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Abstract

Structural connectomes are increasingly mapped at high spatial resolutions comprising many hundreds—if
not thousands—of network nodes. However, high-resolution connectomes are particularly susceptible to image
registration misalignment, tractography artifacts, and noise, all of which can lead to reductions in connectome
accuracy and test-retest reliability. We investigate a network analogue of image smoothing to address these
key challenges. Connectome-Based Smoothing (CBS) involves jointly applying a carefully chosen smoothing
kernel to the two endpoints of each tractography streamline, yielding a spatially smoothed connectivity matrix.
We develop computationally efficient methods to perform CBS using a matrix congruence transformation and
evaluate a range of different smoothing kernel choices on CBS performance. We find that smoothing substan-
tially improves the identifiability, sensitivity and test-retest reliability of high-resolution connectivity maps,
though at a cost of increasing storage burden. For atlas-based connectomes (i.e. low-resolution connectivity
maps), we show that CBS marginally improves the statistical power to detect associations between connec-
tivity and cognitive performance, particularly for connectomes mapped using probabilistic tractography. CBS
was also found to enable more reliable statistical inference compared to connectomes without any smoothing.
We provide recommendations on optimal smoothing kernel parameters for connectomes mapped using both
deterministic and probabilistic tractography. We conclude that spatial smoothing is particularly important for
the reliability of high-resolution connectomes, but can also provide benefits at lower parcellation resolutions.
We hope that our work enables computationally efficient integration of spatial smoothing into established
structural connectome mapping pipelines.

Highlights:
• We establish a network equivalent of image smoothing for structural connectomes.

• Connectome-Based Smoothing (CBS) improves connectome test-retest reliability, identifiability and sen-
sitivity.

• CBS also facilitates reliable inference and improves power to detect statistical associations.

• Both high-resolution and atlas-based connectomes can benefit from CBS.

Keywords: Structural connectivity | Connectome smoothing | High-resolution connectomics | Tractography

1. Introduction1

Spatial smoothing is widely recognized as a crucial2

preprocessing step in many neuroimaging pipelines.3

It can increase the signal-to-noise ratio (SNR) by4

eliminating the high-frequency spatial components5

of noise [1–5] and is typically used in different6

neuroimgaing modalities such as structural mag-7

netic resonance imaging (MRI) [6–8], functional MRI 8

[9–13], positron emission tomography (PET) [14– 9

17], magnetoencephalography (MEG) [18, 19], elec- 10

troencephalography (EEG) [20], and functional near- 11

infrared spectroscopy (fNIRS) [21, 22]. As a re- 12

sult, options for spatial smoothing are provided in 13

many neuroimaging toolboxes, such as AFNI [23], 14

FreeSurfer [24], FSL [25], and SPM [26](Friston et 15
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al., 1994).16

Structural connectivity computed from diffusion17

MRI tractography can be used to construct structural18

connectomes [27–29], and there is considerable inter-19

est in performing statistical inference on this graph20

representation of the brain [30, 31]. However, unlike21

image-based statistical inference, such data are cur-22

rently not explicitly smoothed. Most structural con-23

nectomes are studied at the resolution of large-scale24

brain atlases comprising tens to hundreds of regions.25

The process of assigning tractography streamlines to26

such large-scale regions manipulates the data in a27

manner somewhat akin to smoothing. Nonetheless,28

the potential impact of additional (explicit) smooth-29

ing has not yet been evaluated. Moreover, given that30

connectomes are spatially embedded graphs, conven-31

tional univariate smoothing methods are not directly32

applicable to connectomes, and so smoothing meth-33

ods tailored to connectome data are required.34

High-resolution connectomes are a subset of con-35

nectomes that investigate the connectivity struc-36

ture of the brain at the resolution of cortical ver-37

tices/voxels [32]. Recent studies highlight the advan-38

tages of investigating structural connectomes at this39

higher spatial resolution than atlases with coarse par-40

cellations [32–37]. For example, high-resolution struc-41

tural connectivity maps robustly capture intricate lo-42

cal modular structures in brain networks and provide43

insightful connectome biomarkers of neural abnormal-44

ities [35, 36, 38]. We recently established a compu-45

tationally efficient framework to map high-resolution46

structural connectomes, and found that these connec-47

tomes enabled accurate prediction of individual be-48

haviors and neural fingerprinting [32]. As part of this49

recent work, we implemented a preliminary method50

for connectome-based smoothing, building on earlier51

structural connectome smoothing approaches [33].52

In this study, we extend our earlier work by for-53

malizing the principles of connectome-based smooth-54

ing (CBS), aiming to develop efficient computational55

methods to facilitate connectome smoothing and de-56

termine optimal smoothing parameters. We investi-57

gate the impact of smoothing on high-resolution and58

atlas-based connectomes, quantifying its benefits for59

reliability, identifiability and statistical power. We60

anticipate that CBS will become a common step in61

connectome mapping workflows.62

2. Materials and methods63

2.1. Connectome-based smoothing64

Here, we develop an efficient and scalable method65

to enable network-based smoothing of spatially-66

embedded high-resolution connectivity matrices. Un-67

like conventional spatial smoothing algorithms that68

are defined in terms of a single smoothing kernel,69

CBS is inherently bivariate and involves a pair of spa-70

tially distant smoothing kernels operating at the two71

ends of each connection. The framework developed72

here extends our recent work on high-resolution con- 73

nectomes, where we first investigated the concept of 74

connectome-based smoothing [32]. We also acknowl- 75

edge the seminal work of Besson and colleagues, who 76

found that connectome smoothing improved the reli- 77

ability of high-resolution connectomes [33]. 78

We use A to denote the symmetric connectivity ma- 79

trix inferred from tractography, with size v× v where 80

v is the total number of network nodes and element 81

A(i, j) stores the streamline count between nodes vi 82

and vj . This matrix can be decomposed into two half- 83

incidence matrices U and V , each of size v×n, where 84

n is the total number of streamlines. These matrices 85

encode the connectivity endpoint information, such 86

that the streamline endpoint pairs are mapped to the 87

columns of U and V . For instance, if the kth stream- 88

line ends in nodes vi and vj , then the kth columns 89

of U and V are vectors with a single non-zero ele- 90

ment, with weight 1, respectively located at U(i, k) 91

and V (j, k). This signifies that streamline k connects 92

the endpoints vi and vj . Fig. 1A-C demonstrates the 93

decomposition of streamlines encoded in a connectiv- 94

ity matrix and the half-incidence matrix representa- 95

tions. Mathematically, the symmetric connectivity 96

matrix is decomposed as follows: 97

A = UV T + V UT (1)

Since the columns of the half-incidence matrices 98

each represent a single endpoint associated with a 99

spatial coordinate, a conventional spatial smoothing 100

kernel can be applied to those columns, resulting in 101

a pair of smoothed half-incidence matrices Us and 102

Vs. As previously derived [32], a smoothed connec- 103

tivity matrix can be constructed by combining the 104

smoothed half-incidence matrices as follows: 105

As = UsVs
T + VsUs

T (2)

Here, we propose a simplification of this for- 106

mulation, which leads to improved computational 107

tractability. Let Fs denote a spatial smoothing ker- 108

nel of size v × v, such that column i of Fs stores the 109

weights for a smoothing kernel spatially centered at 110

the ith node of the network. This smoothing kernel 111

can be used to compute the smoothed half-incidences: 112

Us = FsU

Vs = FsV
(3)

