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ABSTRACT11

As genome-wide association studies and genetic risk prediction models are extended to globally diverse and admixed cohorts,
ancestry deconvolution has become an increasingly important tool. Also known as local ancestry inference (LAI), this technique
identifies the ancestry of each region of an individual’s genome, thus permitting downstream analyses to account for genetic
effects that vary between ancestries. Since existing LAI methods were developed before the rise of massive, whole genome
biobanks, they are computationally burdened by these large next generation datasets. Current LAI algorithms also fail to
harness the potential of whole genome sequences, falling well short of the accuracy that such high variant densities can
enable. Here we introduce Gnomix, a set of algorithms that address each of these points, achieving higher accuracy and
swifter computational performance than any existing LAI method, while also enabling portable models that are particularly
useful when training data are not shareable due to privacy or other restrictions. We demonstrate Gnomix (and its swift phase
correction counterpart Gnofix) on worldwide whole-genome data from both humans and canids and utilize its high resolution
accuracy to identify the location of ancient New World haplotypes in the Xoloitzcuintle, dating back over 100 generations. Code
is available at https://github.com/AI-sandbox/gnomix.

12

1 Background & Summary13

The importance of increasing inclusion in genome-wide association studies (GWAS) has been well documented1, but most14

worldwide populations are still highly underrepresented in large-scale genomic studies2–4, in part due to complexities involved15

in analyzing ancestrally diverse and admixed cohorts. Recently, advances have been made that utilize local ancestry inference16

(LAI) to help power diverse GWAS5, 6. These approaches place a burden on LAI algorithms to perform efficiently, reproducibly,17

and accurately on the increasingly large cohorts being studied.18

Over the years several methods for local-ancestry inference have been published. SABER7, HAPAA8, and HAPMIX9
19

used Hidden Markov Models (HMMs). The accuracy and efficiency of these methods were later surpassed by LAMP10, a20

method that applied probability maximization within a sliding window, but could handle only a limited number of ancestries.21

Support Vector Machines (SVM)11 and Random Forests (RF) with a conditional random field (RFMix)12 were later explored22

for increased accuracy, with the latter currently considered to be state-of-the-art. Refinements including ELAI (HMMs)13,23

and Loter (dynamic programming with template matching and bagging) have been developed since14. Recently, LAI-Net, a24

local-ancestry estimation method based on a neural network, was demonstrated to provide competitive results15.25

These past methods have been severely challenged by the ballooning numbers of samples in modern biobanks and the26

large number of sites in increasingly affordable whole genome sequences. As biobanks consisting of hundreds of thousands of27

individuals are now common16–19, and whole genome sequences of these biobanks are imminent, such limitations of existing28

LAI methods need to be addressed.29

In this work, we present Gnomix, a flexible collection of new local ancestry algorithms capable of assigning ancestry labels30

to DNA segments from massive biobanks of either whole genome or single nucleotide polymorphism (SNP) array data with31

higher accuracy and swifter execution than any existing methods. The framework has two stages; a set of classifiers (base32

models) that perform an initial estimate of the ancestry probabilities within genomics windows, and a second stage consisting33

of another module (smoother) that learns to combine and refine these estimates, significantly increasing our accuracy. This34

framework is highly modular and supports a variety of combinations of classifier and smoother algorithms, enabling the user to35

select the configuration with a suitable trade-off between compute time, model size, and accuracy. We present an in-depth36
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analysis of these configurations, and we recommend combinations that produce optimal trade-offs for the user according to37

their computational resources and their particular data.38

For the base module’s classifiers (base models) we explore first the historically successful LAI classifiers (e.g. Random39

Forest and SVMs) followed by other classical machine learning classifiers (e.g. logistic regression and gradient boosting).40

In addition to these, we propose an innovation that generalizes the string kernel20. This method, which we name covariance41

reduction string kernel (CovRSK), adapts a sampling technique to reduce redundant features of the kernel and acts as a42

regularizer, improving the overall accuracy.43

For the smoother we propose a data-driven approach, learning to capture the correlation structure of populations and the44

distribution of recombination breakpoints directly without relying on simplified models or assumptions. We explain how45

training the base models and smoother sequentially on the same data induces a covariate shift for this latter stage and present an46

alternative training pipeline which prevents this subtle bias. We compare various base models (both novel and existing) and47

show that XGBoost is the most successful smoother, surpassing alternatives like linear convolutional filters and conditional48

random fields (CRFs).49

We show how several different instantiations of our method, Gnomix, widely outperform current state-of-the-art LAI50

methods in both accuracy and speed across a variety of datasets. We also introduce a novel phase correction algorithm, Gnofix,51

which uses a trained instance of a Gnomix smoother to phase segmented ancestry probabilities, such as the output of the base52

models, in a highly scalable manner. Finally, we demonstrate Gnomix-Gnofix capabilities by investigating the genomic history53

of New World dogs.54

2 Results55

2.1 Local ancestry inference with Gnomix56

2.1.1 System overview57

We present a supervised method that uses haplotypes from a reference panel of single-ancestry individuals from differentiated58

population groups to learn a model that assigns an ancestry estimate to each segment of admixed chromosomes with high59

accuracy. We encode biallelic SNPs using the standard 0/1 format, zero for the reference allele and one for the alternative allele.60

For diploid organisms, such as humans, we consider maternal and paternal sequences independently and assume that they are61

correctly phased, although we can correct phasing errors with our new Gnofix algorithm, described below. If sequences are62

unphased, existing phasing algorithms can be employed before running Gnomix. Since we cannot have SNP-level ground-truth63

ancestry labels for admixed individuals, we simulate admixed progeny from single ancestry real genomes based on the human64

recombination map. We refer the reader to Section 3 for more details about dataset generation. Our proposed system splits each65

haplotype into windows of equal numbers of SNPs and outputs one ancestry estimate for each window. These initial probability66

estimates are then refined using the smoothing module, yielding the final ancestry predictions.67

2.1.2 Base module68

In the first stage of the system, we produce initial ancestry estimates by assigning one model per window that learns to map69

the SNPs within that window to ancestry probabilities Figure 1a-d. The 0/1 encoded biallelic SNP sequences are segmented70

into W equally sized windows and each window is passed into a classifier. Because the learned classification function is not71

translation invariant (an identical sequence of zeros and ones might indicate a different ancestry depending on its location in72

the genome) a different classifier is applied at each windowed section of the input sequence. All window-specific classifiers73

have the same hyperparameter configuration, but each learns a different set of model parameters. Because neighbouring SNPs74

are usually inherited together (linkage), using a window-based approach that jointly processes co-located SNPs is a sensible75

approach. The independent treatment of windows results in highly parallelizable training and inference, leading to a significant76

time reduction that scales linearly with the number of available CPUs. Each model outputs a local ancestry probability estimate77

that can be thought of as an ancestry-aware mapping to translation-invariant features (the probability estimates) from the78

translation-variant SNP sequences. The former can be processed by convolutional or sliding-window based approaches (e.g.79

the smoother module).80

Optimizing the window size of the classifiers results in a classic bias-variance trade-off. As the window size grows,81

each classifier sees more positions of the chromosome (more features) and provides more accuracy, but also yields a lower82

resolution series of genomic estimates, since larger windows necessarily span more of the genome. Such low resolution83

estimates can subsume small segments of ancestries that reflect old admixture events or can span ancestry switch-points,84

resulting in conflicting learning procedures as two different ancestries can then exist within the same window. On the other hand85

small windows give noisier probability estimates, leaving to the smoother the task of correcting the predictions. Furthermore,86

genotyping array data, which has a low density of SNPs, gives poor performance when small genetic windows are used, as a87

very low number of SNPs are available in each window. To alleviate these trade-offs we make use of overlapping windows,88

introducing a concept of context, c. With a non-negative context, each base-model sees c SNPs on either sides of its assigned89
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Figure 1. Schematic of the Gnomix algorithm. a) Genome sequence segmentation b) Binary (biallelic) encoding c) Local
base classifiers’ learning procedure d) Probability estimates of local base classifiers e-f) Sliding smoother module is trained to
learn to aggregate local base model probabilities h) Smoothing module outputs final local ancestry predictions along the
chromosome.

segment. In this way given a window size of w, each base-model sees a total of w+2c SNPs. This allows each model to see90

more SNPs without decreasing the prediction resolution along the genome.91

Our proposed system is highly modular and enables a choice of many supervised discriminative classifier models for both92

the base and the smoothing module. This allows for easy replacements that are suited for a given task. For our system, we93

explored a broad spectrum of classifier families:94

• Tree-based methods: including Random Forest, XGBoost, CatBoost, and Light Gradient Boosting Machine (LGBM).95

These are well-suited for genomic data as they can handle high-dimensional, discrete, and missing data in an accurate and96

fast manner. Furthermore, their non-linearities can capture dependency information generated by linkage disequilibrium97

(LD) within the sequences.98

• Linear Models: including Logistic Regression, Linear Discriminant Analysis, and Naive Bayes. Linear models provide99

fast and interpretable classifiers that can make use of the divergent SNP frequencies between populations to successfully100

classify each window.101

• Support Vector Machines and k-Nearest Neighbour: including SVMs with linear kernel, radial basis function kernel,102

string kernel, and our novel CovRSK. Kernel Machines such as SVMs and k-NN can accurately classify genomic103

sequences by computing a similarity measure between the input sequence and some support (training) sequences of104

known ancestry. Furthermore, the string kernel and CovRSK can handle admixture and linkage disequilibrium (LD).105

2.1.3 Smoother module106

After the windowed SNPs are passed through the base module, the initial ancestry estimates for each window are refined107

with a smoothing module Figure 1e-h. We introduce a completely data-driven approach to produce refined ancestry estimates108

using discriminative smoother models that are trained to fix the errors made by the base module classifiers and that learn the109

statistical properties of ancestry switches (recombination probabilities) along the chromosome without needing information110

about the dates of admixture events (prior on ancestry segment lengths) or other model based assumptions. Such demographic111

parameters are typically not known exactly and may also vary across samples in a cohort. This approach differs from previous112
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methods like RFMix12 that do require explicit specification of time-since-admixture and employ the same constant to represent113

the transition probability between all population pairs. Our trained smoother allows transition probabilities to be inferred114

