Anti-Bat Ultrasound in Moths

1 Anti-Bat Ultrasound Production in Moths is Globally and Phylogenetically

- 2 Widespread
- 3 Barber JR^{1*}, Plotkin D², Rubin JJ^{2,3}, Homziak NT², Leavell BC^{1^}, Houlihan P^{2,3,#}, Miner KA¹, Breinholt JW⁴, Quirk-Royal B¹, Padrón PS^{5,2}, Nunez M^{6,7,8}, Kawahara AY^{*2} 4
- 5
- 6
- ¹Department of Biological Sciences, Boise State University, Boise, ID, USA 7
- 8 ² McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History,
- 9 University of Florida, Gainesville, FL, USA
- 10 ³ Department of Biology, University of Florida, Gainesville, FL, USA
- ⁴ Division of Bioinformatics, Intermountain Healthcare, Precision Genomics, St. George, 11 12 UT, USA
- ⁵ Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador 13
- 14 ⁶ Consejo Nacional de Investigaciones Científicas y Tecnicas(CONICET), Patagonia
- 15 Norte, Argentina
- 16 ⁷Departamento Materiales Nucleares, Centro Atómico Bariloche, Comisión Nacional de 17 Energía Atómica, Bariloche, Argentina
- 18 ⁸INIBIOMA, Universidad Nacional del Comahue, Bariloche, Argentina
- 19
- 20 [^]current affiliation: Department of Biological Sciences, Purdue University, West
- 21 Lafayette, IN, USA
- 22 [#]current affiliations: Environmental Science & Policy, Advanced Academic Programs,
- 23 Johns Hopkins University, Washington, D.C., USA and Center for Tropical Research,
- 24 Institute of the Environment & Sustainability, University of California Los Angeles
- 25 (UCLA), Los Angeles, CA, USA
- 26
- 27 ^{*}corresponding authors: Jesse R. Barber (jessebarber@boisestate.edu) and Akito Y.
- 28 Kawahara (kawahara@flmnh.ufl.edu)
- 29
- 30
- 31 Keywords: acoustic, anti-predator defense, bat-moth interactions, diversity, hearing,
- 32 Lepidoptera
- 33
- 34

Anti-Bat Ultrasound in Moths

35 Abstract

36 Warning signals are well known in the visual system, but rare in other modalities. Some 37 moths produce ultrasonic sounds to warn bats of noxious taste or to mimic unpalatable 38 models. Here we report results from a long-term study across the globe, assaying moth 39 response to playback of bat echolocation. We tested 252 genera, spanning most families 40 of large-bodied moths, and outline anti-bat ultrasound production in 52 genera, with eight 41 new subfamily origins described. Based on acoustic analysis of ultrasonic emissions and 42 palatability experiments with bats, it seems that acoustic warning and mimicry are the 43 raison d'etre for sound production in most moths. However, some moths use high-density 44 ultrasound capable of jamming bat sonar. In fact, we find preliminary evidence of 45 independent origins of sonar jamming in at least six subfamilies. Palatability data 46 indicates that jamming and warning are not mutually exclusive strategies. To explore the 47 possible organization of anti-bat warning sounds into acoustic mimicry rings, we 48 intensively studied a community of moths in Ecuador and found five distinct acoustic 49 clusters using machine learning algorithms. While these data represent an early 50 understanding of acoustic aposematism and mimicry across this megadiverse insect 51 order, it is likely that ultrasonically-signaling moths comprise one of the largest mimicry 52 complexes on earth.

Anti-Bat Ultrasound in Moths

53 Introduction

54	Across systems, unpalatable prey declare their location and identity to predators (1).
55	Gaudy poison frogs and red newts alert attackers of toxins sequestered in their skin
56	glands (2, 3), brightly banded coral snakes warn birds of their venomous bite (4), and
57	patterned milkweed bugs and monarch butterflies proclaim their unpalatable hemolymph
58	(5). While aposematism (conspicuous signaling to advertise noxiousness (6)) has been
59	most rigorously studied in the visual system, warning displays have also been described
60	in the olfactory (7) and auditory systems (8). Until now, acoustic aposematism has
61	appeared as either an accessory in a multi-sensory warning suite (9), or a highly
62	specialized and unique antipredator trait (8, 10). Here, we describe one of the world's
63	largest and most widespread aposematic complexes: ultrasonic clicking by chemically-
64	defended nocturnal moths and their purported mimics.
65	Moths fly in a dim, acoustic world. Over millions of years they have repeatedly
66	evolved ears (11), organs that likely originated for general auditory surveillance of the
67	environment (12), and that were secondarily co-opted to detect the sonar cries of bats.
68	Hearing organs are found in many regions of the lepidopteran body and occur in a
69	significant majority of species in the order (including ~85% of species in the megadiverse
70	Macroheterocera) (13-15). These advance warning sensors allow moths to hear
71	echolocating bats and either motorically evade attack by steering away or performing
72	acrobatic loops, spirals and dives (16), or respond to bats with a countervailing signal of
73	their own. Ultrasonic clicking by moths, in response to bat sonar, has been documented in
74	tiger moths (17), hawkmoths ((18, 19), and one geometrid moth (20). These sounds can

Anti-Bat Ultrasound in Moths

75	function non-mutually-exclusively to jam bat sonar (18, 21, 22), signal noxiousness (or
76	mimic noxious acoustic models) (8, 23), and startle bat predators (24).
77	We hypothesized that, given the efficacy of anti-bat ultrasound production by
78	moths in the hawkmoth and tiger moth lineages, sound emission was perhaps common
79	and widespread across the entire order of more than 160,000 described lepidopteran
80	species. Here, we report a long-term dataset from research across the globe, assaying
81	moth response to playback of bat attack. We tested 252 genera, spanning most families of
82	relatively large-bodied moths (i.e., exceeding 1 cm in length and/or wingspan), and
83	describe anti-bat sound production in 52 genera (21%). For most of these genera, this is
84	novel behavior never before described. This number is a clear underestimate of acoustic
85	aposematism, mimicry, and sonar jamming across this megadiverse insect order (1 in 10
86	described animals on Earth is a lepidopteran (25)).
87	Results and Discussion
88	To uncover the prevalence of ultrasonic response to echolocating bat attack, we
89	trapped moths with UV lights and broadcast pre-recorded bat sonar attack sequences to
90	moths in tethered flight, across the world's tropics from Asia and Africa (Malaysian
91	Borneo and Mozambique) to South America (Ecuador, and French Guiana). Using an
92	ultrasonic speaker, we played representative calls from species of both frequency-
93	modulated (FM; characterized by short-duration, frequency-sweeping pulses) and
94	constant-frequency (CF; characterized by tonal, long-duration pulses (26)) bats (see Fig.
95	
))	S1). We recorded moth responses to playback of sonar attack and found that 52 of 252
96	S1). We recorded moth responses to playback of sonar attack and found that 52 of 252 tested genera respond acoustically to both types of bat sonar (Fig. 1, Dataset S1, Supp.