Smoothing can thus be represented as a linear 113

transformation of each half-incidence matrix. Under 114

this simplification, CBS reduces to a matrix congru- 115

ence between the smoothed and initial connectivity 116

matrices, which can be efficiently computed without 117

using half-incidence matrices. Specifically, we have 118

that: 119

As = UsVs
T + VsUs

T

= FsUV
TFs

T + FsV U
TFs

T

= FsAFs
T

(4)
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This equation shows that the smoothed connectiv-120

ity As is a congruent transformation of the initial con-121

nectivity matrix A. Fig. 1D-F illustrates a simple ex-122

ample of this transformation. This simplification im-123

proves the computational feasibility since performing124

CBS is no longer dependent on the number of stream-125

lines n which is typically greater than the number of126

non-zero connectome edges. The precise derivation127

of smoothing kernel matrix Fs is presented later in128

Section 2.6. Smoothing parameters.129
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Fig. 1. Illustrative example demonstrating the decomposition of
streamlines into connectivity and incidence matrices. (A) A hy-
pothetical network in which 7 streamlines connect four brain re-
gions/nodes. The nodes (a,d) and (b,c) are selected to be spatially
proximal. (B) Matrix A encodes the network in a 4x4 connectivity
matrix. (C) The network can be alternatively represented by two
half-incidence matrices U and V . (D) A connectome smoothing
kernel Fs can be defined based on the pairwise geodesic distances
between nodes. (E,F) The network representations can be spatially
smoothed using CBS to produce a smoothed connectivity matrix
As or a pair of smoothed half incidence matrices Us, Vs.

2.2. Study design130

We investigated the impact of CBS on connectomes131

mapped at different node resolutions. As detailed132

below, high-resolution ( 60k nodes) and atlas-based133

( 300 nodes) connectomes were mapped for individu-134

als using diffusion MRI and established whole-brain135

tractography methods. Data from two diffusion MRI 136

acquisitions for each individual were used, enabling 137

evaluation of test-retest reliability and identifiability 138

across different smoothing parameters. Fig. 2 pro- 139

vides a brief overview of the study design. We next 140

describe the diffusion MRI acquisition, whole-brain 141

tractography and connectome mapping procedures, 142

smoothing parameters, and the evaluation methodol- 143

ogy used in this study. 144

2.3. Imaging data acquisition and pre- 145

processing 146

Imaging data were sourced from the Human Connec- 147

tome Project (HCP) [39, 40]. We obtained the diffu- 148

sion and structural MRI images from the 42 healthy 149

young adults comprising the HCP test-retest cohort. 150

For these individuals, two separate imaging sessions 151

were conducted across two different days, with the 152

intervening period between the test and retest scans 153

ranging from 18 to 343 days. These duplicate individ- 154

ual scans enabled the assessment of both intra- and 155

inter-individual variations in the mapped connectiv- 156

ity information. Diffusion MRI data were acquired 157

using a 2D spin-echo single-shot multiband EPI se- 158

quence with a multi-band factor of 3 and monopolar 159

diffusion sensitization. The diffusion data consisted of 160

three shells (b-values: 1000, 2000, 3000 s/mm2) and 161

270 diffusion directions equally distributed within the 162

shells, and 18 b=0 volumes, with an isotropic spatial 163

resolution of 1.25mm [41]. We analyzed preprocessed 164

diffusion data, where preprocessing was completed by 165

the HCP team, using an established minimal prepro- 166

cessing pipeline (v3.19.0). This included b=0 inten- 167

sity normalization across scanning sessions, EPI and 168

eddy-current-induced distortion corrections, motion 169

correction, gradient nonlinearity correction, registra- 170

tion to native structural space, and masking the final 171

data with a brain mask [42]. 172

2.4. Connectome resolution 173

Wemapped both high-resolution and atlas-based con- 174

nectomes to evaluate the impact of CBS on different 175

parcellation granularities. All high-resolution connec- 176

tomes were mapped on the fsLR-32k standard sur- 177

face mesh, comprising 32,492 vertices on each hemi- 178

sphere [43]. This space is recommended for high- 179

resolution cross-subject studies of diffusion MRI as 180

it provides an accurate representation of the corti- 181

cal surface with fewer vertices than the native mesh 182

[42]. The combined left and right cortical surfaces 183

consisted of 59,412 vertices after exclusion of the me- 184

dial wall. The high-resolution maps were downsam- 185

pled to a lower spatial resolution defined by the HCP- 186

MMP1.0 atlas comprising 360 cortical regions [44]. 187

The downsampling procedure is detailed in the Sec- 188

tion 2.7. CBS for atlas-based connectivity. In brief, 189

the high-resolution connectivity matrix was aggre- 190

gated across all vertices belonging to each atlas re- 191

gion such that the connectivity weight between two 192

3
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atlas nodes was equal to the sum of the connectivity193

weights over all high-resolution vertices connecting194

those atlas nodes. The subcortex was not included in195

either high-resolution or atlas-based connectomes.196
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Fig. 2. Schema of study design and methodology. (A) Test-retest
diffusion MRI scans of 42 individuals were sourced from the Hu-
man Connectome Project. This provided a duplicate scan of every
individual. Probabilistic and deterministic tractography were uti-
lized to estimate whole-brain white matter fiber trajectories for
all individuals and scans. (B) Tractography results were used to
map unsmoothed structural connectomes using the high-resolution
fsLR-32k surface mesh. Different smoothing parameters were used
to transform the unsmoothed high-resolution connectomes into var-
ious CBS smoothed alternatives. All variants of smoothed and
unsmoothed connectomes were also downsampled to connectivity
maps on the HCP-MMP1.0 brain atlas comprising 360 cortical re-
gions [44]. (C) All mapped connectomes were used to evaluate
the level of similarity between connectivity maps of different scans
(test and retest) for each combination of parcellation resolution
and set of smoothing parameters. Both intra- and inter-individual
similarities were computed for all pairs of scans. (D) The com-
puted similarities were used to evaluate the level of connectome
reliability, uniformity, and identifiability: reliability quantifies the
average similarity of connectomes belonging to scans of the same
individual; uniformity quantifies the average conformity of connec-
tomes belonging to different individuals; identifiability measures
the extent to which scans of the same individuals are differentiable
from the rest of the group.

2.5. Tractography & connectome construc-197

tion procedure198

The impact of CBS was evaluated on both probabilis-199

tic and deterministic tractography algorithms. MR-200

trix3 software was used to perform tractography [45].201

An unsupervised method was used to estimate the202

white-matter (WM), grey-matter (GM), and cerebro-203

spinal fluid (CSF) response functions [46] for spherical204

deconvolution [47]. The fiber orientation distribution205

(FOD) in each voxel was estimated using a Multi-206

Shell, Multi-Tissue Constrained (MSMT) spherical207

deconvolution, which improves tractography at tis-208

sue interfaces [48]. The fsLR-32k surface mesh was209

used to generate a binary voxel mask at the interface210

between WM and cortical GM, from within which 211

tractography streamlines were uniformly seeded at 212

random coordinates from within this ribbon. Proba- 213

bilistic tractography was performed by 2nd-order in- 214

tegration over fiber orientation distributions (iFOD2) 215

[49]. Deterministic tractography was performed us- 216

ing a deterministic algorithm that utilized the esti- 217

mated FOD with a Newton optimization approach 218

to locate the orientation of the nearest FOD am- 219

plitude peak from the streamline tangent orienta- 220

tion (“SD_Stream”) [50]. Five million streamlines 221

were generated for each tractography method for each 222

scan. 223

A streamlines propagation mask was generated us- 224

ing the intersection of voxels with non-zero white 225

matter partial volume as estimated by FSL FAST 226

[51] and voxels with non-zero sub-cortical grey matter 227

volume as estimated by FSL FIRST [52]. The sub- 228

cortical GM was included in the propagation mask to 229

preserve long streamlines relaying through the sub- 230

cortex, only terminating streamlines at the bound- 231

aries of cortical GM or CSF. The streamline end- 232

points were then mapped to the closest vertex of the 233

individual’s WM surface mesh (fsLR-32k). Stream- 234

lines ending far from the cortical vertices (>2mm) 235

were discarded. The remaining streamlines were used 236

to generate a 59,412 × 59,412 high-resolution connec- 237

tivity matrix for each of the two sessions for each in- 238

dividual. These data form the input for evaluation of 239

CBS as described in the following sub-sections. 240

2.6. Smoothing parameters 241

The matrix of spatial smoothing kernels, Fs, deter- 242

mines the spatial distribution of smoothing weights. 243

We use a Gaussian function to define kernel weights, 244

G(δ), as a function of distance from the kernel center, 245

δ, as given by: 246

G(δ) =
1

(
√
2πσ)k

e−
δ2

2σ2 (5)