(implicitly or explicitly - depending on the smoother) for each ancestry combination and allows these probabilities to vary for115

each window of the genome, resulting in far more flexible modelling and obviating the need for specifying a single (generally116

unknown) time-since-admixture parameter. Except for the CRF, which lacks it, our smoothers share only one hyperparameter,117

the smoothing window size, which specifies how many surrounding base classifier windows to include as input to predict the118

final ancestry estimate for a given window.119

However, simply passing available training data through the base models, acquiring the probability estimates, and then
using them as input in the learning procedure for the smoothing module, introduces a subtle bias; namely, the distributional
shift at test time:

P(Btr,Y tr) 6= P(Bte,Y te)

That is, the joint distribution of the base module probabilities, B, and the correct labels on the training data, Y , will in general be120

different during training and inference (see Figures A1 and A2). This is because the base module will be over-fit to the training121

samples and thus produce overconfident predictions. To avoid this, we split the available training data into two sets: one used to122

train the base module and one to train the smoothing module. The smoother training sequences are first passed through the base123

module to obtain unbiased (not over-fit) estimates of the probabilities that, along with the corresponding labels, better resemble124

the joint distribution at test time. These unbiased probabilities are used as training input for the smoother module. Note that125

this reduces the amount of training data available for both modules. However, training the smoothing module proves to be126

data efficient, since it can learn across the entire genome, and experiments show that its performance is not affected by the127

training data reduction (see Figure A3). To avoid a degradation in accuracy of the base module, we re-train the classifiers on the128

complete training data once the smoothing module has been fully trained. Supporting analysis can be found in Appendix B and129

the full pipeline is elaborated in the Methods section.130

We explore three different types of data-driven smoothers:131

• Linear Convolutional Filter (Logistic): a linear convolution followed by a softmax activation (a convolutional multinomial132

logistic regression) trained with cross-entropy loss learns a smoothing filter that combines probabilities predicted within133

neighbouring windows to obtain more accurate final probabilities. Linearity provides interpretable predictions and the134

weights of the smoother can provide insight into the structure of the training data (see section 2.4).135

• XGBoost: boosting is well suited for the task of aggregating and refining probabilities. XGBoost is applied in a sliding136

window (convolutional) fashion with the same model applied to each set of windows. Since XGBoost is nonlinear, it can137

capture more complex dependencies between windows, leading to more accurate predictions.138

• Linear-Chain Conditional Random Field: CRFs were used in RFMix, so we revisit them as smoother functions. Here we139

learn the transition probabilities by gradient descent instead of using priors.140

2.1.4 Calibration141

Gnomix outputs ancestry probability estimates for each window. By selecting the ancestry with highest probability, an ancestry142

label can be assigned at each window. In order to interpret these probability estimates as confidence measures we need the143

system to be calibrated, so that the predicted probability approximates the true probability for each ancestry label. In other144

words, the predictions given a probability X% are correct X% of the time. However, most classifiers do not satisfy this145

property; thus, we include a calibration step that transforms the predicted probabilities (smoother module output) into calibrated146

probability predictions. Specifically, we use isotonic regression21, a non-parametric method that assumes the probabilities are147

a monotonic transformation of the predictions. By using isotonic regression, the probabilities are shifted closer to the true148

probability for each ancestry label. The calibration module is trained with the base model training subset (data not used by the149

smoother during training) and evaluated on the test dataset. For quantitative evaluation metrics, see Appendix C and Figure A4.150

2.2 String kernels151

In 2000 Lodhi et al.20 introduced the string kernel, an inner product in the feature space that is generated by all subsequences152

of a certain length. For two sequences of length M, x,x′ ∈ R, the string kernel is given by the canoncial equation:153

K(x,x′) =
M

∑
k=1

Sk =
M

∑
k=1

M−k+1

∑
i=1

I(xi:i+k = x′i:i+k)

where Sk is the number of subsequences of length k where x and x′ are equal, or in other words the total count of k-mers that154

match between the two input sequences. This kernel has proven especially suitable for genome sequence comparison including155

for LAI22, 23.156
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2.2.1 String kernel regularization157

Despite its advantages, the string kernel has a few computational inefficiencies and weaknesses. For instance, it can be shown,158

by considering the subsequence equality counts Sk as features that generate the kernel feature space, that the string kernel159

features are highly correlated given certain assumption. In particular, by denoting q as the probability that an input feature is160

the same for two individuals, one can model the kernel features as binomials,161

Sk|Sk−1 ∼ Binomial(Sk−1,q)

The covariance between two kernel features is then given by,162

Cov(Sk,Sk+ j) = q jVar(Sk)

which can be used to bound the correlation from below,

ρSk,Sk+ j ≥ q j+1

See sections E.1, E.2 and E.3 for more details. In the case of genomic sequences, q is often at the high end of the [0,1] interval,163

resulting in a high correlation between close kernel features.164

The variances of the string kernel features decrease dramatically with the subsequence length k (see Figure A5) and as a165

result, their contribution to the feature space decreases and redundancy increases. That is, larger subsequences are less likely to166

affect the similarity measure of two sequences when included. Given the high correlation between neighbouring string kernel167

features, the effectiveness of a given feature is also highly dependent on its neighbouring features being included in the kernel168

(see Figure A6). We use these two observations to produce a more accurate version of the string kernel for this application,169

which we call covariance reducing string kernel (CovRSK).170

CovRSK uses dynamically weighted sampling to select the features to include in order to reduce redundancy and feature171

correlation. The sampling procedure starts with an empty set of features and, in increasing order, adds a feature k with172

probability:173

θα,β (k,k
′) = (1−α

k−k′+1)k−β

Here, k−β corresponds to the decaying property of the feature variance and the first term, (1−αk−k′+1), is a discount174

proportional to the lower bound on the correlation with the last feature added and the one being considered, ρSk,Sk+ j . Both of175

those terms serve the same purpose; making more redundant features less likely. The hyperparameters α , β ∈ [0,1] affect the176

strength of the covariance reduction and the number of features sampled, respectively. It should be noted that CovRSK can be177

seen as a generalization, since with α = β = 0 it recovers the original string kernel. The technique is given in more detail in178

Algorithm 1.179

The inclusion of string kernel features that are spatially correlated does not result only in redundancy, but also leads to an180

overfitting to longer matches leaving the model sensitive to sequencing errors (noise) that can break up the longer matches. In181

sections E.4 and E.5 we demonstrate how CovRSK acts as a regularizer for the string kernel resulting in robustness to such182

noise from genotyping call errors (Figures A7 and A8), and we visualize an example of the sampling procedure in Figure A9.183

Algorithm 1: CovRSK
Input:
• Symbolic sequences x and x′

• Hyperparameters α and β

/* Sample k’s */

Initialize K←{} and k′← 1
for k in 1, 2, ..., p do

rk ∼U(0,1)
if θα,β (k,k′)> rk then

K← K∪{k}
k′← k

end
end
/* Count k-mer matches for k ∈ K */

κ(x,x′)← ∑k∈K ∑
M−k+1
i=1 I(xi:i+k = x′i:i+k)

Result: CovRSK similarity, κ(x,x′)

184

185
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2.2.2 Efficient computation of the string kernel186

From the canonical string kernel equation above in section 2.2, containing an inner product between two sequence vectors, it is187

evident that a naive computation would grow quadratically with sequence size. However, unless these two inputs are a perfect188

match, one does not have to check all of their subsequences. If a subsequence of length k, starting at certain position, is not a189

match, then all sequences of length k′ > k starting from that same position will also not match. Thus, a dynamic programming190

(DP) algorithm, which scans for matches only when shorter matches have already been confirmed, is appropriate. This lends191

itself to recursion, a longer match-check subroutine is called only after finding all shorter matches starting from same positions.192

However, without caution, this can result in an algorithm that still has quadradic complexity, which is easy to see in the worst193

case when the input sequences match exactly. Here one needs M +(M−1)+ ...+1 = M(M+1)
2 ∈ O(M2) additions, one for194

each matching k-mer.195

A better approach follows from the realization that each contiguous matching subsequence µ of the two sequences196

contributes independently to the total similarity,197

K(x,x′) = ∑
µ

T (λµ)

where λµ is the length of match µ and T (λ ) is the total number of k-mer matches within a contiguous match of length λ . Now198

the number of k-mer matches within a given match of length λ is the triangular number of that match length T (λ ), denoted as199

Tλ , and computed by200

T (λ ) =
λ

∑
k=1

k =
λ (λ +1)

2

This inspires a simple, linear time algorithm for computing the string kernel that is shown in Algorithm 2 and illustrated in201

Figure 2.202

Algorithm 2: String kernel with triangular numbers pseudo code
Input: Feature vectors x, x′

/* Find all contiguous matches in x and x′, µ, and their lengths, λµ */

/* For each match, compute its triangular number, T (λµ ) */

/* Sum up the output values, K(x,x′) = ∑µ T (λµ ) */

Result: String kernel similarity, K(x,x′)

203

204

1 1 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0

Figure 2. String kernel computation with triangular numbers visualized for two sequences, x and x′, of length eleven.

Computing the kernel for a data matrix of n individuals requires n2 such kernel similarity scores. For further computational205

optimization, we implemented a DP version of Algorithm 2 that can be vectorized across samples. This version is adjustable206
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for efficient computation of the CovRSK. Detailed implementations of the string kernel with triangular numbers, with the DP207

version, and with the CovRSK customization are listed in Algorithms 5, 6 and 7.208

2.2.3 String kernel generalization and kernel comparison209

The string kernel computation can be considered as a summation of polynomials K(x,x′) = ∑µ g(λ ): we find all contiguous210

matches of the input sequences and their lengths λ , compute the polynomial g(λ ) = T (λ ) = λ (λ+1)
2 = 1

2 λ 2 + 1
2 λ , and sum the211

outputs. The question arises as to whether this polynomial is particularly suitable, or are better functions for the task. For instance,212

the Hamming kernel (another kernel that is historically popular within bioinformatics24) given by H(x,x′) = ∑
M
i=1 I(xi = x′i)213

could be computed in the same manner using the trivial linear polynomial, g(λ ) = h(λ ) = λ . Intuitively, the choice of214

polynomial affects the contribution of longer matches relative to shorter ones. In the case of the Hamming kernel, longer215

sequences have no more importance than shorter ones, while the canonical string kernel weighs sequence length contributions216

quadratically.217

This question leads to a generalization of the string kernel which replaces the triangular number polynomial, T (λ ) with218

other polynomials g(λ ). We refer to this generalization as the Polynomial String Kernel and describe it in Algorithm 3.219

Algorithm 3: Polynomial string kernel pseudo code
Input: Feature vectors x, x′ and a polynomial g
/* Find all contiguous matches in x and x′, µ, and their lengths, λµ */

