical Engineering, Stanford, 94305, USA
Richa Rastogi
2Cornell University, Department of Computer Science, New York, 10044, USA
Carlos D. Bustamante
3Stanford University, Department of Biomedical Data Science, Stanford, 94305, USA
Daniel Mas Montserrat
3Stanford University, Department of Biomedical Data Science, Stanford, 94305, USA
Alexander G. Ioannidis
1Stanford University, Institute for Computational and Mathematical Engineering, Stanford, 94305, USA
3Stanford University, Department of Biomedical Data Science, Stanford, 94305, USA
Article usage
Posted September 21, 2021.
High Resolution Ancestry Deconvolution for Next Generation Genomic Data
Helgi Hilmarsson, Arvind S. Kumar, Richa Rastogi, Carlos D. Bustamante, Daniel Mas Montserrat, Alexander G. Ioannidis
bioRxiv 2021.09.19.460980; doi: https://doi.org/10.1101/2021.09.19.460980
Subject Area
Subject Areas
- Biochemistry (13167)
- Bioengineering (10016)
- Bioinformatics (32064)
- Biophysics (16528)
- Cancer Biology (13608)
- Cell Biology (19339)
- Clinical Trials (138)
- Developmental Biology (10455)
- Ecology (15515)
- Epidemiology (2067)
- Evolutionary Biology (19808)
- Genetics (13105)
- Genomics (18141)
- Immunology (13254)
- Microbiology (31002)
- Molecular Biology (12915)
- Neuroscience (67709)
- Paleontology (496)
- Pathology (2089)
- Pharmacology and Toxicology (3615)
- Physiology (5637)
- Plant Biology (11623)
- Synthetic Biology (3241)
- Systems Biology (7930)
- Zoology (1794)