Where k is the dimension of the spatial kernel. The 247

parameter σ is the standard deviation of the Gaus- 248

sian distribution which determines the strength of 249

smoothing. In this study, smoothing was applied to 250

the cortical surface mesh (k = 2) and was quantified 251

by the geodesic distance over the surface mesh. De- 252

spite each subject possessing the same set of vertices, 253

the smoothing kernel was computed separately for 254

each scan, based on the precise inter-vertex geodesic 255

distances on the white-matter surface mesh of each 256

individual scan. 257

To compare the impact of different kernel standard 258

deviations, smoothing kernels were computed with 1, 259

2, 3, 4, 6, 8, and 10mm FWHM (full width at half 260

maximum) (FWHM = σ
√
8 ln 2). 261

A second parameter that can impact smoothing is 262

truncation of the kernel. As the Gaussian distribu- 263

tion decays exponentially with distance, the kernel 264

is effectively zero for sufficiently large distances, and 265

so contributions can be ignored with minimal loss of 266
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Fig. 3. Impact of kernel parameters on truncated kernels. (A) Distribution of a truncated Gaussian kernel with smoothing parameters
FWHM, ε, and R(FWHM, ε). FWHM determines the standard deviation of the Gaussian kernel, ε dictates the proportion of the kernel that
is truncated, and R determines the threshold radius beyond which the kernel is set to zero. The thick black line represents the smoothing
kernel as a function of the smoothing parameters. (B) Smoothing parameter space of FWHM, ε, and R. The parameter space plane shows
the value of smoothing kernel radius R as a function of kernel standard deviation, FWHM, and truncation threshold, ε. The radius is
linearly related with FWHM, but log-linearly with the inverse of ε. The red points indicate the selected smoothing parameters from the
parameter space that were used in this study. (C) The values of kernel truncation radius at the respective smoothing parameters selected
for FWHM and ε. (D) A sample cortical vertex in the left frontal lobe of an inflated cortical mesh. (E) The respective column of the
smoothing kernel Fs for the vertex shown in panel (D) with different smoothing parameter choices projected on the cortical surface.

precision. Truncation results in a sparse smoothing267

kernel, enabling computationally efficient smoothing268

of high-resolution connectomes. Here we studied the269

effect of the truncation threshold, ε, which is defined270

as the fraction of the kernel integral discarded as a re-271

sult of kernel truncation (Fig. 3A): for each value of272

FWHM, we generated three kernels for assessment,273

corresponding to ε = {0.1, 0.01, 0.001}. This trun-274

cation can alternatively be expressed as a kernel ra-275

dius R (which has benefits both conceptually and pro-276

grammatically):277

R(FWHM, ε) = FWHM
√
− log2 ε (6)

Proof of this relationship is provided in the Sup-278

plementary Information Section S.1. Thresholding ra-279

dius.280

Fig. 3A shows the influence of FWHM and ε on281

the truncated kernel. Fig. 3B,C show the relation-282

ship between standard deviation, truncation thresh-283

old and radius. Truncated kernels were generated284

with nonzero kernel weights only at locations with285

distance less than R(FWHM, ε) from the kernel cen-286

ter. Consequently, kernels were re-normalized such287

that for every vertex the column sum of Fs was 1.0288

despite truncation. Fig. 3D,E demonstrate the spatial289

distribution of a single row of this smoothing kernel290

over a sample cortical surface mesh.291

2.7. CBS for atlas-based connectivity292

As described in Section 2.4. Connectome resolu-293

tion, smoothed versions of the parcellation-based294

atlas-resolution connectome can be computed by 295

first applying smoothing to the high-resolution con- 296

nectome, then aggregating the connectivity values 297

within the vertices corresponding to each atlas par- 298

cel. This approach however necessitates the high stor- 299

age and computational complexity demands of high- 300

resolution connectome data. We therefore derived a 301

more computationally efficient procedure to perform 302

CBS on atlas-based connectomes. 303

A brain parcellation atlas can be denoted by a bi- 304

nary p× v matrix P , where p is the number of brain 305

regions in the atlas, such that the ith row of P is a 306

binary mask of vertices belonging to the ith atlas re- 307

gion and each vertex belongs to at most one region 308

(a “hard parcellation”). An atlas-based connectivity 309

map Ap can be represented by the matrix multiplica- 310

tion Ap = PAPT : this operation reduces the v × v 311

high-resolution connectivity A to a p × p atlas con- 312

nectivity map Ap. To smooth Ap, the high-resolution 313

connectivity matrix A can be smoothed to As and 314

then downsampled to create the smoothed atlas con- 315

nectivity map Asp. An equivalent approach is to first 316

spatially smooth every row of the brain atlas P , and 317

then normalize every column to produce a smoothed 318

“soft parcellation” Ps = PFs, where each region is 319

now defined as a weighted probability map across ver- 320

tices and vertices can have non-zero membership to 321

multiple regions. This enables direct computation of 322

smoothed parcellation-based connectome matrix Asp 323

without necessitating computation of the smoothed 324

high-resolution connectome matrix As (see Supple- 325

mentary Information Section S.2. CBS for atlas-based 326

connectivity for detail): 327
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Asp = PAsP
T

= PFsAFs
TPT

= (PFs)A(PFs)
T

= PsAP
T
s

(7)

2.8. Connectome similarity328

To evaluate the potential advantages of smoothing, a329

measure of similarity based on Pearson’s correlation330

was used to quantify the conformity of two connectiv-331

ity maps [32, 53]. To compute the similarity between332

two networks A1 and A2, first, Pearson’s correlation333

was computed for all respective rows of the connectiv-334

ity matrices, yielding v correlation coefficients, each335

indicating the connectivity similarity of a single node;336

these correlations were then averaged over all nodes337

to produce a single value indicating the similarity of338

two connectomes. This measure was used to quantify339

both intra- and inter-individual connectome matrix340

similarities.341

2.9. Evaluation metrics342

Direct connectome comparisons were performed343

within each combination of: tractography algorithm344

(deterministic and probabilistic); parcellation reso-345

lution; and network smoothing parameters. Within346

each of these configurations, smoothed structural con-347

nectomes were generated independently for the two348

scanning sessions for each of 42 participants. For each349

scan in session 1, its similarity to every session 2 scan350

(1 intra-individual and 41 inter-individual) was com-351

puted; aggregated across all individuals, this process352

yielded 42 values comparing connectomes of the same353

individual (intra-individual similarities), and 42 × 41354

measuring the similarity between connectomes of dif-355

ferent individuals (inter-individual similarities). The356

intra-individual similarities were averaged to form a357

measure of connectome reliability µintra, indicating358

the extent of consistency of mapped connectomes for359

an individual; similarly, the inter-individual similar-360

ities were averaged to yield a measure of population361

uniformity of the connectivity maps µinter. Ideally,362

connectomes should be reliable (i.e. high µintra) and363

preserve inter-individual differences (i.e. low µinter).364

Hence, high reliability and low population uniformity365

is desirable.366

To evaluate the extent to which an individual’s con-367

nectome is unique, we adopted an established identi-368

fiability framework [54]. Identifiability quantifies the369

extent to which an individual can be differentiated370

from a larger group based on a set of individual at-371

tributes. Here, identifiability was measured by the372

effect size of the difference in the means of intra-373

individual and inter-individual similarities [32]:374

identifiability =
|µintra − µinter|

s
(8)