/* For each match, compute a polynomial of the lengths, g(λµ ) */

/* Sum up the output values, Kg(x,x′) = ∑µ g(λµ ) */

Result: Polynomial String kernel similarity, Kg(x,x′)

220

221

We investigate the optimality of the String Kernel empirically in Figure 3. We plot the validation accuracy for an SVM222

with different instances of the Polynomial String Kernel consisting of monomials of degree between one and two and note that223

neither the Hamming kernel, g(λ ) = λ nor the string kernel, g(λ ) = λ (λ+1)
2 = 1

2 λ 2 + 1
2 λ ≈ λ 2, is optimal. Instead we see the224

optimal degree for a monomial instance of the Polynomial String Kernel is approximately g(λ ) = λ 1.2, nearly reaching the225

accuracy of CovRSK.226

1.0 1.2 1.4 1.6 1.8 2.0
Monomial degree

75.5

76.0

76.5

77.0

77.5

78.0

Va
lid

at
io

n 
ac

cu
ra

cy

Polynomial
String Kernel
CovRSK
String Kernel
Hamming Kernel

Figure 3. Validation accuracies for SVMs with different kernels on the dev dataset. The optimal degree of monomials is
between 1 and 2, suggesting that neither the Hamming kernel (monomial of degree 1) nor the String kernel (polynomial of
degree 2) are optimal. CovRSK has the highest accuracy, closely followed by the optimal monomial instance of the Polynomial
String Kernel.
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2.3 Experimental results227

For thoroughness and a fair comparison to existing methods, we generated multiple continental-admixed datasets. We report228

accuracy, training time, inference time, and model size for our various model configurations on these datasets, which we refer229

to as the Latin American, 5-ancestry and 7-ancestry sets. See Table 1 for a detailed breakdown. The data used for each is whole230

genome, but for completeness we also subsampled a fraction of the SNPs corresponding to those positions found on a common231

genotyping array (specifically that used in the UK Biobank) to create another benchmark dataset (array genotyped). Thoughout232

we consider chromosome 20. We compare all of our results with the most widely used current LAI methods, RFMix (Random233

Forests)12, ELAI (HMMs)13, and Loter (dynamic programming)14, showing that our method widely outperforms each in both234

accuracy and speed on whole genome data. These results are presented below and in Appendix D.235

First, we performed an evaluation of multiple classifiers of the base module. Specifically, we evaluate random forest236

(RF), CatBoost (CB), XGBoost (XGB), light gradient boosting machine (LGBM), K-nearest neighbors (KNN), support vector237

machine (SVM) with radial basis function, SVM with a string kernel, SVM with the polynomial string kernel, SVM with238

CovRSK, linear discriminant analysis (LDA), logistic regresssion, Multinomial Naive Bayes (MNB), Binomial Naive Bayes239

(BNB) and Gaussian Naive Bayes (GNB). Figure 4c compares these accuracies and training and inference times. We see that240

CovRSK SVM is the most accurate classifier, although with a large training time and inference time. Following CovRSK,241

polynomial string kernel and logistic regression provide comparable accuracies with the latter the fastest. Indeed logistic242

regression has a competitive accuracy, surpassing the other linear models including LDA and Naive Bayes, and the fastest243

running time of all models. We note that the gap between Naive Bayes, which assume independence between features, and244

logistic regression, which does not, indicates the importance of accounting for the correlation (linkage) between SNPs. Similarly,245

the additional accuracy of string kernels, which can learn linkage dependencies, over linear models, shows the importance of246

these dependencies, particularly for lower resolution array genotyped datasets (4c). Tree-based methods are seen to have a247

wide range of accuracies and training/inference times. RF provides much lower accuracy than the boosting-based methods,248

while XGBoost provides the most accurate predictions among the tree-based methods with the trade-off of the largest training249

and inference time. Overall, tree-based methods perform poorly compared to kernel and linear methods. Furthermore, linear250

models are considerably faster than tree-based models and kernel-based models. Given these results we select two classifiers251

with different accuracy/speed trade-offs: SVM with CovRSK as the most accurate - but slow - of our classifiers, and logistic252

regression as an accurate, interpretable, and fast classifier.253

We perform an evaluation of different methods used as smoothing modules using SVM with CovRSK and logistic regression254

as base module classifiers. Figure 4a (whole genome) and Figure 4b (genotyped array data) show the training and inference255

speed and the accuracy of the different combinations of classifiers and smoothers. We see that CRF and convolutional smoothers256

are consistently faster than XGBoost smoothers, but typically with a lower accuracy. Additionally, while CovRSK is slower257

than logistic regression on whole genome data, it provides improved speed when working with genotyped array data. We258

additionally compare these different configurations of our system with the currently most common LAI methods: RFMix, Loter259

and ELAI. We observe that our CovRSK-XGboost surpasses all of these methods in accuracy. Indeed, all of our configurations260

surpass RFMix in accuracy, and almost all surpass Loter and ELAI in training and inference time (on both whole genome and261

on genotyped array data). On whole genome data all of our configurations surpass existing methods in speed and in accuracy by262

a large margin. In particulary, our CovRSK-XGboost combination outperforms all others in accuracy, albeit with the downside263

of larger training and inference time, while logistic regression, a close second in accuracy on whole genome, provides a very264

fast alternative for processing massive datasets.265

We note that the CovRSK provides a significant improvement with respect to logistic regression in UK Biobank geno-266

typing array data, however, in whole genome both methods perform similarly. This seems to indicate that with enough267

SNPs-per-window, in other words, enough input features for each base classifier, linear models such as logistic regression268

perform extremely well with more computationally complex non-linear techniques, such as CovRSK, providing only marginal269

improvement. However, in scenarios with a low number of SNPs per window, non-linear models that generate a richer feature270

space, such as CovRSK, provide a significant improvement on accuracy.271

Robustness to the generation time since admixture is another important aspect of LAI methods. This generation time will272

determine the length distribution of the segments originating from each ancestry group, so it is important that methods can273

properly deal with a wide range of generation times and length distributions. We compare our top performing configuration274

(CovRSK SVM with XGBoost smoother) with RFMix (the only existing method with practical run-time on whole genome275

Figure 4a) over a wide range of generation times Figure 4d. We can see that RFMix accuracy decreases rapidly as the generation276

number increases (segment sizes decrease), while Gnomix maintains a good classification accuracy (>90%) well beyond 100277

generations (approximately 3000 years ago for humans).278

In addition to being able to handle multiple generation time regimes, Gnomix is also robust to the population set that it is279

trained on. While some closely related populations, such as West Asian and European, pose a significant challenge for methods280

like RFMix, Gnomix handles these far better because its base models and non-linear data-driven smoothers are more accurate.281
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\section{Benchmarking tables}
\label{benchmark-tables}

We include a detailed benchmark of our di�erent system's con�gurations and competing methods on four di�erent human datasets: Latin American, 5-Ancestry, and 7-Ancestry with whole-genome and genotyping array (SNPs used in UK Biobank). Tables \ref{tab:7-ancestry-whole-genome}, \ref{tab:5-ancestry-whole-genome}, \ref{tab:Latino-whole-genome}, \ref{tab:7-ancestry-array}, \ref{tab:5-ancestry-array}, \ref{tab:Latino-array} present the classi�cation accuracy, log loss, base module classi�cation accuracy, training time, inference time, and model size of each of the methods. Note that ELAI is only benchmarked with the 7-Ancestry dataset due to its high computational requirements. 
 