Anti-Bat Ultrasound in Moths

98	defense (19, 27, 28). While anti-bat ultrasound has been described and well-studied in
99	arctiines (tiger moths) (28-30) and sphingids (hawkmoths) (18, 19, 31), here we report
100	that this striking anti-predator behavior is widespread across the tapestry of lepidopteran
101	diversity (Fig 2). In fact, if we extrapolate from our sample, ~20% of the estimated
102	100,000 species of Macroheterocera (12) produce ultrasound in response to bat sonar.
103	In addition to playback of bat attack, we also queried moths for ultrasonic
104	response to handling. We simulated a physical predatory attack by grasping the thorax,
105	abdomen, and head. Nearly all moth species that broadcast anti-bat sounds upon hearing
106	sonar also produced ultrasonic disturbance sounds when handled. Three subfamilies from
107	three different families (Erebidae: Erebinae, Crambidae: Spilomelinae, Sphingidae:
108	Smerinthinae; see Dataset S2) produced ultrasound only in response to tactile stimulation.
109	Producing ultrasound to touch may be a generalized anti-predator response intended to
110	startle attackers (32). Moreover, responding to bats during handling may still provide
111	time for bats to recognize the warning signal and drop these moths unharmed (sensu
112	(27)), as bats often first contact their prey with an outstretched wing, directing the insect
113	to their tail membrane, and then subsequently to their mouth (33). Indeed, in a study that
114	pit northern long-eared bats (Myotis septentrionalis) against aposematically clicking
115	dogbane tiger moths (Cycnia tenera), 75% of signaling moths that were captured were
116	subsequently dropped unscathed (34). The critical experiments pitting bats against moths
117	that produce ultrasound to physical contact only have yet to be performed.
118	Our data indicate that ultrasound production has arisen repeatedly in novel and
119	convergent forms. To determine the mechanism of ultrasonic clicking in each newly
120	discovered sound producer, we recorded synchronized audio and macro medium-speed

Anti-Bat Ultrasound in Moths

121	video (~100 fps) footage of moths producing ultrasound (see Movies S1–S2). We found
122	several different mechanisms across and within lineages, and a great deal of
123	morphological convergence (Fig. 2). The sound-producing mechanisms we uncovered
124	can be grouped into three broad categories: 1) abdominal stridulation, where modified
125	scales on adjoining areas of the moth form a file-scraper device (e.g., Sphingidae:
126	Macroglossinae, Sphingidae: Sphinginae, Erebidae: Calpinae); 2) percussive wing
127	beating, where sound is produced on each wing stroke by moving the tegula into a
128	striking position between the beating wings (e.g., Pyralidae: Pyralinae); and 3) tymbals,
129	where thin, striated cuticular plates buckle under muscular force and passively release
130	often making a series of clicks during each action due to striations on the tymbal's
131	surface (e.g., Erebidae: Lymantriinae, Erebidae: Aganainae, Erebidae: Arctiinae).
132	Previous work has shown that tiger moths (Erebidae: Arctiinae) and hawkmoths
133	(Sphingidae) use tymbals and stridulation, respectively, to produce ultrasound in response
134	to echolocating bat attack (18, 21, 27). Here we describe three new mechanisms of
135	ultrasound production (Fig. 2): one stridulation-based, one tegula-based, and one tymbal-
136	based. Calpines (a subfamily within Erebidae, here represented by the genus Gonodonta)
137	
107	stridulate using modified ventral abdominal scales (see Fig. 2M-P, Movie S1) that
138	stridulate using modified ventral abdominal scales (see Fig. 2M-P, Movie S1) that produce remarkably similar sounds to sphingids, which stridulate with modified scales on
138	produce remarkably similar sounds to sphingids, which stridulate with modified scales on
138 139	produce remarkably similar sounds to sphingids, which stridulate with modified scales on the genital valves (18, 19); Fig. 2Q-T). We found the percussive wing beating strategy in

Anti-Bat Ultrasound in Moths

143	abdominal tymbals hidden within pockets that form horn-like structures when opened
144	(see Fig. 2E-H, Movie S2), beaming ultrasound backwards at attacking bats.
145	Aganaines (Erebidae) use paired metathoracic tymbals in the identical positions to
146	arctiines, calling into question the tymbal as a uniting characteristic of arctiines (tiger
147	moths) (35, 36). Previous work described a geometrid (Geometridae: Larentiinae) that
148	uses prothoracic tymbals to generate ultrasonic warning sounds (37). Here we discovered
149	that multiple genera in a different geometrid subfamily, Ennominae, also produce anti-bat
150	emissions. We have been unable to find a prothoracic tymbal in this group, presenting the
151	intriguing possibility that anti-bat sound production has originated independently at least
152	twice in geometrids. Despite our efforts in the field and museum, there are several other
153	moth subfamilies in which we have confirmed ultrasound production for which we do not
154	know the underlying mechanism (Crambidae: Spilomelinae, Erebidae: Erebinae,
155	Erebidae: Hypocalinae, Noctuidae: Hadeninae, Noctuidae: Noctuinae, Notodontidae:
156	Notodontinae, Notodontidae: Nystaleinae). Clearly, the mechanisms driving the acoustic
157	arms race between moths and bats are myriad and diverse.
158	We also discovered an interesting form of ultrasound production in the Dalceridae
159	(genus Acraga). These non-eared animals constantly produce ultrasound while in flight
160	similar to the behaviors previously described in other small-bodied non-Macroheterocera
161	(38, 39). The mechanism of sound production in the Acraga genus remains unknown –
162	the wing-based aeroelastic tymbals implicated in sound production in other non-
163	Macroheterocera do not appear responsible. Considering that moths in the genus Acraga
164	are unpalatable to bats (see supplement), it is tempting to assert that these sounds are
165	involved in advertising noxious taste to echolocating bats. Until moths using this type of

Anti-Bat Ultrasound in Moths

166 ultrasound production are pit against bats in appropriate experiments, the function of

167 these sounds will remain unclear.

168	To better understand how the interactions between bats and sound-producing
169	moths might play out across the night skies, we quantified moth acoustic emissions, using
170	previously-described parameters to capture the temporal and spectral components (27).
171	We found that animals that produce ultrasound to playback of bat attack emit frequencies
172	centered around ~65 kHz (\pm ~40-110 kHz at 15 dB range; matching the frequency of best
173	hearing in most bat species (40, 41)) and a substantial range of duty cycles (sound per
174	unit time; see Supp. Archive S10). While it is possible that any duty cycle sound can
175	startle naive bats, or warn of noxious taste (or mimic chemically-protected models), only
176	high duty cycle sounds can jam bat sonar (8, 10, 18, 22, 42, 43). In fact, duty cycles of at
177	least 18% (this value is sensitive to analysis approaches) seem to be necessary to interfere
178	with the processing of returning echoes from echolocating bats (Kawahara and Barber
179	(18)). In our data set, we find preliminary evidence of independent origins of sonar
180	jamming in at least six moth subfamilies (Sphinginae, Macroglossinae, Aganainae,
181	Arctiinae, Calpinae, Lymantriinae) based on this threshold. A seventh subfamily
182	(Smerinthinae) also independently developed duty cycles capable of jamming, yet they
183	are not capable of this behavior as this group lacks ears and thus cannot respond in
184	advance to attacking bats. Animals that use complex tymbals with multiple
185	microstriations (aganines, arctiines, and lymantrids) and stridulatory mechanisms
186	(calpines and sphingids) are also likely capable of jamming. Thus, although moth
187	morphology is not strictly deterministic of sound production function, some
188	morphologies (wing beating mechanisms and tymbals with few microstriations; (44))

Anti-Bat Ultrasound in Moths

cannot support the high duty cycle (and likely high intensity) sounds necessary forjamming (18, 22).

191 Sonar jamming appears to be a derived strategy that has arisen repeatedly and 192 recently in multiple lineages. Our preliminary investigations indicate that this strategy is 193 not uniformly related to a loss (or lack of gain) of unpalatability to bats. We find that 194 some genera capable of jamming bat sonar are palatable (Dataset S2; see Methods for 195 palatability experimental details) and other genera are not, sometimes within the same 196 subfamily (Arctiinae and Lymantriinae), thus the hypothesis that the origin of duty cycles 197 capable of jamming frees lineages from the costs of sequestering chemicals for protection 198 against bats (45) seems unlikely to be commonly supported. One possibility is that 199 hostplant specialization canalizes sequestration strategies. Advertising difficulty of 200 capture (evasive aposematism) is another conceivable function of conspicuous high duty 201 cycle sounds (46) that may operate alongside sonar jamming, however, this hypothesis 202 remains untested. 203 It appears that most sound-producing moths are not capable of jamming bat sonar. 204 The majority of sound producers are therefore likely communicating with their bat

205 predators, rather than disrupting echolocation. We found that moth genera that produced

anti-bat sounds were commonly split between those that were palatable to bats and those

that were not. Geometrid moths indeed seemed to be noxious, but not as repellent as

208 lymantrids or arctiines (Dataset S2). Multiple subfamilies (Calpinae, Erebinae,

209 Noctuinae, Nystaleinae, Macroglossinae, Smerinthinae, and Sphinginae) were considered

210 quite palatable by the bats we pit these moths against (see supplement). These results

Anti-Bat Ultrasound in Moths

211	likely indi	icate that thes	e animals are	e exploiting	the education	imparted to th	neir predators

212 by unpalatable models (i.e., they are Batesian mimics).