Where µintra and µinter are the mean of the two 375

intra- and inter-individual similarity distributions 376

and s is the pooled standard deviation of the two 377

distributions. 378

2.10. Evaluating statistical power with atlas- 379

resolution smoothing 380

Generally, smoothing can result in a loss of effective 381

spatial resolution, blurring, and shifting or merging 382

of adjacent signal peaks [55–58], but is necessary to 383

strike a compromise between sensitivity and speci- 384

ficity [59]. Hence, we investigated the impact of CBS 385

on mass univariate significance testing of associations 386

between cognitive performance and atlas-based struc- 387

tural connectivity. Given that structural connectiv- 388

ity and cognition are known to be associated [32], 389

we tested whether the use of CBS would improve 390

power to detect such associations. For each pair of 391

regions in the parcellation atlas, Pearson’s correla- 392

tion coefficient was used to test for an association be- 393

tween connectivity strength and a previously estab- 394

lished measure of overall cognitive performance [60]. 395

This yielded a correlation coefficient for each pair of 396

regions. Age and sex were regressed out from the 397

cognitive measure as confounds. This was repeated 398

across 100 bootstrap tests each including 90% of the 399

sample (N=35) to increase the robustness of the com- 400

parisons against individual effects. 401

To generate a distribution of correlation coefficients 402

under the null hypothesis of an absence of association 403

between connectivity and cognitive performance, we 404

randomized cognitive scores between individuals and 405

recomputed all correlation coefficients; this was re- 406

peated for 1000 randomizations (10 randomizations 407

within each bootstrap sample), yielding 1000 correla- 408

tion coefficients representing the null distribution for 409
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Fig. 4. Estimation of receiver operating characteristic (ROC)
curves for mass univariate testing of associations between cogni-
tive performance and structural connectivity. For each pair of re-
gions in the parcellation atlas, Pearson’s correlation coefficient was
used to test for an association between connectivity strength and
a previously established measure of overall cognitive performance.
(A) For a given effect size threshold (horizontal axis), the number
of suprathreshold connections (vertical axis) yielded the combined
number of true positives (TP ) and false positives (FP ), indicated
by the green line. The red line indicates the total number of FP ,
determined by randomizing cognitive scores between individuals
and recomputing all correlation coefficients (1000 randomizations;
mean & 95% confidence interval shown). (B) Assuming a constant
value for the false omission rate (λ = FN

FN+TN = 0.01), an ROC
curve can be estimated for different effect size (correlation coef-
ficient) thresholds. TPR: true positive rate. FPR: false positive
rate.
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each connection. For a range of correlation coefficient410

thresholds from 0.1 to 0.5 (which indicate small to411

large effects according to Cohen’s conventions [61]),412

we counted the number of suprathreshold connections413

in both the empirical and randomized data (averaged414

across the 1,000 randomizations).415

From these data, we generated an ROC (Receiver416

Operator Characteristic) curve as follows. The num-417

ber of suprathreshold connections in the empirical418

data was assumed to give the combined number of419

true positives (TP ) and false positives (FP ), while420

the average total number of suprathreshold connec-421

tions in the randomized data estimated the total num-422

ber of FP (Fig. 4A). The combined number of false423

negatives (FN) and true negatives (TN) was deter-424

mined by subtracting TP+FP from the total number425

of connections. Finally, since the true underlying ef-426

fect was unknown, we assumed a false omission rate427

of 1%, i.e., λ = FN
FN+TN = 0.01. This assumption428

enabled estimation of sensitivity ( TP
TP+FN ) and speci-429

ficity ( TN
TN+FP ) that were used to generate the ROC430

curve. We ensured that our estimates were robust431

to the choice of λ (see Supplementary Information432

Section S.3. Replication of ROC curve estimates for433

detail). This process was repeated independently for434

various smoothing kernels, and for data generated us-435

ing both deterministic and probabilistic tractography436

algorithms, to investigate the impact of CBS on the437

statistical power to detect associations between cog-438

nitive performance and connectivity.439

Additionally, we tested the replicability of the440

suprathreshold effects in a test-retest comparison to441

evaluate the replicability of the observations before442

and after smoothing. At each utilized threshold value,443

for every edge that was suprathreshold in the data444

from either session 1 or session 2, we calculated the445

difference in correlation coefficient between the two446

sessions. This provided a distribution of effect dif-447

ferences observed across a range of effect thresh-448

olds. Thus, a lower average effect difference indicated 449

higher consistency of the connectivity-behavior obser- 450

vations and higher replicability of the findings. 451

3. Results 452

We investigated the utility of CBS for high-resolution 453

and atlas-based connectomes, focusing on connec- 454

tome reliability and identifiability as well as com- 455

putational and storage requirements. We recom- 456

mend optimal smoothing kernels for connectomes 457

mapped with deterministic and probabilistic tractog- 458

raphy, and we demonstrate that smoothing improves 459

the statistical power to detect associations between 460

connectivity and cognitive performance. 461

3.1. High-resolution connectome storage 462

size 463

High-resolution connectomes require considerable 464

storage and computational resources, and CBS can 465

increase this burden, due to reductions in matrix 466

sparsity. Fig. 5 summarizes the sizes of stored con- 467

nectomes for various kernels. Kernels with larger 468

FWHM and/or more lenient truncation thresholds 469

incur greater storage demands for high-resolution 470

connectomes. We found that the kernel radius 471

R(FWHM, ε), which is dependent on both parame- 472

ters, was a reasonable predictor of connectome size. 473

We also observed that connectomes mapped using 474

probabilistic tractography were approximately an or- 475

der of magnitude larger than their deterministic coun- 476

terparts both prior to smoothing ( 10MB for proba- 477

bilistic and 1MB for deterministic) and after per- 478

forming CBS with identical smoothing parameters. 479

A B

Fig. 5. Impact of CBS on connectome storage requirements. (A) Tables show the mean storage size of individual connectomes mapped
using deterministic (upper) and probabilistic (lower) tractography following smoothing, as a function of truncation threshold and full-width
at half maximum (FWHM) of smoothing kernel (B) The relationship between the kernel radius and file size of individual connectomes.
Results for connectomes with no smoothing are marked with an x. File sizes are plotted using a logarithmic scale. Shaded bands indicate
one standard deviation from the mean.
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3.2. Identifiability and reliability480