\begin{table}[h]
\centering
\caption{7-ancestry (whole-genome)}
\label{tab:7-ancestry-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        90.09 &     0.30 &             79.61 &               434 &                 13 &          120.21 \\
   lgb-xgb &        90.00 &     0.31 &             79.61 &              3040 &                  8 &          121.03 \\
   lgb-cnn &        89.73 &     0.32 &             79.61 &               563 &                  2 &          120.18 \\
CovRSK-crf &        93.09 &     0.21 &             88.17 &             53982 &              19977 &         2419.56 \\
CovRSK-xgb &        93.35 &     0.19 &             88.17 &             55968 &              19973 &         2420.36 \\
CovRSK-cnn &        93.03 &     0.21 &             88.17 &             53951 &              19968 &         2419.51 \\
logreg-crf &        93.13 &     0.20 &             87.52 &               635 &                 30 &           58.13 \\
logreg-xgb &        93.28 &     0.20 &             87.52 &              2436 &                 26 &           58.97 \\
logreg-cnn &        93.07 &     0.21 &             87.52 &               655 &                 21 &           58.12 \\
     rfmix &        88.18 &        - &                 - &              5518 &               5518 &               - \\
      elai &        92.34 &        - &                 - &            334003 &             334003 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{5-ancestry (whole-genome)}
\label{tab:5-ancestry-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        92.27 &     0.22 &             83.86 &               299 &                  8 &           91.60 \\
   lgb-xgb &        92.41 &     0.22 &             83.86 &              1253 &                  5 &           92.19 \\
   lgb-cnn &        91.97 &     0.23 &             83.86 &               314 &                  1 &           91.58 \\
CovRSK-crf &        95.16 &     0.14 &             91.50 &             46025 &              16275 &         2257.62 \\
CovRSK-xgb &        95.40 &     0.13 &             91.50 &             46958 &              16272 &         2258.22 \\
CovRSK-cnn &        95.06 &     0.14 &             91.50 &             46053 &              16268 &         2257.61 \\
logreg-crf &        95.19 &     0.14 &             91.40 &               433 &                 23 &           41.57 \\
logreg-xgb &        95.40 &     0.12 &             91.40 &              1344 &                 20 &           42.18 \\
logreg-cnn &        95.09 &     0.14 &             91.40 &               465 &                 17 &           41.57 \\
     rfmix &        90.76 &        - &                 - &              4261 &               4261 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Latin American (whole-genome)}
\label{tab:Latino-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        96.74 &     0.09 &             94.76 &               112 &                  3 &           59.73 \\
   lgb-xgb &        96.82 &     0.09 &             94.76 &               222 &                  2 &           60.09 \\
   lgb-cnn &        96.28 &     0.11 &             94.76 &               120 &                  1 &           59.72 \\
CovRSK-crf &        97.63 &     0.07 &             97.52 &             11065 &               4225 &         1074.02 \\
CovRSK-xgb &        97.69 &     0.06 &             97.52 &             11220 &               4224 &         1074.38 \\
CovRSK-cnn &        97.26 &     0.08 &             97.52 &             11073 &               4223 &         1074.01 \\
logreg-crf &        97.69 &     0.06 &             97.55 &                76 &                 14 &           25.02 \\
logreg-xgb &        97.79 &     0.06 &             97.55 &               230 &                 13 &           25.38 \\
logreg-cnn &        97.29 &     0.08 &             97.55 &                86 &                 12 &           25.01 \\
     rfmix &        95.94 &        - &                 - &              1594 &               1594 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{7-ancestry (array)}
\label{tab:7-ancestry-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        89.24 &     0.33 &             78.34 &             10938 &               4171 &          109.80 \\
stringkernel-xgb &        89.47 &     0.33 &             78.34 &             13912 &               4155 &          110.63 \\
stringkernel-cnn &        89.10 &     0.35 &             78.34 &             11061 &               4151 &          109.78 \\
      CovRSK-crf &        89.29 &     0.32 &             78.42 &              1018 &                327 &          108.68 \\
      CovRSK-xgb &        89.53 &     0.32 &             78.42 &              2285 &                323 &          109.48 \\
      CovRSK-cnn &        89.27 &     0.34 &             78.42 &               993 &                317 &          108.63 \\
      logreg-crf &        86.57 &     0.40 &             67.90 &              1402 &                 11 &            2.06 \\
      logreg-xgb &        86.01 &     0.42 &             67.90 &              3792 &                  7 &            2.91 \\
      logreg-cnn &        86.31 &     0.41 &             67.90 &              1555 &                  1 &            2.06 \\
           rfmix &        84.81 &        - &                 - &               241 &                241 &               - \\
            elai &        88.32 &        - &                 - &             37219 &              37219 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{5-ancestry (array)}
\label{tab:5-ancestry-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        92.04 &     0.23 &             81.92 &              6198 &               2166 &           90.61 \\
stringkernel-xgb &        92.25 &     0.23 &             81.92 &              7040 &               2163 &           91.21 \\
stringkernel-cnn &        91.81 &     0.24 &             81.92 &              6223 &               2159 &           90.60 \\
      CovRSK-crf &        92.01 &     0.23 &             81.90 &               746 &                257 &           89.99 \\
      CovRSK-xgb &        92.19 &     0.23 &             81.90 &              1826 &                254 &           90.59 \\
      CovRSK-cnn &        91.81 &     0.24 &             81.90 &               829 &                250 &           89.98 \\
      logreg-crf &        90.08 &     0.29 &             74.46 &                37 &                 15 &            1.54 \\
      logreg-xgb &        89.99 &     0.29 &             74.46 &               887 &                 13 &            2.15 \\
      logreg-cnn &        90.00 &     0.29 &             74.46 &                70 &                  9 &            1.54 \\
           rfmix &        90.28 &        - &                 - &               196 &                196 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Latin American (array)}
\label{tab:Latino-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        96.73 &     0.09 &             94.19 &              1421 &                502 &           37.41 \\
stringkernel-xgb &        96.83 &     0.09 &             94.19 &              1573 &                501 &           37.76 \\
stringkernel-cnn &        96.46 &     0.10 &             94.19 &              1431 &                500 &           37.39 \\
      CovRSK-crf &        96.66 &     0.09 &             94.10 &               172 &                 65 &           37.10 \\
      CovRSK-xgb &        96.78 &     0.09 &             94.10 &               380 &                 64 &           37.46 \\
      CovRSK-cnn &        96.38 &     0.11 &             94.10 &               192 &                 62 &           37.09 \\
      logreg-crf &        96.23 &     0.11 &             91.68 &                12 &                  8 &            1.02 \\
      logreg-xgb &        96.30 &     0.10 &             91.68 &               168 &                  7 &            1.37 \\
      logreg-cnn &        95.90 &     0.12 &             91.68 &                23 &                  6 &            1.00 \\
           rfmix &        95.58 &        - &                 - &                82 &                 82 &               - \\
\bottomrule
\end{tabular}
\end{table}

\section{Benchmarking tables}
\label{benchmark-tables}

We include a detailed benchmark of our di�erent system's con�gurations and competing methods on four di�erent human datasets: Latin American, 5-Ancestry, and 7-Ancestry with whole-genome and genotyping array (SNPs used in UK Biobank). Tables \ref{tab:7-ancestry-whole-genome}, \ref{tab:5-ancestry-whole-genome}, \ref{tab:Latino-whole-genome}, \ref{tab:7-ancestry-array}, \ref{tab:5-ancestry-array}, \ref{tab:Latino-array} present the classi�cation accuracy, log loss, base module classi�cation accuracy, training time, inference time, and model size of each of the methods. Note that ELAI is only benchmarked with the 7-Ancestry dataset due to its high computational requirements. 
 
\begin{table}[h]
\centering
\caption{7-ancestry (whole-genome)}
\label{tab:7-ancestry-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        90.09 &     0.30 &             79.61 &               434 &                 13 &          120.21 \\
   lgb-xgb &        90.00 &     0.31 &             79.61 &              3040 &                  8 &          121.03 \\
   lgb-cnn &        89.73 &     0.32 &             79.61 &               563 &                  2 &          120.18 \\
CovRSK-crf &        93.09 &     0.21 &             88.17 &             53982 &              19977 &         2419.56 \\
CovRSK-xgb &        93.35 &     0.19 &             88.17 &             55968 &              19973 &         2420.36 \\
CovRSK-cnn &        93.03 &     0.21 &             88.17 &             53951 &              19968 &         2419.51 \\
logreg-crf &        93.13 &     0.20 &             87.52 &               635 &                 30 &           58.13 \\
logreg-xgb &        93.28 &     0.20 &             87.52 &              2436 &                 26 &           58.97 \\
logreg-cnn &        93.07 &     0.21 &             87.52 &               655 &                 21 &           58.12 \\
     rfmix &        88.18 &        - &                 - &              5518 &               5518 &               - \\
      elai &        92.34 &        - &                 - &            334003 &             334003 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{5-ancestry (whole-genome)}
\label{tab:5-ancestry-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        92.27 &     0.22 &             83.86 &               299 &                  8 &           91.60 \\
   lgb-xgb &        92.41 &     0.22 &             83.86 &              1253 &                  5 &           92.19 \\
   lgb-cnn &        91.97 &     0.23 &             83.86 &               314 &                  1 &           91.58 \\
CovRSK-crf &        95.16 &     0.14 &             91.50 &             46025 &              16275 &         2257.62 \\
CovRSK-xgb &        95.40 &     0.13 &             91.50 &             46958 &              16272 &         2258.22 \\
CovRSK-cnn &        95.06 &     0.14 &             91.50 &             46053 &              16268 &         2257.61 \\
logreg-crf &        95.19 &     0.14 &             91.40 &               433 &                 23 &           41.57 \\
logreg-xgb &        95.40 &     0.12 &             91.40 &              1344 &                 20 &           42.18 \\
logreg-cnn &        95.09 &     0.14 &             91.40 &               465 &                 17 &           41.57 \\
     rfmix &        90.76 &        - &                 - &              4261 &               4261 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Latin American (whole-genome)}
\label{tab:Latino-whole-genome}
\begin{tabular}{l|rrrrrr}
\toprule
     &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
   lgb-crf &        96.74 &     0.09 &             94.76 &               112 &                  3 &           59.73 \\
   lgb-xgb &        96.82 &     0.09 &             94.76 &               222 &                  2 &           60.09 \\
   lgb-cnn &        96.28 &     0.11 &             94.76 &               120 &                  1 &           59.72 \\
CovRSK-crf &        97.63 &     0.07 &             97.52 &             11065 &               4225 &         1074.02 \\
CovRSK-xgb &        97.69 &     0.06 &             97.52 &             11220 &               4224 &         1074.38 \\
CovRSK-cnn &        97.26 &     0.08 &             97.52 &             11073 &               4223 &         1074.01 \\
logreg-crf &        97.69 &     0.06 &             97.55 &                76 &                 14 &           25.02 \\
logreg-xgb &        97.79 &     0.06 &             97.55 &               230 &                 13 &           25.38 \\
logreg-cnn &        97.29 &     0.08 &             97.55 &                86 &                 12 &           25.01 \\
     rfmix &        95.94 &        - &                 - &              1594 &               1594 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{7-ancestry (array)}
\label{tab:7-ancestry-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        89.24 &     0.33 &             78.34 &             10938 &               4171 &          109.80 \\
stringkernel-xgb &        89.47 &     0.33 &             78.34 &             13912 &               4155 &          110.63 \\
stringkernel-cnn &        89.10 &     0.35 &             78.34 &             11061 &               4151 &          109.78 \\
      CovRSK-crf &        89.29 &     0.32 &             78.42 &              1018 &                327 &          108.68 \\
      CovRSK-xgb &        89.53 &     0.32 &             78.42 &              2285 &                323 &          109.48 \\
      CovRSK-cnn &        89.27 &     0.34 &             78.42 &               993 &                317 &          108.63 \\
      logreg-crf &        86.57 &     0.40 &             67.90 &              1402 &                 11 &            2.06 \\
      logreg-xgb &        86.01 &     0.42 &             67.90 &              3792 &                  7 &            2.91 \\
      logreg-cnn &        86.31 &     0.41 &             67.90 &              1555 &                  1 &            2.06 \\
           rfmix &        84.81 &        - &                 - &               241 &                241 &               - \\
            elai &        88.32 &        - &                 - &             37219 &              37219 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{5-ancestry (array)}
\label{tab:5-ancestry-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        92.04 &     0.23 &             81.92 &              6198 &               2166 &           90.61 \\
stringkernel-xgb &        92.25 &     0.23 &             81.92 &              7040 &               2163 &           91.21 \\
stringkernel-cnn &        91.81 &     0.24 &             81.92 &              6223 &               2159 &           90.60 \\
      CovRSK-crf &        92.01 &     0.23 &             81.90 &               746 &                257 &           89.99 \\
      CovRSK-xgb &        92.19 &     0.23 &             81.90 &              1826 &                254 &           90.59 \\
      CovRSK-cnn &        91.81 &     0.24 &             81.90 &               829 &                250 &           89.98 \\
      logreg-crf &        90.08 &     0.29 &             74.46 &                37 &                 15 &            1.54 \\
      logreg-xgb &        89.99 &     0.29 &             74.46 &               887 &                 13 &            2.15 \\
      logreg-cnn &        90.00 &     0.29 &             74.46 &                70 &                  9 &            1.54 \\
           rfmix &        90.28 &        - &                 - &               196 &                196 &               - \\
\bottomrule
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Latin American (array)}
\label{tab:Latino-array}
\begin{tabular}{l|rrrrrr}
\toprule
           &  & log & base & training & inference & model \\ model & accuracy & loss & accuracy & time & time &  size \\ &  (\%) &  & (\%) & (s) & (s) & (mb) \\
\midrule
stringkernel-crf &        96.73 &     0.09 &             94.19 &              1421 &                502 &           37.41 \\
stringkernel-xgb &        96.83 &     0.09 &             94.19 &              1573 &                501 &           37.76 \\
stringkernel-cnn &        96.46 &     0.10 &             94.19 &              1431 &                500 &           37.39 \\
      CovRSK-crf &        96.66 &     0.09 &             94.10 &               172 &                 65 &           37.10 \\
      CovRSK-xgb &        96.78 &     0.09 &             94.10 &               380 &                 64 &           37.46 \\
      CovRSK-cnn &        96.38 &     0.11 &             94.10 &               192 &                 62 &           37.09 \\
      logreg-crf &        96.23 &     0.11 &             91.68 &                12 &                  8 &            1.02 \\
      logreg-xgb &        96.30 &     0.10 &             91.68 &               168 &                  7 &            1.37 \\
      logreg-cnn &        95.90 &     0.12 &             91.68 &                23 &                  6 &            1.00 \\
           rfmix &        95.58 &        - &                 - &                82 &                 82 &               - \\
\bottomrule
\end{tabular}
\end{table}
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Figure 4. Performance plots. (a) Performance on whole genome data. Accuracy, training time and inference time of our
models (size of model indicated by shade of red) and existing algorithms (shaded grey, since they do not permit saving and
sharing of models) on the seven ancestry whole genome data, showing our models beating existing algorithms by a wide
margin. Loter could not run on whole genome due to excessive memory requirements. (b) Performance on array genotyped
data. Same analysis as (a) for models trained using only the SNPs found on the UK Biobank Axiom genotyping array. (c)
Comparison of our different base models on whole genome data. A pareto optimal frontier is described by our models,
SVM-CovRSK and Logistic Regression. (d) Accuracy into the past. Accuracy of our best configuration, CovRSK SVM with
XGBoost smoother (solid line), versus RFMix, the existing method with practical speed on whole genome (a), as a function of
number of generations since admixture. Larger numbers of generations since admixture generate more ancestry switches and
smaller average lengths of ancestry segments, leading to a more challenging problem. We see that Gnomix has higher accuracy
than RFMix even when Gnomix has access only to low resolution data (array genotyped, dotted line), and RFMix has access to
full resolution data (whole genome, solid line).
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2.4 Population structure is reflected in the learnt models282