213 To test the possible organization of anti-bat sounds into acoustic mimicry rings, 214 we intensively studied a community of moths in Sumaco, Ecuador. We captured moths 215 with UV lights and queried this megadiverse community for anti-bat acoustic response 216 over 14 continuous nights. To analyze the resulting acoustic data, we used a 217 dimensionality reduction algorithm (UMAP: Uniform Manifold Approximation and 218 Projection; (47)) to find groups of moths with similar acoustic features (clusters). This 219 unsupervised machine-learning algorithm estimates the topology of high dimensional 220 data and uses this information to build a low dimensional representation that preserves 221 relationships present in the data. We used 10 acoustic features (see Methods) and 33 222 species as input to UMAP to project the data from a 10-dimensional space into a 2D 223 space where we found five well-separated clusters (Fig. 3; interactive 3D visualization at: 224 http://projector.tensorflow.org/?config=https://raw.githubusercontent.com/nunezmatias/p 225 oli/main/ec6.json).

226 While we caution that this analysis offers only a cursory temporal and spatial 227 snapshot of the hyper-diverse mimetic associations that are likely present, we find some 228 remarkable patterns. Each cluster of moth anti-bat sounds includes at least one species 229 that we have found to be unpalatable to bats and most clusters also contain animals that 230 bats readily consume. For example, one acoustic cluster contains one unpalatable dalcerid 231 (Dalceridae), five palatable calpines (Erebidae: Calpinae), and two palatable sphingids 232 (Sphingidae: Macroglossinae). Another cluster consists of six geometrid species 233 (Ennominae) and one tiger moth (Erebidae: Arctiinae) all of which are likely honestly

Anti-Bat Ultrasound in Moths

234	advertising noxious taste - perhaps a Müllerian ensemble. Interestingly, one cluster of
235	Arctiini tiger moths (Erebidae: Arctiinae) uniformly contains extremely high duty cycle
236	species capable of jamming bat sonar, including two genera that appear to be unpalatable
237	to bats, supporting the prediction that jamming and aposematism are not mutually
238	exclusive (27). Our preliminary data portends substantial community-level structuring of
239	ultrasonic warning signals driven by the psychologies of syntopic bat predators (48). We
240	are at the frontier of understanding a hidden dimension of biodiversity – the ultrasonic
241	information transfer between bats and their insect prey.
242	Importantly, many species of moths also use ultrasonic sounds to transmit
243	information to conspecifics - with males from at least six families (Crambidae, Erebidae,
244	Geometridae, Noctuidae, Pyralidae, and Sphingidae) likely using this strategy to attract
245	mates (49, 50). Some male moths use intense ultrasonic signals to communicate with
246	females, as in tiger moths (Erebidae: Arctiinae) (50). Other families of moths produce
247	quiet mating calls (Noctuidae, Arctiidae, Geometridae and Crambidae), apparently
248	intended for nearby females (50). These "whispering" moths likely employ soft signals to
249	avoid detection by eavesdropping bats and other predators (51–53). It is unclear if the use
250	of ultrasound by moths evolved first in a mating context, or if it was secondarily co-opted
251	from an anti-bat origin. Some moths are able to discriminate mates from bats, such as
252	Achroia grisella (Pyralidae) females that exhibit differing behaviors, positive phonotaxis
253	or freezing, when stimulated by different pulse rates (higher pulse rate indicating a
254	conspecific calling male and lower pulse rate indicating an approaching bat, respectively
255	(54). Alternatively, female Spodoptera litura (Noctuidae) are unable to distinguish
256	attacking bats from ultrasound-producing males, suggesting a sensory exploitation origin

Anti-Bat Ultrasound in Moths

257	of sound production in moths – that is, male moths exploit female freezing behavior to
258	secure matings (55). We do not yet know whether moths that acoustically respond to
259	echolocating bats are more likely to use ultrasound for mating, as many moths have not
260	yet been tested for these behaviors (56), but this notion seems likely.
261	Ultrasonically-signaling moths appear to be connected by some of the most
262	widespread and biodiverse mimicry complexes known to date (57, 58). The dynamics of
263	these associations stand as a great unknown in natural history, and a laboratory for
264	understanding mimicry dynamics and convergent evolution (59). The intense pressure to
265	thwart the attacks of echolocating bats seems to have also driven ultrasound production in
266	other insects. Tiger beetles (Cicindelidae) produce ultrasonic warning signals in response
267	to sonar playback (60) and fireflies (Lampyridae: Lampyrinae), known to be noxious to
268	bats (61), constantly produce ultrasonic clicks in flight, which may serve as a component
269	of a multi-modal aposematic signal to bats (62). We predict that a complete
270	understanding of ultrasonic mimicry rings will involve a thorough analysis of all major
271	nocturnal, aerial insect groups including moths (Lepidoptera), beetles (Coleoptera), true
272	bugs (Hemiptera), flies (Diptera), lacewings and antlions (Neuroptera) and more.
273	Understanding how bat receivers generalize the massive numbers of insect warning
274	sounds into categories is an important frontier in understanding this powerful selective
275	force. Bats have shaped the nocturnal soundscape in profound ways - driving a chorus of
276	nightly cries, across the globe, as moths and perhaps other insects jam sonar, warn of
277	noxious chemicals, and mimic the sounds of unpalatable models. Comprehending this
278	symphony is central to understanding insect biodiversity.
279	Acknowledgements

Anti-Bat Ultrasound in Moths

280	We thank the Danum Valley Conservation Area and Field Centre in Bornean Malaysia,
281	Sabah Biodiversity Council, Dr. Chey Vun Khen of the Sabah Forestry Department; the
282	Nouragues research field station in French Guiana (managed by CNRS) which benefits
283	from "Investissement d'Avenir" grants managed by Agence Nationale de la
284	Recherche (AnaEE France ANR-11-INBS-0001, Labex CEBA ANR-10-LABX-25-01) –
285	with special thanks to Philippe Gaucher and Jerome Chave; Wildsumaco Biological
286	Station in Ecuador – with special thanks to Jonas Nilsson; Gorongosa National Park and
287	the E.O. Wilson Biodiversity Laboratory in Mozambique – with special thanks to Piotr
288	Naskrecki, Marc Stalmans, James Byrne, Jason Denlinger, and Greg Carr. Kelly Dexter
289	assisted with PCR. Kelly Dexter, Samantha Epstein and Kawahara lab volunteers
290	prepared and organized voucher specimens. Ryan St Laurent for moth identification.
291	Some analyses performed on the HiPerGator HPC (UF). We thank the National Science
292	Foundation for funding (IOS-1920936 and IOS-1121807 to JRB; IOS 1920895 and IOS-
293	1121739 to AYK). JJR supported in part by National Geographic Young Explorers Grant
294	(YEG 9965-16). NTH supported in part by NSF GRFP award DGE-1315138. PRH was
295	supported in part by National Geographic Society Waitt grant W318-14. The study was
296	also funded by National Geographic Society grant CRE 9944-16 to JRB and two travel
297	grants from the Nouragues research field station to JRB and AYK. We dedicate this work
298	to the pioneering research of William Conner and James Fullard.
299	Author Contributions
300	JRB and AYK designed and supervised the research and led all fieldwork. All authors

soo stab und fiff it designed und supervised die fesedien und fed un field work. Fin addiens

301 collected data. DP led the phylogenetic analysis with input from AYK, JRB. MN led the

302 machine learning analyses with input from JRB. JJR and KAM led moth sound analysis

Anti-Bat Ultrasound in Moths

- 303 with input from JRB and assistance from BQ-R. DP and NTH led moth specimen
- 304 identification. JRB and JJR wrote the first draft of the manuscript. All authors contributed
- 305 to writing.
- 306 Data and Materials Availability
- 307 The newly sequenced DNA barcodes used in this study have been deposited in the
- 308 National Center for Biotechnology Information's GenBank sequence database (all
- 309 accession nos. provided in Dataset S4). All other data are available in the main text, the
- 310 Supplementary Information, or at the Dryad Digital Repository (link to come when
- 311 published).

