


match of sample b contributes more than the sum of the many - but shorter - sequence matches of sample e. This characteristic592

of the string kernel need not be bad and might in some cases even be desired. However, given the stochastic nature of genetic593

inheritance and potential for noisy sequencing or genotyping, one cannot expect sequences of related individuals in a population594

to share the exact same contiguous sequence, even though the two individuals may have inherited the contiguous sequence595

identically-by-descent from a common ancestor. It is more likely that the sequences of the two individuals’ genomes stemming596

from the same population will have very low variance in general. Therefore, the stochasticity of the contiguous length of the597

shared sequence along with the quadratically increasing influence on the string kernel of segment length could potentially lead598

to overfitting to the training samples. In general, the CovRSK vies with the standard string kernel for best accuracy, beating all599

other methods with the top spot trading (narrowly) between them depending on the smoother used; however, in all cases the600

CovRSK is far faster than the regular string kernel.601

E.5 Empirical results602

In Figure A8 we see a comparison between CovRSK and the string kernel similar to the example above, but this time with real603

samples. Again the samples are colored such that purple represents SNPs matching the reference sample and yellow denotes604

mismatches. The only sample actually sharing ancestry with the reference sample is sample four. We notice how CovRSK605

correctly returns that sample as the most similar, while the string kernel incorrectly scores sample seven higher.606

Figure A8. Empirical example. Above, we have random samples where purple represents shared SNP sequences with a
random reference sample, and yellow denotes differences. The populations are the same as in the seven ancestry dataset and
only sample four has the same ancestry as the reference. Below we show kernel similarity for both the string kernel (gray) and
CovRSK with α = 0.9 and β = 0.5 (red).

To provide insight into the CovRSK sampling algorithm, an instance on a sequence of length 300 is visualized in Figure607

A9. The blue solid line represents the probability of sampling a k SNP sequence given the sampling history. The dashed line608

represents the decaying probability without covariance reduction. As the subsequences get larger, the sampling probability609

decreases in general. When a k length sequence is sampled, the probability of sampling the next higher k drops and slowly rises610

as the distance increases.611

26/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.19.460980doi: bioRxiv preprint 



Figure A9. An instance of CovRSK feature samples and their sample probability with α = 0.9 and β = 0.5.

F Algorithms for string kernel computation612

In this section, we list various string kernel algorithms mentioned in section 2.2. In Algorithm 5 we have a detailed, lower level613

description of the string kernel computation with triangular numbers. In Algorithm 6 we then have the dynamic programming614

(DP) version and finally, in Algorithm 7, we list the DP version that is customized for the CovRSK.615

Algorithm 5: Detailed algorithm for string kernel with triangular numbers

Input: Feature vectors x, x′ ∈ RM

/* Find all contiguous matches and their lengths */

Λ←{}, λ ← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1

else
Λ← Λ∪{λ}
λ ← 0

end
end
/* Sum up the triangular numbers of the matches */

K← ∑λ∈Λ T (λ )
Result: String kernel similarity, K(x,x′)

616

617

Algorithm 6: String kernel with triangular numbers and DP

Input: Feature vectors x, x′ ∈ RM

K← 0,λ ← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1
K← K +λ

else
λ ← 0

end
end
Result: String kernel similarity, K(x,x′)

618

27/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.19.460980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460980
http://creativecommons.org/licenses/by-nc/4.0/


619

Algorithm 7: DP version of CovRSK

Input: Feature vectors x, x′ ∈ RM and k-mer lengths, k
1k← one_hot_encode(k)
κ← 0,λ ← 0,a← 0
for i in 1, 2, ..., M do

if xi == x′i then
λ ← λ +1
a← a+1k[λ ]
κ← κ+a

else
λ ← 0, a← 0

end
end
Result: CovRSK similarity, κ(x,x′)

620

621

G Error analysis622

While model predictions are important, it is also necessary to understand signs of uncertainty in the predicted estimates. In623

figure A10, we show how the model is more likely to make mistakes near ancestry switch points (break points). This explains624

in part the decay of accuracy as generation time since admixture increases. With higher generation time, we have more frequent625

breakpoints leading to a more difficult problem.626

Figure A10. Validation accuracy as a function of distance from ancestry switch (in windows).