The effect of the smoother for an example haplotype is shown in Figure 5a. Here the model makes errors on two segments that283

both - in their own way - shed light on the typical errors that can occur. On the left the model has difficulty determining the284

switch points (boundary between two ancestries). Indeed, by looking at Figure A10 it is clear that the model accuracy increases285

rapidly with distance from a switch points with most errors occurring at or around these points. The error on the right is a286

West Asian segment wrongly classified as European. This phenomenon will be seen again in the discussion of Figure 5b below,287

where the similarity of these two related populations plays a role in confusing the classifier. Indeed, given these two ancestries’288

shared historical introgression from early farmers in the Middle East, this European prediction might stem from genuine shared289

ancestry. When observed closely, the independent base probabilities seem to be around the same magnitude for both West290

Asian and European in this segment, further supporting that hypothesis.291
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(a)
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Figure 5. Effect of population structure on learnt models. (a) Analysis of predicted probabilities and errors of Gnomix on
a sample admixed haplotype. The color for each ancestry is the same for the smoother and base probabilities, but the latter is
faded. The model makes two errors; one at an ancestry switch point and one where it mistakes a small West Asian (WAS)
segment for a European (EUR) one. (b) Weights (importance measure, red positive and blue negative) for the base model
predictions for each ancestry (vertical axis) for each window (horizontal axis) learned by the convolutional smoother to predict
each ancestry (plot titles). Model trained on seven populations: African (AFR), East Asian (EAS), European (EUR),
indigenous American (NAT), Oceanian (OCE), South Asian (SAS), West Asian (WAS). Note the African smoother does not
need to consider many surrounding African window probabilities (green rectangle, upper left), because this ancestry is so well
separated from the others, while the smoother for West Asian ancestry, which is not well separated from European, needs to
consider more surrounding windows (green rectangle, upper right). Shared introgression (perhaps Early Farmer25) between
West Asian and European ancestries results in only weakly negative weights for European probabilities for the West Asian
smoother (pink box, upper right), which must then be aggregated across many more surrounding windows, and similarly for
European and South Asian (yellow box, lower right) due in this latter case perhaps to shared Indo-European introgression26.
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Analyzing the weights learnt by the linear convolutional model, which indicate how the smoother module aggregates292

information from the base models’ outputs, we gain insight in Figure 5b into the data driven smoother. By learning a linear filter293

in a data-driven way, the magnitude of filter weights can be interpreted as a feature importance indicators. In Figure 5b, we can294

see from the linear smoothers’ filter weights that, in order to predict a particular ancestry in a window, the base models’ priors295

are taken strongly into account. There is a strong positive correlation between base model probability estimates and the smoother296

predictions of a given ancestry (weights colored red). Further, one can see that the spread of positively correlated windows is297

higher for populations that are less well separated, like West Asian (WAS) and European (EUR), as compared to population298

labels that are well separated, like African (AFR). Examining the center columns of the European (EUR) filter, we note that299

having a high base probability for EUR correlates positively with being predicted European (red), but is negatively correlated300

(dark blue) with being predicted AFR, OCE (Oceanian), EAS (East Asian), NAT (indigenous American). Interestingly, EUR is301

less negatively correlated (lighter blue) with predicting West Asian (WAS) and South Asian (SAS) than with any of the other302

ancestries, likely because both of these populations have shared historical introgression events with Europeans, namely the303

spread of early Near Eastern farmers in the case of WAS25, and the spread of the Indo-European languages in the case of SAS26.304

Furthermore, this effect is not observed between South and West Asians in our dataset, suggesting that the common ancestor305

between the European and West Asian references, namely neolithic Anatolian farmers, is different than the common ancestor306

between the South Asian and European references, namely Indo-European speakers.307

The presence of such shared population histories adds complexity to this inference task and can help explain the success of308

nonlinear smoothers. We also note that choosing reference samples and label names in this context is not always simple and309

depends upon the time period being investigated. Although some continental populations have been long separated, diverging310

through independent genetic drift27, no human population is an "island" without historical introgression, admixture, and311

shared ancestry with others28. Care must thus be exercised when choosing label names for genetic clusters to avoid conflating312

them with socially constructed ethnicities29, which vary rapidly in time and across nations and can be entwined with political313

considerations (nationalism, irredentism, and resource access).314

2.5 Phasing error correction: Gnofix315

Because most sequencing technologies in use are unable to assign an accurate parental chromosome source to each sequencing316

read in a diploid genome, several statistical algorithms have been developed to assign each variant to its correct parental317

haplotype. These techniques, known as phasing, take advantage of observed correlations between neighboring variants in318

databases of reference populations. Some of the most commonly used methods include Beagle30 and SHAPEIT31. While these319

tools are highly accurate locally – that is, the probability of having two neighbouring variants correctly phased is very high320

– they occasionally fail, producing swaps between the two parental sequences. Thus, the probability of having two distant321

variants correctly phased converges to random chance as their separation increases. Fortunately, such errors can often be fixed322

with LAI. Given the additional information present in ancestry calls along the genome, such sporadic switch errors become323

clear. The most commonly used phasing error correction method using LAI that can handle multiple ancestries is found in324

RFMix (version 1, but not version 2).325

We propose a novel method, Gnofix, that employs a trained smoother from the Gnomix module to find the most likely326

phase assignment of an individual’s two haplotypes. This is done by using the confidence of the ancestry estimates for a given327

sequence as a proxy for the probability of that sequence being from the observed distribution of human haplotypes. Starting328

with a window-based ancestry probability estimate for an individual’s maternal and paternal haplotypes (phased using an329

existing algorithm), these probabilities are leveraged to iteratively swap segments of each haplotype until the most probable one330

is recovered. Such input probabilities can be obtained from many LAI models, including RFMix12, LAMP10, LAI-Net15 and,331

of course, Gnomix.332

The algorithm starts from one side and during one iteration works its way to the other. At each step it defines its scope to333

be a set of local consecutive windows of the same length as the trained Gnomix smoother size. It then extracts the ancestry334

probabilities that lie in this scope and explores different local phasing alternatives by exploring potential combinations of swaps335

between the two parental sequences. This results in a collection of swap combinations. Each item in this collection is treated as336

a proposal for the true sequence. The collection need not contain the complete set of all possible swap combinations, however.337

Indeed, that would create redundancy, since neighboring scopes have a large overlap for swap proposals. In addition, for any338

sizable smoother size, such an exhaustive enumeration of all swap combinations would be intractable. Thus, the collection of339

swap combinations is restricted to include only swaps at - or closely around - the center, where the smoother is most receptive;340

this reduces the number of proposals dramatically. Once extracted, these proposals are passed into the smoother to obtain341

predictions for the center window and - more importantly - prediction confidences. The proposal with the highest confidence is342

then selected and the scope shifted along the haplotype for analysis of the next position. Once the full chromosomal sequence343

has been traversed, the scope is shifted back to the start and the next iteration begins. Iterations continue until convergence, or344

until a chose upper bound is reached. A general outline is shown in Algorithm 4 and the process is visualized in Figure 6.345
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(a)

(b)

(c) (d) (e) (f) (g)

(h)

(i)

Figure 6. Phase correction algorithm. (a) Input consisting of maternal and paternal haplotypes containing phasing errors.
The colors denote different ancestry predictions. (b) State of the haplotypes at a given state and then after some phasing errors
have been corrected. Dashed box marks the scope with the center window. (c) Probabilities of each ancestry at each window in
the scope are extracted. (d) Collections of swaps are proposed. (e)-(f) Proposals are passed through the smoother to obtain
predictions and confidence. (g) Proposal with most confidence is chosen. (h) Windows in scope are returned back to the
haplotypes. (i) Output maternal paternal haplotypes containing no phasing errors.