312 Figure Legends

- 313 **Figure 1**. A molecular phylogeny of Lepidoptera indicating anti-predator ultrasound
- 314 production across the order. Bars and nodes with magenta outlines represent taxa
- associated with sufficiently large duty cycle values (>18%) for sonar jamming. Asterisks
- 316 indicate taxa known to produce ultrasound, but not in response to either tactile stimuli nor
- 317 bat ultrasound. Grayscale images indicate taxa that do not produce ultrasound. This
- 318 phylogeny is meant to illustrate the diversity of ultrasound production and offer broad
- 319 strokes on the origins of anti-predator sounds at the family and subfamily level, not as a
- 320 test of evolutionary relationships. Photographs are distributed under Creative Commons
- 321 Attribution NonCommercial Licenses (see Fig. S2, Dataset S3 for full accreditations).
- 322 Figure 2. Anti-bat ultrasound-producing structures. A-D. *Mittonia hampsoni* (Pyralidae:
- 323 Pyralinae) produces ultrasonic clicks in flight via modified scales on the tegula; A. Scale
- bar = 1.0 cm; B. Tegula, 0.2 mm; C. Tegular scales, 50 μm; D. Response to bat sonar
- 325 playback (*Mittonia hampsoni*), 100 ms). E-H. *Lymantria sp.* (Erebidae: Lymantriinae)

Anti-Bat Ultrasound in Moths

326	generates ultrasound with paired tymbals recessed in abdominal pockets; E. Scale bar =
327	1.0 cm; F. Arrow indicates one of the tymbal pair, 1.0 mm; G. Close up of one tymbal,
328	0.5 mm; H. Response to bat sonar playback (Lymantria sp.), 100 ms. I-L. Melese sp.
329	(Erebidae: Arctiinae) emits ultrasound with paired thoracic tymbals; I. Scale bars $= 1.0$
330	cm; J. Tymbal 0.5 mm; K. Close-up of microstriations on tymbal surface, 0.1 mm; L.
331	Response to bat sonar playback (Melese peruviana), 100 ms. M-P. Gonodonta sicheas
332	(Erebidae: Calpinae) produces ultrasound by stridulating modified abdominal scales; M.
333	Scale bar = 1.0 cm; N. Patch of stridulatory scales, 0.5 mm; O. Stridulatory scale, Scale
334	bar = 50 μ m; P. Response to bat sonar playback (<i>Gonodonta bidens</i>), 100 ms. Q-T.
335	Xylophanes falco (Sphingidae: Macroglossinae) produces ultrasound by stridulating
336	modified genital valves; Q. Scale bar = 1 cm; R. Patch of stridulatory scales on genital
337	valve, 0.5 mm; S. Stridulatory scales, 0.2 mm; T. Response to bat sonar playback
338	(Xylophanes amadis), 100 ms.
339	Figure 3. Purported acoustic mimicry rings of a community of moths in Sumaco,
340	Ecuador (33 species). A UMAP (Uniform Manifold Approximation and Projection)
341	projection shows clusters of moth anti-bat sounds with similar acoustic features. The
342	relative distance between the clusters is meaningful in the sense that clusters that are
343	close in the 2D map, are more similar than clusters that are further away. Photos of moths
344	are congeners at the genus level. All photos taken by the authors. Xylophanes titana,
345	purple diamond, solid circle; Gonodonta syrna, grey diamond, open circle; Scaptius
346	ditissima, green sun, solid circle; Melese sordida, green sun, open circle; Agylla sp.,
347	green triangle, solid circle; Acraga moorei, dark-blue triangle, open circle; Bertholdia
348	bilineola, green square, solid circle; Melese chozeba, green square, open circle; Eucereon

Anti-Bat Ultrasound in Moths

- 349 formosum dognini, green star, solid circle; Nephodia sp., blue star, open circle. See
- 350 Supplement Archive 11 for palatability data at the genus level.
- 351 Methods

352 Statement on Fieldwork Ethics

353 During our data collection trips, we received assistance, guidance, and hospitality from

people in each of our field sites whose names we did not document. We recognize that

this kind of expedition science is problematic and can be harmful to these communities in

a variety of ways, including perpetuating colonial practices. In the future, we will strive

to engage more deeply with the local population in the areas where we work and to offer

358 more educational and professional opportunities. We remain indebted to those who

359 helped us along this multi-year journey.

360 Echolocation playback, tactile stimulation, and acoustic recording

361 We assayed moths in three of the world's tropics: South America (Ecuador, French

362 Guiana), Africa (Mozambique), and Asia (Malaysian Borneo) for ultrasonic reply to

handling and bat attack. To simulate handling by a predator, we lightly compressed the

364 moth's head, abdomen, or thorax. We simulated bat attack using six recorded bat

365 echolocation attack sequences (see supplement). Bat assemblages and echolocation

366 strategies vary across the world. To capture some of the diversity of echolocation calls

that moths might experience in different tropical regions, we presented moths with three

368 different frequency modulated (FM) echolocation attacks and two constant frequency

369 (CF) attacks. Two of the FM sequences were recorded from trained bats attacking a moth

tethered 10 cm from a microphone (FM1: *Lasiurus borealis*, FM2: *Eptesicus fuscus*) (19).

We also generated a synthetic bat attack based on the short-duration, broadband

Anti-Bat Ultrasound in Moths

372	echolocation cries of some bats (63) (synthetic). To represent CF bat calls, we used on-
373	board telemike recordings of bats (Rhinolophus ferrum equinum nippon) attacking prey
374	provided to us by Yuki Kinoshita and Shizuko Hiryu (64) (CF1, CF2). All bat calls were
375	played through an Avisoft UltraSoundGate Player BL Pro Speaker/ Amplifier (\pm 6 dB,
376	20-110 kHz, playback sampling rate 250 kHz) placed 10 cm behind the moth's abdomen,
377	except in the cases of sphingid moths, where the speaker was positioned on-axis 10 cm
378	from the moth's face, as their hearing organs are comprised of their mouthparts (65).
379	Similarly, we recorded moth sounds using an Avisoft CM16 condenser microphone (± 3
380	dB, 20-140 kHz) attached to an UltraSoundGate 116Hme DAQ sampling at 375 kHz via
381	a laptop computer running Avisoft Recorder software, placed at a 90° angle 10cm from
382	the moth's thorax, except in the cases of sphingid moths, where the microphone was
383	placed 10 cm directly behind the moth (as the genitals were previously known as the
384	sound-producing organs in this group (19)).
385	Regardless of mechanism of ultrasound production, we focused our analyses on
386	one complete modulation cycle of sound, which we defined as the two-component
387	structure of the sound emissions. This paired structure results from: 1) the up-down wing
388	stroke, 2) the buckling-unbuckling of tymbals, 3) the in-out or side-side stridulating of
389	valves. We used Avisoft SASLab Pro software to measure three modulation cycles from
390	each individual in our data set, except in cases where only two could be measured. We
391	extracted the same parameters as those described in Barber & Conner (27) for
392	comparability to other studies. To measure the temporal characteristics – duty cycle
393	(proportion of 100ms window with moth sound present), duration of modulation cycle,
394	and duration of modulation cycle components – we used the pulse train analysis tool with