Fig. 6 summarizes the impact of CBS on the identi-481

fiability and reliability of high-resolution structural482

connectivity maps. We observed that both larger483

FWHM values and smaller truncation thresholds (i.e.,484

larger R in both cases) consistently improved con-485

nectome reliability (mean intra-subject similarity).486

While high-resolution connectomes without smooth-487

ing had a relatively low reliability (µintra < 0.2), CBS488

with kernels as little as 3-4mm FWHM resulted in a489

substantial increase in reliability (µintra > 0.5), with490

reliability exceeding 90% (µintra > 0.9) achieved in491

some scenarios.492

CBS also impacted connectome identifiability. We493

observed that while CBS with a 2-4mm FWHM ker-494

nel improved the identifiability of connectomes, CBS495

with larger FWHM was detrimental for individual496

identifiability, such that CBS with a 10mm FWHM497

resulted in more than 50% reduction in identifiability.498

For both identifiability and reliability measures, CBS499

was more sensitive to a change in kernel FWHM in500

contrast to the truncation threshold ε. Increasing the501

truncation threshold from ε = 0.01 to ε = 0.001 had502

negligible impact on either measure.503

Tractography algorithm choice also impacted re-504

liability and identifiability. High-resolution connec-505

tomes mapped using deterministic tractography had506

relatively lower reliability (10-20% lower), but higher507

identifiability (20-30%), compared to their probabilis-508

tic counterparts with identical CBS parameters.509

Fig. 7 shows the impacts of CBS with different ker-510

Smoothing impact on high-resolution connectomes

Fig. 6. Impact of CBS on high-resolution connectomes for a range
of different kernel parameters. Reliability (first row) and identifi-
ability (second row) are reported for deterministic (left column)
and probabilistic (right column) structural connectomes mapped
at the resolution of cortical vertices. Results for connectomes with
no smoothing are marked with an x in each plot. Kernel trun-
cation thresholds, ε, are colored using warm colors such that each
line connects points with equal ε; similarly, FWHM is colored using
shades of green.

nel parameters on an atlas-parcellation-based struc- 511

tural connectome. In agreement with the high- 512

resolution analyses, we observed both that increases 513

in FHWM and decreases in kernel truncation thresh- 514

olds led to improved connectome reliability, and that 515

this improvement in reliability comes at the expense 516

of reduced identifiability. Without CBS, the atlas- 517

based connectomes were already relatively reliable 518

(deterministic: 92%, probabilistic: 98%). Use of the 519

largest smoothing kernel increased these to 97% and 520

99%, respectively, albeit at the cost of a small reduc- 521

tion in identifiability (from 7.8 to 7.2 for determin- 522

istic and from 6.8 to 6.1 for probabilistic). Chang- 523

ing kernel extent from ε = 0.01 to ε = 0.001 again 524

had no considerable impact on reliability or iden- 525

tifiability. The magnitude of influence of CBS on 526

the atlas-resolution connectomes was comparatively 527

smaller than the effects observed at the higher reso- 528

lution. 529

All in all, we observed that the advantages of 530

CBS for high-resolution were maximized with 3-6mm 531

FWHM kernels; larger smoothing kernels (>6mm 532

FWHM) could deteriorate high-resolution identifia- 533

bility for the sake of reliability. In contrast, identi- 534

fiability of the atlas-resolution maps were less sen- 535

sitive to larger smoothing kernels, and thus kernels 536

of 6-10mm FWHM can be used to improve reliabil- 537

ity with proportionally smaller losses in identifiabil- 538

ity. To achieve similar reliability and identifiability, 539

connectomes generated using deterministic tractogra- 540

phy were found to require CBS with larger smoothing 541

kernels compared to their probabilistic counterparts. 542

Smoothing impact on atlas-based connectomes

Fig. 7. Impact of CBS on atlas-based connectomes, for a range of
different kernel parameters. The connectome reliability (first row)
and identifiability (second row) are reported for deterministic (left
column) and probabilistic (right column) structural connectomes
mapped at the resolution of atlas parcels. The unsmoothed atlas-
based connectivity results are marked with x in each plot. Kernel
truncation thresholds, ε, are colored using warm colors such that
each line connects points with equal ε; similarly FWHM is colored
using shades of green.
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Finally, it should be noted that the optimal CBS ker-543

nel parameters essentially depend on the application544

for which the connectome will be used.545

3.2.1. Case Study: Impact of CBS on statistical546

power547

Finally, we investigated whether CBS can improve548

statistical power to detect associations between struc-549

tural connectivity and cognitive performance. For550

this study we used FWHM = 8mm and ε = 0.01,551

based on the results reported above. For this case552

study, we considered the mapped atlas-based connec-553

tomes and computed Pearson’s correlation coefficient554

between streamline counts and cognitive performance555

for each pair of regions. ROC curves were then com-556

puted for each case, as described in the Methods, to557

determine whether CBS improved statistical power to558

identify associations between connectivity and cogni-559

tive performance.560

First, we tested whether the magnitude of effect561

in the set of suprathreshold connections (i.e., connec-562

tions with a correlation coefficient exceeding a fixed563

threshold) were replicable between the test and retest564

datasets. We found that CBS improved replicability565

in suprathreshold connections, particularly more so566

for connectomes mapped with probabilistic tractog-567

raphy (Fig. 8A); this suggests that CBS can improve568

the reproducibility of mass univariate testing on con-569

nectomes.570

Next, we enumerated the number of suprathresh-571

old connections as a function of the effect thresh-572

old (Fig. 8B). While the proportion of suprathresh-573

old connections increases following smoothing for the574

empirical data, indicating a potential gain in sen- 575

sitivity, a similar increase in the randomized (null 576

distribution) data suggests that this may come at 577

the expense of poorer specificity. For connectomes 578

mapped with deterministic tractography, the num- 579

bers of suprathreshold connections for the empiri- 580

cal and randomized data are separated by a com- 581

parable gap, irrespective of whether CBS was per- 582

formed. For probabilistic tractography, the num- 583

ber of suprathreshold connections for the randomized 584

data was comparable with and without smoothing, 585

whereas CBS resulted in a substantially greater pro- 586

portion of suprathreshold connections for the empir- 587

ical data. This suggests that CBS can improve the 588

statistical power of mass univariate testing performed 589

on connectomes mapped with probabilistic tractogra- 590

phy, without a substantial loss in specificity. 591

To further investigate these effects, we consid- 592

ered precision ( TP
TP+FP ) as a function of effect size 593

threshold (Fig. 8C); and from this, generated ROC 594

curves (Fig. 8D). Performing CBS on connectomes 595

mapped from probabilistic tractography improves the 596

precision and sensitivity of the inference. This im- 597

provement is also partially observed for connectomes 598

mapped from deterministic tractography only for 599

smaller effect thresholds (r < 0.3). Taken together, 600

these results suggest that CBS is particularly bene- 601

ficial to improving the statistical power of inference 602

performed on connectomes mapped with probabilistic 603

tractography; in contrast, for connectomes mapped 604

with deterministic tractography, the benefit of CBS 605

is marginal and possibly detrimental for larger effect 606

size thresholds (r > 0.3). More importantly, CBS 607

improved replicability with minimal impact on the 608

BA C D

Fig. 8. Impact of CBS on statistical power of mass univariate testing on atlas-based connectomes, based on an exemplar dataset examining
correlations between structural connectivity and cognitive performance. (A) Replicability of suprathreshold connections between test and
retest datasets: a lower difference of the observed effect magnitude between test and retest is favorable in terms of replicability. (B) The
number of suprathreshold connections as a function of the effect size threshold was compared with a null distribution from permutation.
To assess the predictive utility of the connectomes, precision, sensitivity, and specificity was estimated from a comparison with the null.
(C) Precision was calculated from the ratio of supra-threshold edges found in empirical data compared to the null model at different
effect thresholds. (D) ROC curves were estimated to demonstrate the respective changes in sensitivity (TPR = TP