Algorithm 4: Gnofix
Input:
• Parental haplotypes for each window w, Xw,m, Xw,p
• Ancestry probabilities from any LAI model, Bw,m, Bw,p
• Trained smoother from Gnomix: S : {B}w,h 7→ Pw,h,

while not converged do
for w in windows do

Extract a scope {B}w = {{B}w,m,{B}w,p} around w
Generate b proposals for scope {B}1

w,..,{B}b
w

Obtain proposal with highest confidence:

ρ∗ = argmax
1≤ρ≤b

max
a∈A

max
h∈{m,p}

S
(
{B}ρ

w,h

)
a

Update: {B}w ←{B}ρ∗
w , {X}w ←{X}ρ∗

w

end
end
Result: Phased haplotypes, {X}m and {X}p
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We compare the performance of Gnofix to Beagle phasing and to rephasing using RFMix by plotting the fraction of346

SNP-pairs correctly phased as a function of genetic distance between them, where the SNP-pairs were sampled randomly from347

heterozygous ancestry regions. (Homozygous ancestry regions cannot be phase-corrected using local ancestry.) When the data348

is not well phased we expect this fraction to decrease with genetic distance and converge to 0.5 (even chance). We perform this349

comparison on a Latin American phasing dataset created by simulating European, Native American, and African three-way350

admixture. RFMix and Gnofix algorithms show similar phase-correction accuracy (Figure 7); however, the run-time between351

them differs by several orders of magnitude. It takes Beagle and RFMix about 5 and 37 minutes, respectively, to run on this352

dataset; however, Gnofix takes simply 17 seconds. Such acceleration becomes crucial for large biobank datasets for which353

RFMix style phase correction becomes infeasible. See Appendix H for additional experiments.354

RFMix  (2,252 sec)
Beagle (316 sec)

Gno�x (7 sec)

Figure 7. Re-phasing performance. Phasing error correction accuracy of Gnofix and RFMix on the Latin American phasing
dataset.

2.6 Application to New World dogs355

We use whole genome sequences of 191 canids from Plassais et al.32 to train a Gnomix model that can annotate canid species356

and breed along the genome. (See methods for more details.) We then demonstrate local ancestry calls on a panel of 531 dogs357

genomes obtained via the same study and finally use Gnofix to correct phasing errors.358

We sort the local ancestry calls from each genome by total length of Arctic-breed segments called per sample and visualize359

the top ten dogs, see Figure 8a. We observe that all of these dog breeds, except for the Xoloitzcuintle (Xolo), belong to360

Arctic breeds or breeds known to be admixed with them (Spitz). Similarity in ancestry between Arctic breeds and Native361

American dogs has been noted previously; indeed, pre-contact Native American dogs lie closest to modern Arctic breeds in362

trees constructed from ancient genomes33. Thus, Arctic local ancestry models can also detect ancestry segments deriving363

from Native American dogs. Thus, these segments in the Mexican Xoloitzcuintle, which is said to have descended from364

pre-Columbian Mesoamerican dogs, may indeed originate in the pre-Columbian dogs kept by ancient Mesoamerican cultures365

(Figure 8b). The total length of Arctic ancestry segments that we identify in the Xolo amounts to 4.03% of its genome, which366

matches prior global ancestry approximations that estimated the Xolo’s pre-Columbian ancestry at 3%34. To our knowledge367

we are the first to identify this pre-Columbian ancestry at the genomic segment level.368

By fitting an exponential curve to the distribution of these Arctic genomic ancestry segments in the Xolo (Figure 8c) and369

using a generation time of 3 years for dogs35, we obtain an average admixture time of 306 years. This implies an average370

admixture date in Mexico between European and pre-Columbian dogs of 1704 AD± 33 years, which notably matches the dating371

for admixture between European and pre-Columbian peoples in Mexico of 1746 AD (8.6 generations with 30 years/generation)372

as arrived at by Price et al. using a comparable single pulse admixture model36.373

Another signature of New World dog ancestry comes from genetic introgression with the coyote34, a related canid (Figure374

8d) found only in the Americas. There is evidence that pre-Columbian cultures cross-bred coyotes with dogs33, and we indeed375

find shared genomic segments between coyotes and the chihuahua, another breed with links to the Americas. In Figure 8e we376

display a neighboring joining tree for average number of pairwise differences (π) of sites called as “coyote” in a chihuahua’s377

chromosome compared against other dogs.378
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The capacity of Gnomix to identify and annotate short, ancient chromosomal segments in whole genomes with high379

resolution is unmatched by existing local ancestry algorithms (see Fig. 4d) and here allows us to unravel the history of New380

World ancestry in Mexican breeds of dogs at generation times (one hundred generations) that in humans would correspond381

to demographic events that occurred over 3000 years ago. Besides surpassing the capabilities of current LAI algorithms our382

method also takes only minutes, rather than days, to run on whole genomes.383
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Figure 8. Gnomix applied to dogs reveals ancient New World admixture. (a) The ten breeds with highest total Arctic
segment ancestry. (b) Chromosome painting of a Xoloitzcuintle (Xolo) dog. (c) Segment length distribution of Arctic segments
in the Xolo. (d) Neighbor-joining tree for all of chromosome 1 for various canids using the average number of pairwise
differences (π). (e) Neighbor-joining tree of π between coyote segments identified in the chihuahua by local ancestry inference
versus sequences of other canids.
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3 Methods384

3.1 Human datasets385

We source our worldwide human whole genome data from three publicly available projects: 1000 Genomes37, Human Genome386

Diversity Project (HGDP)34, and Simons Genome Diversity Project (SGDP)38. We bring all data onto human genome build387

37, retain only biallelic sites, phase using Beagle30, and then filter these samples to obtain 1,380 single-ancestry samples by388

running unsupervised ADMIXTURE clustering39. From the latter, eight well-supported ancestry clusters were selected by389

cross-validation: East Asian (EAS), European (EUR), indigenous American (NAT), Oceanian (OCE), South Asian (SAS), West390

Asian (WAS), Subsaharan African (AFR), and African Hunter and Gatherer (AHG). We retained only the first seven ancestry391

groups for our experiments, since AHG did not have enough training samples in our dataset for robust benchmarking.392
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Figure 9. Origin and generation of human genome datasets. Top left, map of the distribution of single ancestry
individuals used for dataset generation: African (AFR), East Asian (EAS), European (EUR), indigenous American (NAT),
Oceanian (OCE), South Asian (SAS), West Asian (WAS). Top Right, simulated chromosomal crossovers between the maternal
and paternal chromosome of a sample. The number of breakpoints are drawn from a Poisson distribution with a rate parameter
dependent upon the generations-since-admixture, and break loci drawn uniformly along the chromosome. Bottom, dataset
generation via simulation and splitting. The labeled single ancestry data is split between the independent sets and admixed
individuals are simulated separately from each set to produce admixed individuals with labels. The base train data is used to
train the base models and the smooth train data is used to independently train the smoothing module. Similarly the validation
and test datasets are used to independently develop and finally test the model as a whole.

For analyzing and evaluating LAI models, genetic sequences from real admixed individuals cannot be used, as the ancestry393

switch points along their chromosomes cannot be known without sequencing a pedigree (trios). We therefore simulate admixed394

individuals from sequenced single-ancestry individuals (founders) from various populations (Figure 9). Using these real395

individuals’ sequences, we simulate descendants of admixed ancestry using locus specific recombination rate parameters396

from the human genetic map12. In brief, following Karavani et al.40, the number of switch points is modeled as a Poisson397

random variable parameterized by the chromosome length in Morgans. Recombination positions are simulated uniformly398

along the chromosome using the genetic map. The simulation process can be seen as a "select-and-stitch" process, where a399

simulated individual inherits each segment of their chromosome from a subset of founders and the generation-since-admixture400

of the individuals determines the statistical properties of segment lengths. The select-and-stitch process allows for much more401
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lightweight computation than complete generation-wise recursive simulation of the matching explicitly, while also avoiding the402

founder effects in admixed samples that result from such recursion with small population sizes per generation.403

Gnomix development was performed on a development (dev) dataset: chromosome 22 of simulated admixed individuals404

from an even distribution of founders of six different populations, African, East Asian, European, indigenous American, South405

Asian and West Asian. 70% of the founders were used for training 12.5% validation and 17.5% testing. All splits contained406

admixed individuals of the generations 2, 4, 6, 8, 12, 16, 24, 32, 48, 64. On the dev dataset we compared various machine407

learning models for the base classifiers and smoother, where the hyper-parameters of the individual models were selected408

by performing a grid-search. We found values that worked well for the Gnomix specific parameters window size, smoother409

window size and context. While in theory these parameters could be application specific, in practice we find our models to be410

largely robust to these particular parameters on a wide variety of ancestries.411

For the benchmarking datasets, we split the founders randomly in training founders (85%) and testing founders (15%). The412

Latin American dataset included founders with European (EUR), indigenous American (NAT), and African (AFR) ancestry.413

The 5-ancestry dataset had the founders from the same populations as the Latin American dataset, but added South Asia (SAS)414

and East Asia (EAS). While the 7-ancestry dataset added further Oceania (OCE, referred to as Papuan in some publications)415

and West Asian (WAS, anchored in the Middle East). See table 1 for more detailed breakdown. Each model had access to the416

training founders and was evaluated on a simulated admix test set containing three times the number of samples as the testing417

founders. The generations used for testing were 2, 4, 8, 12, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100 yielding 406 admixed diploid418

individuals equally split across the above generations.419

Window size for Gnomix was one thousand SNPs for whole genome data and thirty SNPs for the array data, and a context420

of same size was used. The smoother size was 75 windows and the model output was calibrated with isotonic regression. The421

simulated admixed individuals used for training were of generations 0, 2, 4, 8, 16, 24, 32, 48, 64, 72, 100 and each population422

sampling probability was weighted to provide class balance. The default settings were used for RFMix, ELAI and Loter, and all423

methods had access to 32 CPUs.424

3.2 Phasing Evaluation datasets425

We simulate the phasing datasets of eighth generation admixed individuals using algorithm 8 and then, after converting to426

genotypes, Beagle 5.1 is used for phasing. The Latin American phasing dataset was simulated from the validation founders427

with an even distribution of indigenous American, African and European ancestry: eight founders from each population. 67428

founders from each population were used for training. Gnofix used a smoother that was trained on this dataset with a window429

size of 0.2 cM. It considered swap collections that had a single swap five or fewer windows away from the center. Lastly,430

we iterated through scopes where the base module probabilities were discontinuous. Since RFMix version 2 cannot perform431

phasing error correction, we used RFMix version 1. We used the default parameters with the window size also at 0.2 cM.432