Anti-Bat Ultrasound in Moths

395	the following settings (Time constant=0.025ms, Threshold=0.15V, Hysteresis=15dB,
396	Start/end threshold=-15dB, Envelope=Rectification + exponential decay, Pulse
397	detection=Peak search with Hysteresis). We measured spectral characteristics - dominant
398	frequency, frequency 15 dB above and below dominant frequency – from the Power
399	Spectrum (averaged) tool with a Hann evaluation window and FFT=1024.
400	We attempted to record as many specimens as possible of each moth species,
401	though this was usually limited by the number of healthy specimens we encountered in
402	the field. For downstream analyses, we only considered a species to be responsive (i.e.,
403	producing ultrasound in response to bat ultrasound and/or tactile stimuli) if we recorded
404	responsive ultrasound production in at least two specimens. Otherwise, the recorded
405	species were assumed to be non-responsive. This is not the preferred method for
406	obtaining negative data, since it is plausible that a moth could be capable of responding to
407	stimuli, yet did not do so in our setting. However, we believed it was necessary to
408	delineate between moths actually observed in the field, and moths that we were unable to
409	test at all, but that were incorporated into our phylogeny. Thus, the non-responsive moths
410	in the field were treated as having negative data, whereas the untested moths were treated
411	as having missing data (see Phylogenetic Methods).
412	Palatability
413	Palatability experiments were conducted on 93 moths from 26 species (see supplement)
414	in the field. We ablated sound-producing structures (if present), before offering a hand-
415	held captive bat (see supplement for species and locations) a moth via forceps. In an

416 attempt to control for the foraging motivation of each bat, we only scored interactions

417 where the bat was willing to eat a control moth (a species we knew to be palatable) both

Anti-Bat Ultrasound in Moths

418	before and after we offered an experimental moth. We scored partial palatability by
419	dividing the length of the moth body into six parts and assigning one point to the head,
420	two points to the thorax, and three points to the abdomen, following the methods of
421	Hristov and Conner (42). A palatability score of 0 indicates the moths was entirely
422	rejected and a score of 6 indicates the moth was 100% consumed.
423	Unsupervised machine learning cluster analysis of moth sounds
424	The dimensionality reduction algorithm Uniform Manifold Approximation and Projection
425	(UMAP) (47) was used for finding groups of moth sounds with similar features (clusters).
426	Dimensionality reduction algorithms capture variability in a limited number of random
427	variables to allow two or three-dimensional visualization of data that resides in a
428	multidimensional space. The most common approach is the method of principal
429	component analysis (PCA) (66), which uses linear combinations of variables to generate
430	orthogonal axes that capture the variation present in the data with fewer variables.
431	Another approach, developed a century after PCA, t-Distributed Stochastic Neighbor
432	Embedding (t-SNE) (67), carries out dimensionality reduction by analyzing similarity of
433	points using a Gaussian distance in high dimensional space and mapping these data into a
434	low dimensional space. t-SNE is able to capture local non-linear relationships in the data,
435	which PCA by its linear design is not able to, but does not capture the global structure. A
436	more recent method, UMAP, is an unsupervised machine-learning algorithm for
437	dimension reduction based on manifold learning techniques and ideas from topological
438	data analysis. It works by estimating the topology of the high dimensional data and uses
439	this information to build a low dimensional representation that preserves relationships

Anti-Bat Ultrasound in Moths

440	present in the data. It is better at mapping the global structure of the data from the high
441	dimensional space than t-SNE, and is able to capture local relationships as well.
442	We used the moth acoustic features to define a multidimensional space where
443	each moth is represented by a vector (or point) in that space. The data set consisted of 33
444	entries with 10 features each which translates to 33 points (vectors) in a 10-dimensional
445	space. We input their coordinates into a PCA as a pre-processing step. The resultant
446	principal components were then used as input to UMAP to project the data from the 10-
447	dimensional space into a 2D space. Each cluster shares similar features. The relative
448	distance between the clusters is meaningful in the sense that clusters that are close in the
449	2d map, are more "similar" that cluster that are farther away. The features variables used,
450	extracted from audio files, were "MC DC mean","d MC mean","D 1/2 mean","D silent
451	mean", "D 2h mean", "DF mean", "D dB mean", "+ 15 dB mean", "- 15 dB mean", "100 ms
452	DC mean" (see supplement for definitions). We used the software tools Scikit-learn (68)
453	and pandas (69). The steps of dimensional reduction using the different methods we have
454	discussed above can be seen in the interactive online version of the embedding
455	(http://projector.tensorflow.org/?config=https://raw.githubusercontent.com/nunezmatias/p
456	oli/main/ec6.json) by clicking on the different bookmarks on the right (created via (70)).
457	Phylogenetic methods
458	In order to determine the timing of evolution of anti-bat sound production in Lepidoptera,
459	we created a dated molecular phylogeny, using the ages estimated in the Lepidoptera

460 phylogeny of Kawahara et al. (12), that incorporates the moth taxa we tested for anti-bat

461 ultrasound production. We attempted to find previously published COI barcodes and five

462 commonly sequenced nuclear genes (CAD, DDC, EF1-A, period, wingless) for one

Anti-Bat Ultrasound in Moths

463	species of every genus that was tested for anti-bat sound production (as well as the
464	sound-producing genus tested in Corcoran and Hristov (20), and also used published data
465	from as many species as possible that were included in the Kawahara et al. (12) dataset
466	(this transcriptomic dataset lacked data for these six genes and thus could not directly be
467	used). Whenever possible, molecular data for a genus was represented by a tested
468	species; when such data were not available (after searching both NCBI and Bold
469	Taxonomy Browser), a congener was used instead.
470	There were 11 genera from our sound production dataset that had no available
471	sequence data; in order to represent these taxa in our analysis, we obtained new COI
472	barcodes from DNA extracted from the legs of the ensonified specimens. DNA was
473	extracted using an OmniPrep Genomic DNA Extraction Kit (G-Biosciences, St. Louis,
474	MO), following the protocol of Espeland et al. (71) and PCR was performed following
475	the protocol of Hebert et al. (72) using Lep1 reverse primers. Sanger sequencing was
476	performed by Genewiz (South Plainfield, NJ). COI sequencing was unsuccessful for two
477	non-sound-producing genera (Grammodora, Trotonotus), which were consequently
478	excluded from the analysis. The nine newly sequenced barcodes used in this analysis
479	were uploaded to NCBI ([GenBank IDs to be added after acceptance]), and specimen
480	vouchers were deposited at the McGuire Center for Lepidoptera and Biodiversity
481	(MGCL; Dataset S4). In total, our molecular dataset contained at least one gene for 432
482	Lepidoptera species.
483	Sequences for the six genes were aligned in MAFFT (73), then manually trimmed

and concatenated in GENEIOUS v.11.1.5. The dataset was partitioned by codon position,
constrained using the topology in figure 1 of Kawahara et al. (12), and a maximum

Anti-Bat Ultrasound in Moths

486	likelihood analysis was performed in IQ-TREE v.1.6.2 (74), using ModelFinder to
487	determine the best-fit substitution models for each partition (75). The resulting maximum
488	likelihood tree was dated in TreePL (76), using the age estimates from Kawahara et al.
489	(12) as secondary calibrations. The molecular dataset and other files associated with these
490	analyses are included in Supplementary Archives 1–9.
491	Two ancestral state reconstructions (ASRs) of anti-bat sound production were
492	performed using stochastic character mapping with the 'make.simmap' in the R package
493	Phytools v07-70 (77). Symmetrical transition rate models were used in both ASRs, and
494	1000 simulations were performed. In order to reduce the amount of computational
495	resources required, these ASRs were performed only on the Ditrysia clade of the dated
496	tree, which comprise 93% of all taxa in the analysis (400/432). Only one non-Ditrysian
497	genus had been tested for ultrasound production (Hepialidae: Dalaca, which did not
498	produce ultrasound), so their absence did not significantly impact the ASR results since
499	only 1/32 could have been confidently assigned a character state. In the first ASR, the
500	evolution of anti-bat sound production was assessed by treating it as a ternary character,
501	with taxa assigned to one of the following: 1. No sound production in response to a
502	stimulus (this includes genera that constantly produce sound regardless of whether there
503	is a stimulus, e.g. Acraga); 2. sound production in response to tactile stimuli; 3. sound
504	production in response to both tactile stimuli and bat ultrasound (Dataset S5, Fig. S3). In
505	instances where a species in the ensonified dataset was represented in the molecular
506	dataset by a congener, we assumed that the congener had an identical character state. For
507	taxa in the Kawahara et al. (12) dataset that were included in our ML analysis but not
508	ensonified, an equal probability of 1/3 was assigned to each of the three states, if those