TP+FN ) and specificity
(1−FPR = TN

TN+FP ) of the edges selected at different effect thresholds. The analyses were repeated across bootstrap samples to provide a
robust estimate of statistical power. Shaded lines indicate 95% confidence intervals. Abbreviations: TP: True Positive, FP: False Positive,
TN: True Negative, FN: False Negative, TPR: True Positive Rate, FPR: False Positive Rate.
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statistical power for connectomes mapped with both609

tractography algorithms.610

4. Discussion611

In this study, we established a computationally612

efficient formalism for connectome smoothing and613

demonstrated that our connectome-based smoothing614

(CBS) method can benefit the analysis of atlas-based615

and high-resolution connectomes. Our results demon-616

strate that CBS impacts different aspects of con-617

nectivity mapping analyses, including individual re-618

liability, inter-individual variability, and the inter-619

scan replicability of brain-behavior statistical asso-620

ciations, as well as computational storage demands.621

The choice of smoothing kernel parameters involves622

a trade-off between connectome sensitivity and speci-623

ficity: larger kernels (higher FWHM and lower ε) im-624

prove connectome sensitivity, but are detrimental to625

connectome specificity. It is therefore important to626

select a level of smoothing that strikes a balance be-627

tween these competing factors. In the following sec-628

tions, we provide some guidelines for selecting optimal629

smoothing parameters and discuss the implications of630

performing CBS for connectome reliability, identifia-631

bility, storage requirements, and statistical power.632

4.1. Appropriate smoothing parameters633

Our results indicate that CBS differentially affects634

the characteristics of structural connectivity matri-635

ces mapped with different tractography methods and636

parcellation resolutions. Although we cannot sug-637

gest a one-size-fits-all smoothing kernel, our find-638

ings can guide selection of appropriate CBS smooth-639

ing kernels in future studies. Table 1 provides some640

rules of thumb for selecting a level of spatial smooth-641

ing which aims to achieve a balance between re-642

liability and identifiability, while also considering643

storage demands. In general, high-resolution con-644

nectomes benefit from smaller FWHM compared to645

atlas-based connectomes, and deterministic maps re-646

quire larger FWHM than their probabilistic counter-647

parts to achieve the same level of reliability. However,648

the goals of the analysis at hand must be considered649

when selecting the level of smoothing. For example,650

if the goal is to identify an individual from a group651

based on their connectome, deterministic tractogra-652

phy and a smaller FWHM than recommended in Ta-653

ble 1 may be desirable. On the other hand, if one654

wishes to build a reliable consensus structural con-655

nectome that is robustly consistent across individu-656

als, a higher FWHM than recommended in Table 1657

may be favored. A value of 0.01 is suggested univer-658

sally for the kernel truncation threshold ε, as smaller659

thresholds yield negligible impacts on identifiability660

and reliability whilst incurring much greater storage661

costs.662

Without CBS, connectomes mapped from deter-663

ministic tractography were found to yield higher664

identifiability; conversely, connectomes mapped from 665

probabilistic tractography were more reliable. This is 666

in line with previous reports suggesting that proba- 667

bilistic tractography achieves higher sensitivity, lower 668

specificity, and lower interindividual variability, com- 669

pared to deterministic approaches [62–65]. Given 670

that many factors other than reliability and identi- 671

fiability would affect the choice of tractography al- 672

gorithm, we suggest that CBS could be leveraged to 673

achieve a balance between reliability and identifiabil- 674

ity of the selected tractography algorithm. Hence, we 675

could take advantage of a comparatively larger kernel 676

for deterministic tractography approaches to match 677

the reliability and identifiability of the probabilistic 678

counterpart. 679

Recommended
smoothing parameters

FWHM ε R

High-
resolution

Probabilistic 3mm 0.01 4mm
Deterministic 6mm 0.01 8mm

Atlas
Probabilistic 8mm 0.01 10mm
Deterministic 8mm 0.01 10mm

Table 1. Recommended smoothing parameters. This table pro-
vides rule of thumb recommendations for CBS smoothing kernels
of different variants of structural connectomes. In general, connec-
tomes at the resolution of a brain atlas can benefit from larger CBS
kernels compared to high-resolution connectomes. High-resolution
connectomes computed from probabilistic tractography are advised
to be smoothed less than their deterministic counterparts. Reduc-
ing epsilon below 0.01 is unfavorable and computationally costly.
The rounded values for kernel radius R(FWHM, ε) provide sensible
approximations.

Our results highlight that CBS is a critical step 680

to improving the reliability of high-resolution connec- 681

tomes. High-resolution connectivity mapping is par- 682

ticularly sensitive to noise, artefacts, and registration 683

misalignment, all of which can be alleviated—to a cer- 684

tain extent—with the new CBS formalism developed 685

here. 686

4.2. Connectome reliability 687

Structural connectivity maps are commonly used in 688

research to draw statistical inferences regarding as- 689

sociations between brain connectivity and different 690

aspects of human cognition, behavior, and mental 691

health [66–71]. The statistical power of such infer- 692

ences can depend on the reliability of the measure un- 693

der study: a connectivity measure that can be reliably 694

assessed for all individuals can potentially improve 695

the characterization of brain-behavior associations. 696

However, improvements in reliability achieved by in- 697

creasing the level of smoothing come at the expense 698

of poorer spatial specificity and increases in connec- 699

tome storage and computational requirements. CBS 700

enables researchers to balance this trade-off to match 701

the goals of the analysis at hand. Commonly used 702

atlas-based connectivity maps are comparatively reli- 703

able, even without any smoothing, since the reduced 704

spatial resolution of inter-subject correspondence im- 705

posed by a parcellation performs an operation compa- 706
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rable to smoothing. Nevertheless, we found that CBS707