3.3 Canid Datasets433

For training Gnomix on canid whole genomes, phased first using Beagle30, we used the following groupings as founders434

(sample numbers for each type in brackets): Coyote [3], Wolf (Grey Wolf [45] and Iberian Wolf [1]), Basenji [4], Tibetan435

Mastiff [10], Border Collie [15], Bull Terrier [9], German Shepherd [15], Greyhound [9], Hound (Afghan Hound [3] and436

Saluki [3]), Retriever (Labrador [24] and Golden [20]), Arctic (Alaskan Husky [2], Siberian Husky [4], Greenland Dog [1], and437

Alaskan Malamute [3]), East Asian (Shiba Inu [2], Chinese Shar-Pei [2], Jindo [1], New Guinea Singing Dog [4], Chongqing438

Dog [1], Xiasi Dog [1], and Chow Chow [4]). These groups were chosen based on the neighbor joining tree in Plassais et439

al. in order to ensure broad coverage from each clade of the tree32. With these groupings, we trained a Gnomix model for440

each of the 38 canid autosomes with the following configuration: logistic regression base, XGBoost smoother, 0.2 cM window441

size. We obtained an overall validation accuracy of 90.63%. This lower accuracy can be attributed to the only single digit442

numbers of whole genome training references available for many of the groupings (see above). Our >90% accuracy in the face443

of such paucity of references illustrates the ability of Gnomix to perform even when labelled training data is scarce, a case often444

encountered.445

To produce the tree in Figure 8, we used neighbor joining41 with a pairwise distance matrix created by using the average446

number of pairwise differences (π) between various breeds as a dissimilarity measure42. The standard error for the number of447

generations since admixture was computed by performing one thousand bootstrap replicates and then refitting the exponential448

each time using maximum likelihood.449

4 Data & code availability450

The code for Gnomix is available at https://github.com/AI-sandbox/gnomix along with a user guide, documentation, pre-trained451

models, and directions to train on references of choice. The input datasets for our human genome modeling and analyses are452
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available publicly through the Human Genome Diversity Project (HGDP) , Simons Genome Diversity Project (SGDP), and453

1000 Genomes Projects. Data for the canid genomes is available through NCBI.454
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A Dataset compositions534

We use 4 different simulated datasets: Latin American (AFR, EUR, NAT), 5-Ancestry (AFR, EUR, NAT, SAS, EAS), 7-ancestry535

(AFR, EUR, NAT, SAS, EAS, OCE, WAS), and Dev (AFR, EUR, NAT, SAS, EAS, OCE, WAS). Latin American, 5-Ancestry,536

and 7-Ancestry are used as benchmark datasets, and the Dev dataset is used for method development and hyper-parameter537

searches. Note that Dev dataset uses sequences from a different chromosome than the benchmarking datasets. Details of the538

numbers of single-ancestry individuals used for the simulation can be found in Table 1.539

Table 1. Dataset compositions.

Number of Founders
Dataset Size chr AFR EUR NAT SAS EAS OCE WAS Total

Latin American 2421 20 362 146 71 - - - - 579
5-Ancestry 5086 20 362 146 71 162 469 - - 1210
7-Ancestry 5420 20 362 146 71 162 469 17 63 1290
Dev 1614 22 112 112 112 112 112 - 112 672

Superpopulation Population Size Superpopulation Population Size

Mandenka 11 Mexican-American 1
Yoruba 121 Surui 8

AFR Mende 79 Chane 1
Gambian Mandinka 60 Karitiana 11
Esan 91 NAT Piapoco 2
Southern Han Chinese 101 Maya 9
Dai Chinese 82 Mixe 3
Kinh Vietnamese 26 Quechua 2
Han Chinese 107 Pima 13

EAS Japanese 110 Mixtec 1
Yi 3 OCE Australian 2
Miao 9 Papuan Highlands 9
Dai 8 Papuan Sepik 6
She 10 Telugu 69
Naxi 4 SAS Bengali 2
Tujia 9 Punjabi 6
Norwegian 1 Sri Lankan 70

EUR USA-European (CEPH) 63 Gujarati 15
British 82 Palestinian 21
Colombian 3 WAS Bedouin 19

NAT Zapotec 2 Druze 22
Peruvian 15 Yemenite Jewish 1

B More on smoother data540

The training set is split into two parts, one for training the base model and one for the smoother, to avoid distributional shift.541

Figures A1 and A2 show how the estimated probabilities have different distributions for the training data on the one hand and542

the independent validation dataset on the other. The dataset used is the dev dataset and the base module is XGBoost. It is clear543

that the estimated probabilities on the training data are sharper. That is, these probabilities tend to have much higher confidence544

(probability of prediction, maximum probability).545

Furthermore, we argue that the smoothing module is not affected by the reduction in data, as it only needs a small fraction546

of the training data to perform properly as can be seen in Figure A3. The dataset is the same as above with the XGBoost547

smoothing module.548
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Figure A1. Different distributions of probability outputs for training individuals (left) and validation individuals (right).

Figure A2. Average probabilities of ranked probability output.

Figure A3. Smoother training saturation, eventually the smoother stops learning from additional data.
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C Empirical studies of calibration549

For quantitative evaluation, we compare log-loss and calibration error43, and we find that both improve as a result of calibration.550

A comparison of the probabilities before and after calibration can be seen in the reliability plots in Figure 5. The figure shows551

the estimated probabilities and their respective true probabilities for two ancestries (West Asian and indigenous American). The552

mismatch between estimated and true probabilities is larger before calibration (dashed lines) than after (solid lines). For this553

dataset, the calibration error was 0.0257 before calibration and 0.0145 after. The log loss decreased from 0.3349 to 0.3249.554

Figure A4. Reliability plot for before (dashed) and after (solid) calibration. Closer to the diagonal (perfectly calibrated, black)
is better. The uncalibrated curves are mirrored across the diagonal to visually illustrate the centrality of the calibrated ones.

D Benchmarking tables555

We include a detailed benchmark of our different system’s configurations and competing methods on four different human556

datasets: Latin American, 5-Ancestry, and 7-Ancestry with whole-genome and genotyping array (SNPs used in UK Biobank557

Axiom array). Tables 2, 3, 4, 5, 6, 7 present the classification accuracy, log loss, base module classification accuracy, training558

time, inference time, and model size of each of the methods. Note that ELAI and Loter are only benchmarked with the559

7-Ancestry dataset due to their extremely high computational requirements.560

Table 2. 7-ancestry (whole genome)

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 93.10 0.21 88.17 11392 4731 2419.55
CovRSK-xgb 93.35 0.19 88.17 13200 4727 2420.36
CovRSK-cnn 93.01 0.22 88.17 11379 4722 2419.51
logreg-crf 93.13 0.20 87.52 635 30 58.13
logreg-xgb 93.28 0.20 87.52 2436 26 58.97
logreg-cnn 93.07 0.21 87.52 655 21 58.12
rfmix 88.18 - - 5518 - -
elai 92.34 - - 334003 - -
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Table 3. 5-ancestry (whole genome).

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 95.16 0.14 91.50 11519 5004 2257.62
CovRSK-xgb 95.40 0.13 91.50 12608 5001 2258.22
CovRSK-cnn 95.07 0.14 91.50 11549 4997 2257.61
logreg-crf 95.19 0.14 91.40 433 23 41.57
logreg-xgb 95.40 0.12 91.40 1344 20 42.18
logreg-cnn 95.09 0.14 91.40 465 17 41.57
rfmix 90.76 - - 4261 - -

Table 4. Latin American (whole genome).

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 97.63 0.07 97.52 3241 1933 1074.02
CovRSK-xgb 97.70 0.06 97.52 3399 1932 1074.38
CovRSK-cnn 97.29 0.08 97.52 3252 1931 1074.01
logreg-crf 97.69 0.06 97.55 76 14 25.02
logreg-xgb 97.79 0.06 97.55 230 13 25.38
logreg-cnn 97.29 0.08 97.55 86 12 25.01
rfmix 95.94 - - 1594 - -

Table 5. 7-ancestry (array genotype).

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 89.20 0.33 77.97 324 97 108.53
CovRSK-xgb 89.35 0.33 77.97 2470 93 109.35
CovRSK-cnn 89.07 0.35 77.97 324 87 108.50
logreg-crf 86.57 0.40 67.90 1402 11 2.06
logreg-xgb 86.01 0.42 67.90 3792 7 2.91
logreg-cnn 86.31 0.41 67.90 1555 1 2.06
rfmix 84.81 - - 241 - -
elai 88.32 - - 37219 - -
loter 83.86 - - 8840 - -

Table 6. 5-ancestry (array genotype).

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 91.85 0.24 81.61 241 86 89.55
CovRSK-xgb 92.06 0.23 81.61 1307 83 90.15
CovRSK-cnn 91.72 0.24 81.61 272 79 89.54
logreg-crf 90.08 0.29 74.46 37 15 1.54
logreg-xgb 89.99 0.29 74.46 887 13 2.15
logreg-cnn 90.00 0.29 74.46 70 9 1.54
rfmix 90.28 - - 196 - -
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Table 7. Latin American (array genotype).

log base training inference model
model accuracy loss accuracy time time size

(%) (%) (s) (s) (mb)

CovRSK-crf 96.55 0.10 93.86 67 32 36.78
CovRSK-xgb 96.67 0.09 93.86 233 31 37.14
CovRSK-cnn 96.36 0.11 93.86 79 29 36.77
logreg-crf 96.23 0.11 91.68 12 8 1.02
logreg-xgb 96.30 0.10 91.68 168 7 1.37
logreg-cnn 95.90 0.12 91.68 23 6 1.00
rfmix 95.58 - - 82 - -

E CovRSK theory and extended experiments561

E.1 String kernel features as Binomial random variables562

Assuming that the input features (SNPs in this case) are binary, as well as independent and identically distributed,563

p(xi = 1) = p(x′i = 1) = p ∀i = 1, ..,M

Then the probability that a given feature is the same for two individuals is,564

q = p(xi = x′i) = p2 +(1− p)2

The event that a given subsequence of length 1 is equal for two individuals is clearly Bernoulli distributed and thus the number565

of subsequences of length 1 is binomial, S1 ∼ Binomial(M,q) where M is sequence length. The expected value and variance is566

then given by,567

ES1 = Mq, Var(S1) = Mq(1−q)

Now, given our assumptions, two sequences of length k will be equal with probability q given that the first k−1 elements are568

equal and thus,569

Sk|Sk−1 ∼ Binomial(Sk−1,q)

with expected value and variance,570

E[Sk|Sk−1] = qSk−1, Var(Sk|Sk−1) = Sk−1q(1−q)

and therefore,571

E[Sk] = E[E[Sk|Sk−1]] = E[qSk−1] = qE[Sk−1] = ...= qk−1E[S1] = qkM

and572

E[Var(Sk|Sk−1)] = E[Sk−1q(1−q))] = q(1−q)E[Sk−1] = qk(1−q)M

We visualize the last expression (normalized by the sequence length) in Figure A5.573

E.2 String kernel feature covariance574

By modelling the string kernel features as binomials, the expected value is given by,575

E[Sk|Sk−1] = qSk−1

and thus the covariance can be computed using the law of total expectation,576
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Figure A5. Expectation of the variance of string kernel features, given the previous feature, decreases exponentially in k.