Anti-Bat Ultrasound in Moths

509	taxa were known to have ears. For the untested taxa known to lack ears (12), we assumed
510	they could not detect ultrasound and thus had no way to respond to bat calls, and we
511	consequently assigned equal probabilities of $1/2$ to the first two states, and 0 to the third
512	state.
513	In the second ASR, the evolution of anti-bat sound production capable of
514	jamming bat sonar (i.e., anti-bat ultrasound with a duty cycle value of at least 18%; (18)),
515	was assessed by treating it as a binary character. Taxa were assigned to one of the
516	following: 1. Duty cycle less than 18% (this includes genera that did not produce any
517	ultrasound when tested); 2. Duty cycle of 18% or greater (Dataset S6, Fig. S4). As with
518	the previous ASR, we assumed that congeners had identical character states. If duty cycle
519	data were collected for multiple species in a genus, the value from the species with the
520	largest mean duty cycle was used for that genus in the ASR (Supp. Archive 10). For
521	untested taxa in the Kawahara et al. (12) dataset that were included in our ML analysis
522	but not ensonified, an equal probability of 1/2 was assigned to each of the two states
523	(regardless of whether they had ears). We also performed an ASR using maximum
524	likelihood ('anc.ML' in Phytools v07-70 (77)), that modeled duty cycle as a continuous
525	character (Dataset S7, Fig. S5). However, since this method cannot incorporate taxa with
526	missing data, all non-ensonified taxa were assumed to have duty cycles of 0%.