could marginally improve the reliability of atlas-based708

connectomes.709

4.3. Individual identifiability710

The concept of neural fingerprinting has emerged in711

recent years which considers the challenge of identi-712

fying an individual from within a large group of oth-713

ers, based on their connectome or other neuroimaging714

data [53]. While the efficacy of a measure at indi-715

vidual identification does not necessitate existence of716

behavioral and pathological biomarkers in individu-717

als, it could still be conceived as an indicator of the718

strength of such individual brain-behavior associa-719

tions. By reducing the impact of noise and regis-720

tration misalignments, CBS can enhance detection of721

individual differences in connectivity maps, enabling722

clearer differentiation of individuals and thus poten-723

tially improve the accuracy of neural fingerprinting.724

Our findings suggest that a minimal smoothing ker-725

nel of 2mm FWHM improves both reliability and726

identifiability of high-resolution connectivity matri-727

ces. Implementing CBS with larger kernels (i.e. >728

2mm FWHM) further enhances connectome reliabil-729

ity substantially, but results in a gradual reduction in730

identifiability due to loss of individual identifiers by731

spatial blurring. Smoothing the high-resolution con-732

nectivity maps beyond 6mm FWHM is unnecessary733

because gains in reliability diminish, despite detri-734

mental impacts on identifiability, spatial specificity,735

and storage requirements.736

4.4. Storage requirements737

It is important to consider the storage demands738

and associated computational burdens of handling739

smoothed connectome data. If the connectome size is740

larger than a gigabyte or so, handling the file (loading741

into memory and conducting analyses) can become742

unacceptably time-consuming. Even with the assis-743

tance of high-performance computing infrastructure,744

any benefits of using connectomes larger than a few745

gigabytes might not outweigh the time and resources746

required to process the larger files. This especially747

limits the extent of smoothing for connectomes gener-748

ated using probabilistic tractography, which can grow749

to more than a few gigabytes when smoothed above750

4-6mm FWHM. In contrast, connectomes mapped751

with deterministic tractography can be smoothed fur-752

ther whilst remaining highly computationally feasi-753

ble. Nevertheless, if greater smoothing is essential754

in a study, a high-performance computing platform755

with access to adequate memory can be used to pro-756

cess smoothed connectomes (potentially without use757

of sparse matrix data structures), which may take758

tens of gigabytes of memory per individual connec-759

tome.760

4.5. Implications on atlas resolution 761

Our results highlight the impact of CBS on structural 762

connectomes mapped both at the high resolution of 763

individual surface vertices, and the lower resolution 764

of a brain atlas. While the findings vary in terms of 765

magnitude of influence, a common pattern is visible 766

across resolutions: higher FWHM results in a more 767

reliable connectome, yet higher FWHM reduces the 768

identifiability of connectomes. We developed compu- 769

tationally efficient methods to perform CBS at both 770

resolutions. Atlas-based connectivity matrices have a 771

relatively small memory footprint (<1MB), and thus 772

they can be processed and stored efficiently, regard- 773

less of the level of smoothing. Similar to the high- 774

resolution connectomes, when using an atlas par- 775

cellation, probabilistic and deterministic tractogra- 776

phy approaches have complementary attributes when 777

comparing reliability and identifiability: connectomes 778

mapped from probabilistic tractography achieve bet- 779

ter reliability compared to their deterministic coun- 780

terparts, whereas deterministic connectomes can bet- 781

ter reveal individual differences. This is one possible 782

factor that can guide the choice between deterministic 783

and probabilistic tractography algorithms. However, 784

CBS can be used to increase the reliability of con- 785

nectomes mapped from deterministic tractography to 786

match the reliability of the probabilistic approach. 787

Finally, the atlas-based smoothing results suggest 788

that probabilistic maps are to a certain extent repre- 789

sentative of highly smoothed deterministic ones. In 790

other words, more smoothed deterministic maps were 791

analogous to less smoothed probabilistic maps, as the 792

probabilistic evaluation curves in Fig. 7 seem to be a 793

continuation of the deterministic curves. This obser- 794

vation is in agreement with prior expectations given 795

the mechanisms used to generate the data, as proba- 796

bilistic tractography-based connectivity has an intrin- 797

sic spatial smoothness due to the stochastic variabil- 798

ity in streamline propagation. The proposed method 799

to perform CBS on atlas-based connectomes does 800

not require construction of any intermediate high- 801

resolution connectomes and is a fast operation rela- 802

tive to the time required to perform whole-brain trac- 803

tography. Thus, while the benefits of spatial smooth- 804

ing for atlas-based connectomes were modest, we rec- 805

ommend including CBS in future connectome map- 806

ping workflows. 807

4.6. CBS and principals of spatial smooth- 808

ing 809

Our proposed connectome-based spatial smoothing 810

approach is an extension of spatial signal smooth- 811

ing to networks, and hence, fundamental concepts 812

within the domain of spatial smoothing are applica- 813

ble to CBS. For instance, from a signal processing 814

perspective, the matched filter theorem states that 815

spatial smoothing by an appropriate Gaussian ker- 816

nel equalizes the voxel-wise standard deviation and, 817

in turn, yields an optimal sensitivity to detect effects 818

11
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of unknown extent [72, 73]. Additionally, with re-819

gards to single-subject inference, such smoothing fa-820

cilitates the application of multiple comparison cor-821

rection using random field theory [72–74] and finally,822

smoothing mitigates residual anatomical variability823

of individuals at the group-level. These concepts are824

equally applicable to CBS, wherein, a matrix multi-825

plication with a smoothing kernel achieves a similar826

purpose to convolution of image data with a 3D spa-827

tial smoothing kernel; as a result, CBS can be utilized828

to (i) maximize connectivity SNR through appropri-829

ate filter selection, (ii) improve single-subject infer-830

ence, and (iii) improve the reliability of group level831

connectivity analyses. This poses an interesting fu-832

ture research direction to explore the benefits of CBS833

for whole-brain high-resolution network inference in834

which voxel-wise approaches [31, 74–76] are combined835

with network-based approaches [30].836

4.7. Concluding remarks837

In this study, we developed a novel formalism for838

connectome-based smoothing of structural connectiv-839

ity matrices and demonstrated the wide-ranging ben-840

efits of connectome smoothing. Our results indicate841

that CBS with different kernel FWHMs and trun-842

cation thresholds significantly impacts various char-843

acteristics of structural connectivity matrices. In844

high-resolution connectomes, smoothing up to 3-6mm845

FWHM was deemed favorable, though the choice846

of smoothing parameters imposes a trade-off be-847

tween reliability and individual identifiability. We848

provided recommendations for smoothing parameter849

choices that achieve a compromise between reliability850

and identifiability. Our connectome-based smooth-851

ing method and associated recommendations can be852

incorporated into future structural connectivity map-853

ping pipelines, enabling more reliable and better pow-854

ered connectome analyses. Moreover, high-resolution855

structural connectivity overcomes the known uncer-856

tainty and ambiguity in determination of brain par-857

cellation, and so will be a powerful analysis frame-858

work moving forward; our demonstrated and evalu-859

ated smoothing framework is an essential tool in fa-860

cilitating such, and we have made reasonable recom-861

mendations for how others can use it.862

Data and code availability863

All imaging data used in this study was sourced864

from the Human Connectome Project (HCP)865

(www.humanconnectome.org). The bash scripts866

used to perform tractography using MRtrix3 [45]867

(www.mrtrix.org), as well as all Python code re-868

quired to perform CBS and map smoothed connec-869

tomes at either the resolution of vertices or an at-870

las, are provided in our git repository. This code871

repository can be accessed from github.com/sina-872

mansour/connectome-based-smoothing. Addition-873

ally, to facilitate future research, the codes for874

smoothing connectomes at high-resolution and atlas- 875

resolution will be released as a standalone python 876

package (currently under development). 877
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Supplementary Information1229

S.1. Thresholding radius1230

This section provides the mathematical rationale behind the relationship betweenR, σ (or alternatively FWHM),1231

and ε presented in Equation 6. The truncation radius R was formulated as a function of σ and ε such that1232

the proportion of signal loss for a 2-dimensional Gaussian kernel with the strength of σ truncated at a radius1233

of R is equal to ε. Given that the Gaussian kernel was defined such that its total cumulative density is unity1234

(
∫∞
−∞G(δ) = 1), the relationship between the smoothing parameters can be defined by the following integration1235

over the 2-dimensional surface area:1236

ε = 1−
∫∫

δ<R

G(δ)dA (S1)

This integration can be solved in polar coordinates by the following closed form equation:1237

1− ε =
∫ 2π

0

∫ R

0

G(r, θ)rdrdθ

=

∫ 2π

0

∫ R

0

1

(
√
2πσ)2

e−
r2

2σ2 rdrdθ

=

∫ R

0

1

σ2
re−

r2

2σ2 dr

= −e−
r2

2σ2

∣∣∣R
0

= 1− e−
R2

2σ2

(S2)

And this can be used to describe R as a function of σ and ε:1238

1− ε = 1− e−
R2

2σ2 −→ R = σ
√
−2 ln ε (S3)

And given the relationship between FWHM and σ (FWHM = σ
√
8 ln 2), this equation can be rewritten based1239

on FWHM:1240

R(FWHM, ε) = FWHM
√
− log2 ε (S4)

S.2. CBS for atlas-based connectivity1241

In the main text, it was briefly mentioned that mapping the high-resolution connectivity is not necessary for1242

smoothing the connectivity matrices at an atlas resolution: alternatively, a smoothed version of an atlas-based1243

connectivity matrix can be derived from a soft parcellation, which is derived by applying spatial smoothing1244

to the parcels of the brain atlas (and normalizing each vertex to a unity sum of parcel memberships). In this1245

section, we provide the formal proof of this equivalence: first, downsampling a high-resolution connectivity1246

matrix to an atlas-based connectome matrix is formulated by linear algebraic formulations; these formulations1247

are then used to complete a formal proof of the equivalence.1248

Following the prior nomenclature, A is a v× v matrix denoting the high-resolution connectivity matrix where1249

v is the number of vertices. According to Equation 4, the smoothed high-resolution connectivity matrix As is1250

calculated as follows:1251

As = FsAFs
T (S5)