Cov(Sk,Sk+1) = E[SkSk+1]−E[Sk]E[Sk+1]

= E[SkE[Sk+1|Sk]]−qE[Sk]
2

= qE[S2
k ]−qE[Sk]

2

= q
(
E[S2

k ]−E[Sk]
2)

= qVar(Sk)

Using the recurrence in E.1, this is easily extended to obtain the covariance between two arbitrary string kernel features,577

Cov(Sk,Sk+ j) = q jVar(Sk)

E.3 String kernel feature correlation578

By modelling the string kernel features as binomials, the expected value is given by,579

E[Sk|Sk−1] = qSk−1

and as showed in E.2, the covariance is given by,580

Cov(Sk,Sk+ j) = q jVar(Sk)

A lower bound on the correlation can then be computed using the law of total variance,581

ρSk,Sk+ j =
Cov(Sk,Sk+ j)√

Var(Sk)Var(Sk+ j)

= q j

√
Var(Sk)

Var(Sk+ j)

= q j

√
E[Var(Sk|Sk−1)]+Var(E[Sk|Sk−1])

Var(Sk+1)

= q j

√
E[Var(Sk|Sk−1)]+Var(qSk−1)

Var(Sk+1)

= q j

√
E[Var(Sk|Sk−1)]+q2Var(Sk−1)

Var(Sk+1)

≥ q j

√
q2Var(Sk−1)

Var(Sk+1)

= q j+1
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Figure A6. Lower bound on string kernel feature correlation decays exponentially with their distance.

which is visualized in Figure A6.582

E.4 String kernel thought experiment583

Figure A7. CovRSK thought experiment. Above, we have created samples where purple represents matching SNPs and
yellow mismatches. Below, we show the kernel similarity for both the string kernel (gray) and CovRSK with α = 0.9 and
β = 0.5 (red).

To provide more insight, we demonstrate a key difference between CovRSK and the standard string kernel using an example,584

which is visualized in Figure A7. Sample b shares only 50% of its SNPs with the example reference sample (the first half585

matches the reference exactly), while sample e shares 99.5% of its SNPs with the reference sample (but has shorter contiguous586

subsequences of exact match than the first half of sample b). Sample e has the highest CovRSK similarity to the reference587

sample, but the string kernel ranks sample b to be the most similar. This is due to the accumulation of the correlated string588

kernel features. As the contiguous sequence match gets longer, the number of total k-mers matching grows by the length of589

the contiguous match (one for each length, from one to the full contiguous match length) meaning that the match’s overall590

contribution to the similarity score grows as O(n2) with its length. As a result of this nonlinearity, the long contiguous sequence591
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match of sample b contributes more than the sum of the many - but shorter - sequence matches of sample e. This characteristic592

of the string kernel need not be bad and might in some cases even be desired. However, given the stochastic nature of genetic593

inheritance and potential for noisy sequencing or genotyping, one cannot expect sequences of related individuals in a population594

to share the exact same contiguous sequence, even though the two individuals may have inherited the contiguous sequence595

identically-by-descent from a common ancestor. It is more likely that the sequences of the two individuals’ genomes stemming596

from the same population will have very low variance in general. Therefore, the stochasticity of the contiguous length of the597

shared sequence along with the quadratically increasing influence on the string kernel of segment length could potentially lead598

to overfitting to the training samples. In general, the CovRSK vies with the standard string kernel for best accuracy, beating all599

other methods with the top spot trading (narrowly) between them depending on the smoother used; however, in all cases the600

CovRSK is far faster than the regular string kernel.601

E.5 Empirical results602

In Figure A8 we see a comparison between CovRSK and the string kernel similar to the example above, but this time with real603

samples. Again the samples are colored such that purple represents SNPs matching the reference sample and yellow denotes604

mismatches. The only sample actually sharing ancestry with the reference sample is sample four. We notice how CovRSK605

correctly returns that sample as the most similar, while the string kernel incorrectly scores sample seven higher.606

Figure A8. Empirical example. Above, we have random samples where purple represents shared SNP sequences with a
random reference sample, and yellow denotes differences. The populations are the same as in the seven ancestry dataset and
only sample four has the same ancestry as the reference. Below we show kernel similarity for both the string kernel (gray) and
CovRSK with α = 0.9 and β = 0.5 (red).

To provide insight into the CovRSK sampling algorithm, an instance on a sequence of length 300 is visualized in Figure607

A9. The blue solid line represents the probability of sampling a k SNP sequence given the sampling history. The dashed line608

represents the decaying probability without covariance reduction. As the subsequences get larger, the sampling probability609

decreases in general. When a k length sequence is sampled, the probability of sampling the next higher k drops and slowly rises610

as the distance increases.611
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Figure A9. An instance of CovRSK feature samples and their sample probability with α = 0.9 and β = 0.5.

F Algorithms for string kernel computation612

In this section, we list various string kernel algorithms mentioned in section 2.2. In Algorithm 5 we have a detailed, lower level613

description of the string kernel computation with triangular numbers. In Algorithm 6 we then have the dynamic programming614

(DP) version and finally, in Algorithm 7, we list the DP version that is customized for the CovRSK.615

Algorithm 5: Detailed algorithm for string kernel with triangular numbers

Input: Feature vectors x, x′ ∈ RM

/* Find all contiguous matches and their lengths */

Λ←{}, λ ← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1

else
Λ← Λ∪{λ}
λ ← 0

end
end
/* Sum up the triangular numbers of the matches */

K← ∑λ∈Λ T (λ )
Result: String kernel similarity, K(x,x′)

616

617

Algorithm 6: String kernel with triangular numbers and DP

Input: Feature vectors x, x′ ∈ RM

K← 0,λ ← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1
K← K +λ

else
λ ← 0

end
end
Result: String kernel similarity, K(x,x′)

618
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Algorithm 7: DP version of CovRSK

Input: Feature vectors x, x′ ∈ RM and k-mer lengths, k
1k← one_hot_encode(k)
κ← 0,λ ← 0,a← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1
a← a+1k[λ ]
κ← κ+a

else
λ ← 0, a← 0

end
end
Result: CovRSK similarity, κ(x,x′)

620

621

G Error analysis622

While model predictions are important, it is also necessary to understand signs of uncertainty in the predicted estimates. In623

figure A10, we show how the model is more likely to make mistakes near ancestry switch points (break points). This explains624

in part the decay of accuracy as generation time since admixture increases. With higher generation time, we have more frequent625

breakpoints leading to a more difficult problem.626

Figure A10. Validation accuracy as a function of distance from ancestry switch (in windows).

In Figures A11 and A12 we plot confusion matrices for Gnomix and RFMix respectively on generation 64 validation data in627

the dev dataset. It’s clear that some population pairs present a harder classification task than others, for instance the neighboring628

European (EUR) and West Asian (WAS) ancestries. The two methods seem to make similar mistakes, but Gnomix has fewer of629

them.630
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Figure A11. Gnomix normalized confusion matrix on the dev dataset.
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Figure A12. RFMix normalized confusion matrix on the dev dataset.

H More on phasing error correction631

We use a dataset of simulated admixed individuals with known local ancestry labels to create a dataset containing phasing632

errors. Since each segment from the single ancestry dataset is correctly phased up to its ancestry, we can create an instance of633

correctly ancestry phased individual by collapsing the simulated admixed indivduals created from them to unphased genotypes634

and then applying standard phasing software (here Beagle 5.1). This procedure is described in more detail in Algorithm 8 and635

produces the dataset for evaluation that we refer to as the Latin American phasing dataset. The simulated individuals model636
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modern Latin American individuals with eight generations since the onset of admixture between indigenous American, African637

and European ancestries.638

Algorithm 8: Simulating data containing phasing errors
Input:
• Dataset S of phased haplotypes from single ancestry individuals
• Standard phasing algorithm C : x̃ 7→ x

S1, S2← split(S)
Simulate haplotypes from admixed individuals, x2, from S2
Pairwise shuffle SNPs of x2 to remove prior phasing: z̃2← P(x2)
Phase z̃2 with S1 as reference panel: z2←C(z̃2|S1)
Result:
• Haplotypes of admixed individuals containing phasing errors, z2
• Corresponding haplotypes with correct phasing, x2

639

Table 8. Single ancestry individual composition in the simulated datasets.

AFR AHG EAS EUR NAT OCE SAS WAS

Continental phasing 363 18 366 119 53 15 135 56

Table 9. Phasing and phasing error correction run-times in seconds with relative speed-up compared with RFMix.

Latin American continental

Beagle 5.1 316 800

RFMix 2,252 s (1×) 172,800 s (1×)
Gnofix 17 s (132.5×) 98 s (1,763.3×)

RFMix’s phasing error correction algorithm is hard to separately time, since its phase correction and ancestry estimation640

are intertwined. A lower bound on the correction time can be estimated by measuring RFMix’s run-time for performing LAI641

without phase correction and then subtracting this from its time run-time for performing combined LAI and phase correction.642

When the number of ancestries becomes sizeable (e.g. more than five) the run-time is hard to exhaustively measure for many643

individuals. As we can see the lower bound on the phase correction run-time for RFMix increases superlinearly with the number644

of ancestries. Indeed, at just over 10 ancestries the phase correction in RFMix becomes infeasible for any sizeable number of645

query individuals.646

Number of Ancestries

Figure A13. RFMix’s run-time for a given number of query individuals (orange) and different ancestries (blue). In the first
case, the reference panel size and the number of ancestries was kept constant at 350 and three respectively. In the latter, the
reference panel size and number of query individuals was kept constant at 240 and one respectively.
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