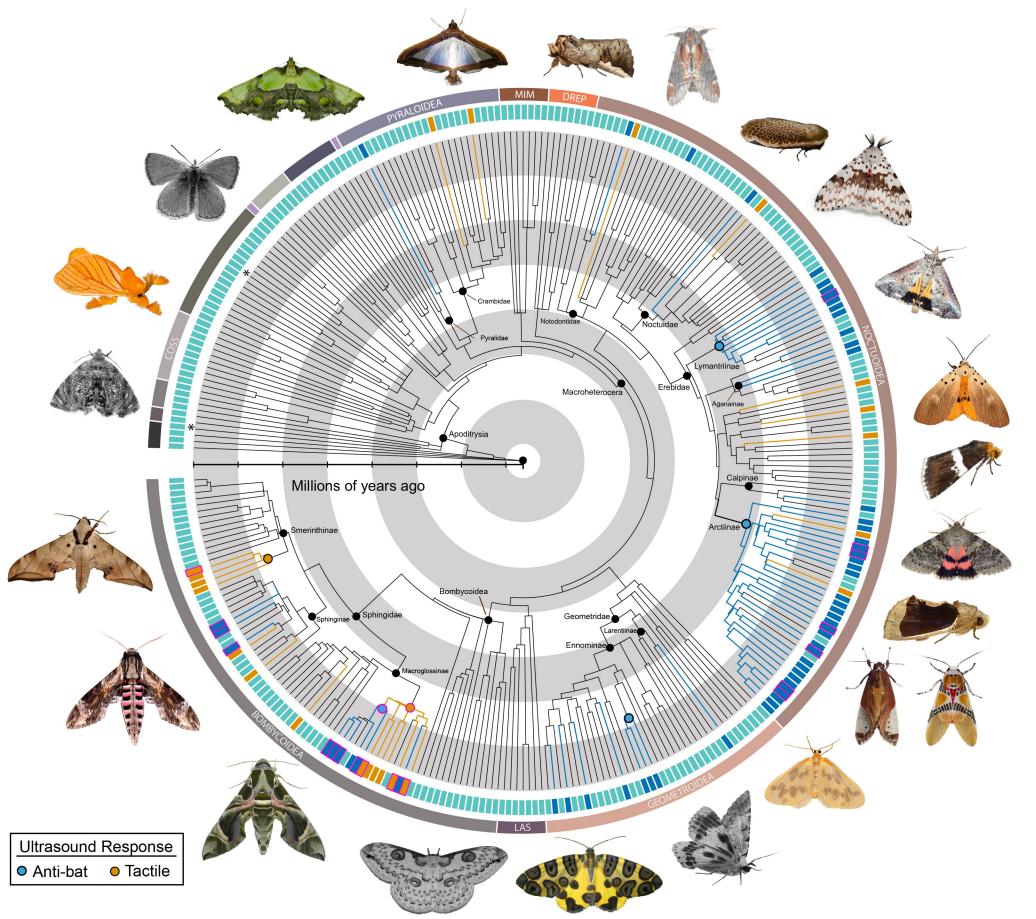
Anti-Bat Ultrasound in Moths

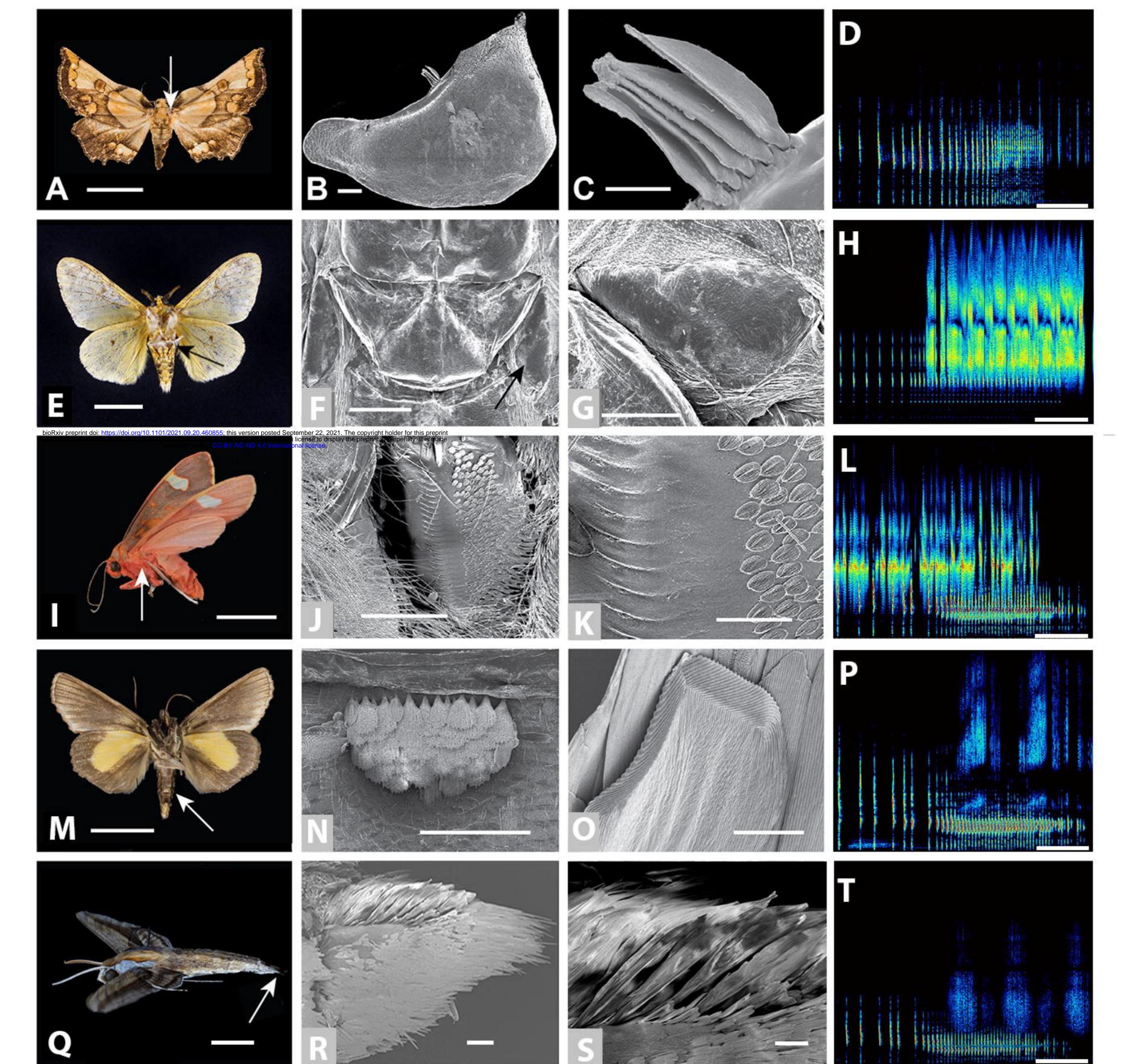
527 References 528 529 1. G. D. Ruxton, T. N. Sherratt, M. P. Speed, Avoiding attack: The evolutionary 530 ecology of crypsis, warning signals & mimicry (Oxford University Press, 2004). 531 2. E. D. Brodie, B. J. Ridenhour, E. D. I. Brodie, The evolutionary response of 532 predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of 533 coevolution between garter snakes and newts. *Evolution* **56**, 2067–2082 (2002). 534 3. I. J. Wang, Inversely related aposematic traits: Reduced conspicuousness evolves 535 with increased toxicity in a polymorphic poison-dart frog. *Evolution* **65**, 1637– 536 1649 (2011). 537 S. M. Smith, Coral-snake pattern recognition and stimulus generalization by naive 4. 538 great kiskadees (Aves: Tyrannidae). Nature 265, 535-536 (1977). 539 5. M. R. Berenbaum, E. Miliczky, Mantids and milkweed bugs: efficacy of 540 aposematic coloration against invertebrate predators. The American Midland 541 Naturalist 111, 64–68 (1984). 542 6. E. B. Poulton, The colors of animals: their meaning and use, especially considered 543 in the case of insects (D. Appleton, 1980). 544 W. Jetz, C. Rowe, T. Guilford, Non-warning odors trigger innate color aversions--7. 545 as long as they are novel. *Behavioral Ecology* **12**, 134–139 (2001). 546 8. N. I. Hristov, W. E. Conner, Sound strategy: Acoustic aposematism in the bat-tiger 547 moth arms race. *Naturwissenschaften* **92**, 164–169 (2005). 548 9. C. Rowe, Sound improves visual discrimination learning in avian predators. 549 Proceedings of the Royal Society B: Biological Sciences 269, 1353–1357 (2002). 550 10. J. R. Barber, W. E. Conner, Acoustic mimicry in a predator-prey interaction. 551 Proceedings of the National Academy of Sciences of the United States of America 552 104, 9331–9334 (2007). J. C. Regier, et al., A large-scale, higher-level, molecular phylogenetic study of the 553 11. 554 insect order Lepidoptera (moths and butterflies). PLoS ONE 8, 1–23 (2013). 555 12. A. Y. Kawahara, D. Plotkin, M. Espeland, K. Meusemann, E. F. A. Toussaint, 556 Phylogenomics reveals the evolutionary timing and pattern of butterflies and 557 moths. PNAS, 1-7 (2019). 558 13. J. Minet, A. Surlykke, "Auditory and sound producing organs" in Handbook of 559 Zoology: A Natural History of the Phyla of the Animal Kingdom, N. P. Kristensen, 560 Ed. (Walter de Gruyter, 2003), pp. 289–323. 561 14. H. M. ter Hofstede, J. M. Ratcliffe, Evolutionary escalation: the bat-moth arms 562 race. The Journal of Experimental Biology 219, 1589–1602 (2016). 563 15. N. P. Kristensen, Molecular phylogenies, morphological homologies and the 564 evolution of moth "ears." Systematic Entomology 37, 237–239 (2012). 565 16. K. D. Roeder, A. E. Treat, The detection and evasion of bats by moths. American 566 Scientist 49. 135–148 (1961). 567 D. C. Dunning, K. D. Roeder, Moth sounds and the insect-catching behavior of 17. 568 bats. Science (New York, N.Y.) 147, 173–174 (1965). 569 A. Y. Kawahara, J. R. Barber, Tempo and mode of antibat ultrasound production 18. 570 and sonar jamming in the diverse hawkmoth radiation. Proceedings of the National 571 Academy of Sciences 112, 6407–6412 (2015).