Where Fs is a v × v column-normalized spatial smoothing kernel. A formal notion of a brain atlas can be1252

denoted by p× v matrix P, where p is the number of brain regions in the atlas. Elements P (i, j) encode the1253

relationship between vertex/voxel vi and region pj .1254

P (i, j) =

{
1, if vj ∈ pi
0, otherwise

(S6)
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An atlas-resolution connectome Ap is a p × p matrix, which is normally mapped from an atlas parcellation 1255

such that elements Ap(i, j) encode the aggregate contribution from those streamlines for which one endpoint 1256

is assigned to region pi and the other endpoint is assigned to region pj (showing here the streamline count for 1257

simplicity): 1258

Ap(i, j) =
∑

vk∈pi&vl∈pj

A(k, l) (S7)

This notion can be formalized by the following matrix representation which can be used to derive Ap from A 1259

and P : 1260

Ap = PAPT (S8)

Hence, the element Ap(i, j) counts the overall connectivity between regions pi and pj by adding all high- 1261

resolution connectivity edges between them. Equations S5 and S8 yield the following definition for the smoothed 1262

atlas-based connectivity Asp: 1263

Asp = PAsP
T = PFsAFs

TPT = (PFs)A(PFs)
T (S9)

The matrix PFs can thus be treated as a p × v weighted soft parcellation map, i.e. a non-binary brain 1264

atlas. This soft parcellation can be used to generate smoothed connectomes based on an atlas parcellation (each 1265

streamline contributes to many connectome edges, based on all parcels with non-zero densities at both end- 1266

points) (see Equation S8). A key benefit of this approach is that it obviates the need to create computationally 1267

cumbersome high-resolution connectomes as an intermediate step in construction of lower-resolution connec- 1268

tome matrices. A different approach to compute this soft parcellation, that additionally does not necessitate 1269

computation of high-resolution smoothing matrix Fs, is further described in the ensuing sections. 1270

S.2.1. Column normalization 1271

To describe the soft parcellation PFs, a formal definition of normalizing every column should first be defined. 1272

Column normalization of an l ×m matrix B can be defined by the matrix multiplication of B with a diagonal 1273

norm matrix constructed from column sums. 1274

Definition S.1. 〈|B|〉 denotes an m×m diagonal column norm matrix constructed from B where 〈|B|〉(i, i) is 1275

the sum of the elements of the ith column in B: 1276

〈|B|〉(i, j) =

{∑
∀k B(k, j), if i = j

0, if i 6= j
(S10)

Hence, 1277

〈|B|〉 =


∑
∀k B(k, 1) 0 · · · 0

0
∑
∀k B(k, 2) · · · 0

...
...

. . .
...

0 0 · · ·
∑
∀k B(k, l)

 (S11)

And a consequence of Definition S.1 is the statement in the next corollary. 1278

Corollary S.1.1. Let zi ∈ Ri denote the vector of ones, i.e. all i vector elements equal 1. The following is 1279

true for any diagonal norm matrix: 1280

zlB = zm〈|B|〉 (S12)

Both sides of the equation above compute the column sums of B. Column normalization can be formally 1281

defined by the following theorem. 1282

Theorem S.1. The row normalization is a matrix transformation of an l×m matrix B to an l×m normalized 1283

matrix N(B), such that the sum of every column in N(B) is equal to 1, i.e. zlN(B) = zm. N(B) can be derived 1284

by the following matrix multiplication: 1285

N(B) = B〈|B|〉−1 (S13)
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Proof. Corollary S.1.1 can be used to prove zlN(B) = zm:1286

zlN(B) = zlB〈|B|〉−1 = zm〈|B|〉〈|B|〉−1 = zmIm = zm

1287

Where Im is the m × m identity matrix. The following remarks are a consequence of the aforementioned1288

definitions and theorems.1289

Remark. The diagonal norm matrix of a brain atlas parcellation 〈|P |〉 is the v× v identity matrix Iv, as every1290

vertex belongs to a single atlas region and thus the sum of any column of P equals 1:1291

〈|P |〉 = Iv ⇒ zpP = zv (S14)

Thus, for any arbitrary v × v matrix X:1292

〈|PX|〉 = 〈|X|〉 (S15)

〈|PX|〉, by definition, is a diagonal matrix:1293

zv〈|PX|〉 = zpPX (S16)

and from Equation S14 we know that:1294

zpPX = zvX = zv〈|X|〉 (S17)

Therefore, 〈|X|〉 is the same diagonal matrix as 〈|PX|〉. In other words, the sum of the columns of PX is1295

equal to the sum of the columns of X.1296

Remark. The normalized high-resolution smoothing kernel Fs is defined from column normalization of the1297

Gaussian kernel smoothing weights matrix FG (from Equation S13):1298

Fs = N(FG) = FG〈|FG|〉−1 (S18)

Where FG is a symmetric v × v matrix yielded from the truncated Gaussian function calculated upon the1299

surface mesh:1300

FG(i, j) =

{
G(δij), if δij < R(FWHM, ε)
0, otherwise

(S19)

S.2.2. Smoothed brain atlas1301

Equation S9 showed that a smoothed soft parcellation Ps = PFs can be used to directly derive smoothed1302

atlas connectivity maps from tractography. In this section, a formal proof will be provided for the following1303

statement:1304

Theorem S.2. The smoothed soft parcellation Ps = PFs can be computed in the absence of Fs, by separately1305

smoothing every row of P , followed by normalizing every column of the smoothed parcellation:1306

Ps = N(PFG) (S20)

Proof. Using the previously derived equations, we prove that Ps = N(PFG):1307

Ps = PFs : from Equation S9

= PFG〈|FG|〉−1 : from Equation S18

= PFG〈|PFG|〉−1 : from Equation S15
= N(PFG) : from Equation S13

1308
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The proof above confirms that structural connectivity based on a parcellation atlas, incorporating CBS, can 1309

be constructed directly from a tractogram and soft parcellation, without necessitating computation of either the 1310

high-resolution smoothing matrix or the high-resolution connectome. To smooth an atlas-resolution connectome, 1311

the brain atlas P should first be transformed to a normalized smoothed soft parcellation Ps = N(PFG). PFG is 1312

equivalent to independently smoothing the binary representation of each parcel, while the normalization of such 1313

ensures that the sum of parcel memberships of every vertex is 1. Hence, the soft-parcellation Ps can be computed 1314

by spatial smoothing and then be directly combined with the tractogram to produce a connectome: each 1315

streamline endpoint may have non-zero attribution to multiple parcels, and the contribution of the streamline 1316

to the connectome is therefore distributed across the set of edges associated with those two sets of parcels. This 1317

constitutes an approach to apply CBS on atlas-resolution connectomes that does not require any high-resolution 1318

connectomic computations. 1319

S.3. Replication of ROC curve estimates 1320

The computation of ROC curves reported in the manuscript relied on the assumption of a fixed false omission 1321

rate (λ = FN
FN+TN ). To ensure that the findings were not biased by the selected value for λ, the same analyses 1322

was repeated for a range of plausible values of λ ∈ {10%, 1%, 0.1%}. Fig. S1 presents the results of this 1323

evaluation. The findings indicate that CBS increases the sensitivity of the statistical analyses and the inference 1324

power, particularly for connectomes mapped from probabilistic tractography, regardless of the selection made 1325

for the false omission rate λ. 1326

BA
λ = 10% λ = 1%

C
λ = 0.1%

Fig. S1. Impact of CBS on statistical power of mass univariate testing on atlas-based connectomes, for different false omission rate
assumptions. The estimated ROC curves demonstrate the respective changes in sensitivity and specificity of the suprathreshold edges at
different effect thresholds. The analyses was repeated across a range of false omission rates to ensure the robustness of findings with regards
to parameter selection.
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