In Figures A11 and A12 we plot confusion matrices for Gnomix and RFMix respectively on generation 64 validation data in627

the dev dataset. It’s clear that some population pairs present a harder classification task than others, for instance the neighboring628

European (EUR) and West Asian (WAS) ancestries. The two methods seem to make similar mistakes, but Gnomix has fewer of629

them.630

28/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.19.460980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460980
http://creativecommons.org/licenses/by-nc/4.0/


AFR EAS EUR NAT SAS WAS

AF
R

EA
S

EU
R

NA
T

SA
S

W
AS

0.2

0.4

0.6

0.8

Figure A11. Gnomix normalized confusion matrix on the dev dataset.

AFR EAS EUR NAT SAS WAS

AF
R

EA
S

EU
R

NA
T

SA
S

W
AS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure A12. RFMix normalized confusion matrix on the dev dataset.

H More on phasing error correction631

We use a dataset of simulated admixed individuals with known local ancestry labels to create a dataset containing phasing632

errors. Since each segment from the single ancestry dataset is correctly phased up to its ancestry, we can create an instance of633

correctly ancestry phased individual by collapsing the simulated admixed indivduals created from them to unphased genotypes634

and then applying standard phasing software (here Beagle 5.1). This procedure is described in more detail in Algorithm 8 and635

produces the dataset for evaluation that we refer to as the Latin American phasing dataset. The simulated individuals model636

29/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.19.460980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460980
http://creativecommons.org/licenses/by-nc/4.0/


modern Latin American individuals with eight generations since the onset of admixture between indigenous American, African637

and European ancestries.638

Algorithm 8: Simulating data containing phasing errors
Input:
• Dataset S of phased haplotypes from single ancestry individuals
• Standard phasing algorithm C : x̃ 7→ x

S1, S2← split(S)
Simulate haplotypes from admixed individuals, x2, from S2
Pairwise shuffle SNPs of x2 to remove prior phasing: z̃2← P(x2)
Phase z̃2 with S1 as reference panel: z2←C(z̃2|S1)
Result:
• Haplotypes of admixed individuals containing phasing errors, z2
• Corresponding haplotypes with correct phasing, x2

639

Table 8. Single ancestry individual composition in the simulated datasets.

AFR AHG EAS EUR NAT OCE SAS WAS

Continental phasing 363 18 366 119 53 15 135 56

Table 9. Phasing and phasing error correction run-times in seconds with relative speed-up compared with RFMix.

Latin American continental

Beagle 5.1 316 800

RFMix 2,252 s (1×) 172,800 s (1×)
Gnofix 17 s (132.5×) 98 s (1,763.3×)

RFMix’s phasing error correction algorithm is hard to separately time, since its phase correction and ancestry estimation640

are intertwined. A lower bound on the correction time can be estimated by measuring RFMix’s run-time for performing LAI641

without phase correction and then subtracting this from its time run-time for performing combined LAI and phase correction.642

When the number of ancestries becomes sizeable (e.g. more than five) the run-time is hard to exhaustively measure for many643

individuals. As we can see the lower bound on the phase correction run-time for RFMix increases superlinearly with the number644

of ancestries. Indeed, at just over 10 ancestries the phase correction in RFMix becomes infeasible for any sizeable number of645

query individuals.646

Number of Ancestries

Figure A13. RFMix’s run-time for a given number of query individuals (orange) and different ancestries (blue). In the first
case, the reference panel size and the number of ancestries was kept constant at 350 and three respectively. In the latter, the
reference panel size and number of query individuals was kept constant at 240 and one respectively.

30/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.19.460980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460980
http://creativecommons.org/licenses/by-nc/4.0/