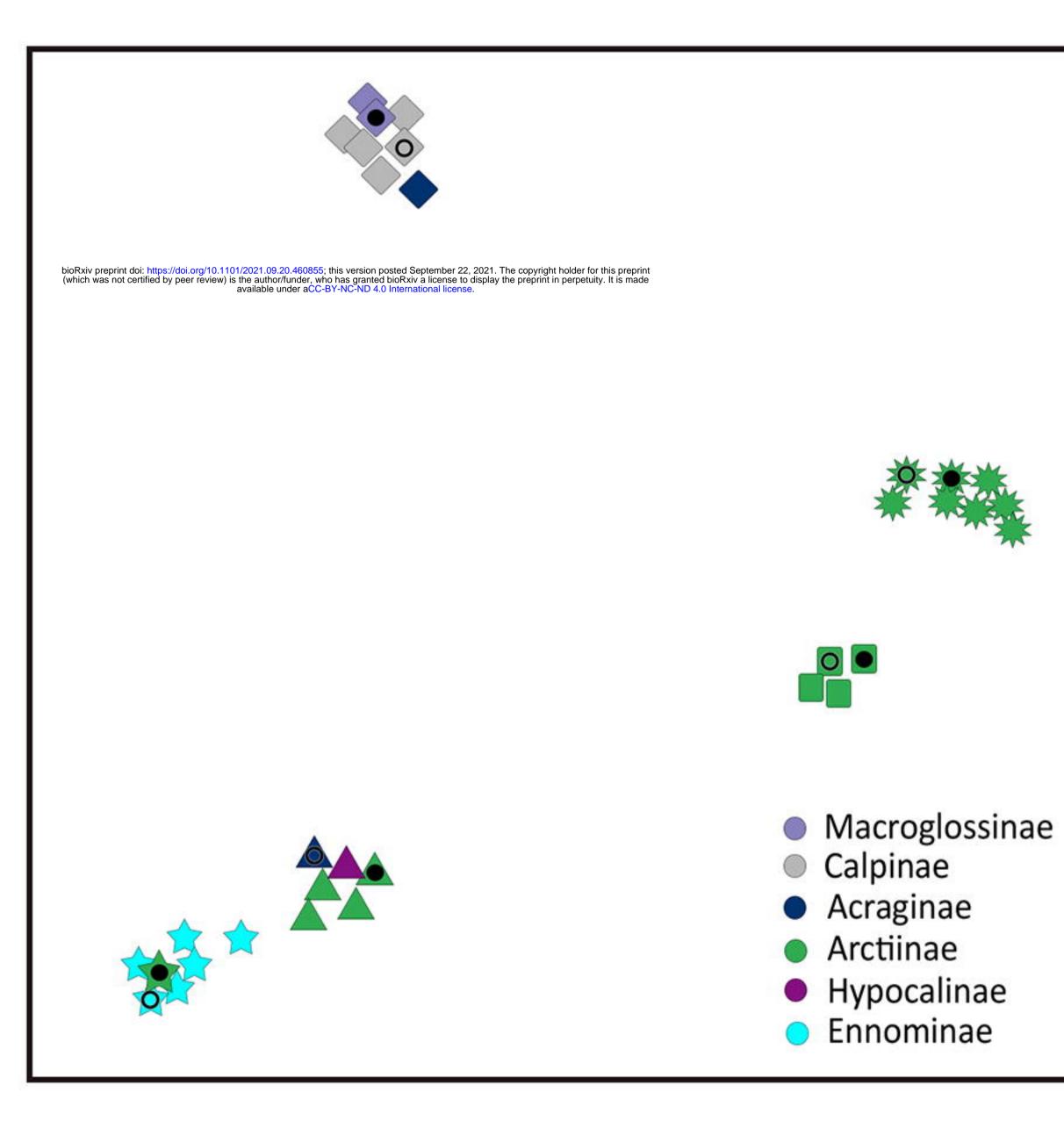
Anti-Bat Ultrasound in Moths

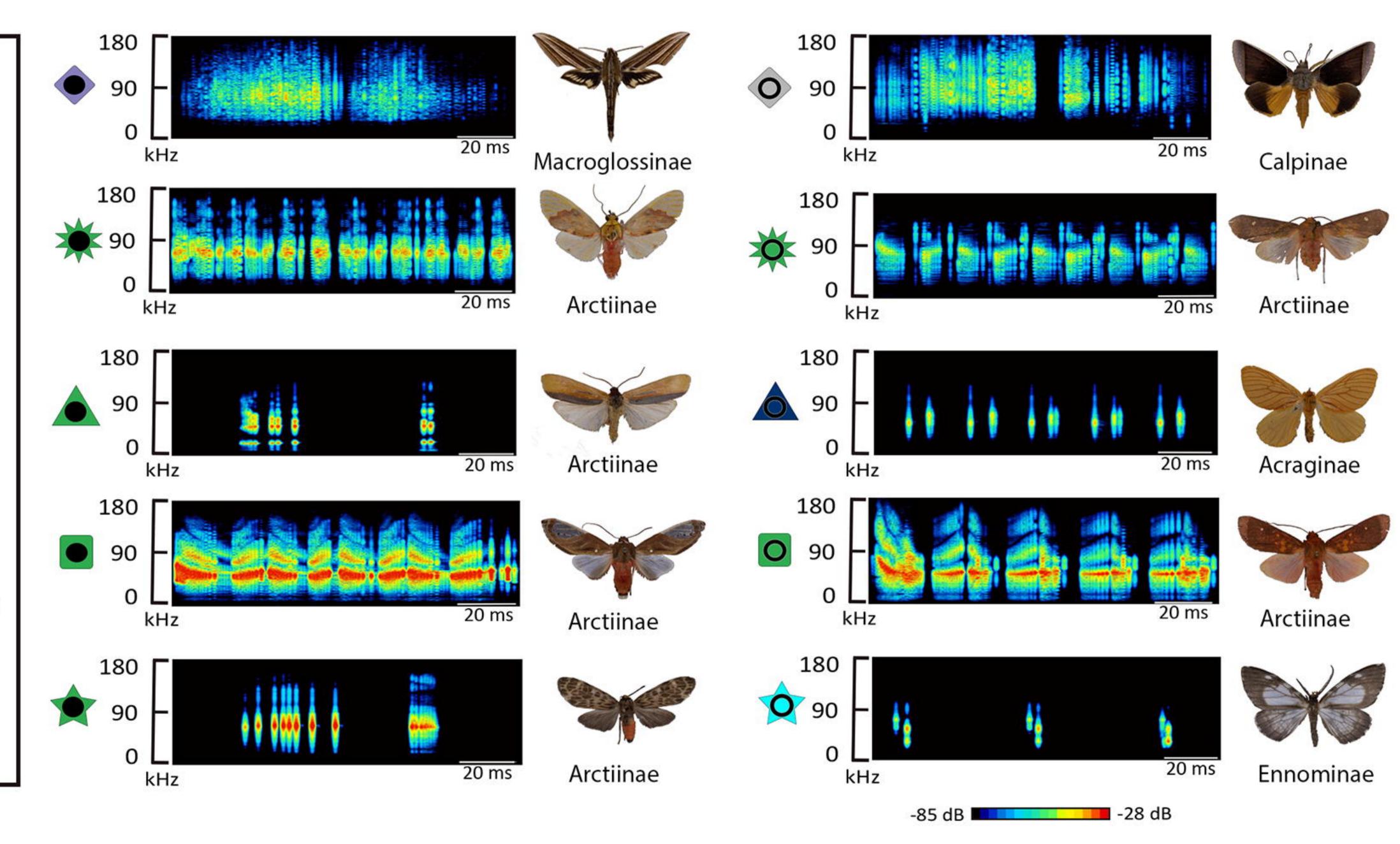
572 573	19.	J. R. Barber, A. Y. Kawahara, Hawkmoths produce anti-bat ultrasound. <i>Biology Letters</i> 9, 1–5 (2013).
575 574	20.	A. J. Corcoran, N. I. Hristov, Convergent evolution of anti-bat sounds. <i>Journal of</i>
575	20.	<i>Comparative Physiology A</i> 200 , 811–821 (2014).
576	21.	J. H. Fullard, J. A. Simmons, P. A. Saillant, Jamming bat echolocation: the
577	21.	dogbane tiger moth <i>Cycnia tenera</i> times its clicks to the terminal attack calls of the
578		big brown bat <i>Eptesicus fuscus</i> . The Journal of Experimental Biology 194 , 285–
578 579		298 (1994).
580	22.	A. J. Corcoran, J. R. Barber, W. E. Conner, Tiger moth jams bat sonar. <i>Science</i>
580 581	22.	325 , 325–327 (2009).
582	23.	J. R. Barber, B. a Chadwell, N. Garrett, B. Schmidt-French, W. E. Conner, Naïve
582	23.	bats discriminate arctiid moth warning sounds but generalize their aposematic
585 584		meaning. <i>The Journal of Experimental Biology</i> 212 , 2141–2148 (2009).
585	24.	D. L. Bates, M. B. Fenton, Aposematism or startle? Predators learn their defenses.
585 586	24.	Canadian Journal of Zoology 68 , 49–52 (1990).
580 587	25.	N. E. Stork, How many species of insects and other terrestrial arthropods are there
588	25.	on earth? Annual Reviews of Entomology 63, 31–45 (2018).
589	26.	G. Neuweiler, Auditory adaptations for prey capture in echolocating bats. <i>Physiol</i>
590	20.	<i>Rev</i> 70 , 615–641 (1990).
591	27.	J. R. Barber, W. E. Conner, Tiger moth responses to a simulated bat attack: timing
592	27.	and duty cycle. The Journal of Experimental Biology 209 , 2637–2650 (2006).
593	28.	A. J. Corcoran, W. E. Conner, J. R. Barber, Anti-bat tiger moth sounds: Form and
594	20.	function. <i>Current Zoology</i> 56 , 358–369 (2010).
595	29.	A. D. Blest, Relations between moths and predators. <i>Nature</i> 197 , 1046–1047
596	_>.	(1963).
597	30.	J. H. Fullard, B. Heller, Functional organization of the arctiid moth tymbal
598	001	(Insecta, Lepidoptera). Journal of Morphology 204 (1990).
599	31.	M. Gopfert, L. Wasserthal, Hearing with the mouthparts: behavioural responses
600		and the structural basis of ultrasound perception in Acherontiine hawkmoths. <i>The</i>
601		Journal of Experimental Biology 202 (Pt 8), 909–18 (1999).
602	32.	W. Mitchell Masters, Insect disturbance stridulation: Its defensive role. <i>Behavioral</i>
603		Ecology and Sociobiology 5, 187–200 (1979).
604	33.	E. K. v Kalko, Insect pursuit, prey capture and echolocation in pipistrelle bats
605		(Microchiroptera). Animal Behavior 50, 861–880 (1995).
606	34.	J. M. Ratcliffe, J. H. Fullard, The adaptive function of tiger moth clicks against
607		echolocating bats: an experimental and synthetic approach. The Journal of
608		Experimental Biology 208, 4689–4698 (2005).
609	35.	I. J. Kitching, An historical review of the higher classification of the Noctuidae
610		(Lepidoptera). Bulletin of the British Museum (Natural History) 49, 153–234
611		(1984).
612	36.	J. D. Holloway, The moths of Borneo (Malayan Nature Society and Southdene,
613		1983).
614	37.	A. J. Corcoran, N. I. Hristov, Convergent evolution of anti-bat sounds. Journal of
615		Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
616		<i>Physiology</i> 200 , 811–821 (2014).

Anti-Bat Ultrasound in Moths


617	38.	L. J. O'Reilly, D. J. L. Agassiz, T. R. Neil, M. W. Holderied, Deaf moths employ
618		acoustic Müllerian mimicry against bats using wingbeat-powered tymbals.
619		<i>Scientific Reports</i> 9 , 1444 (2019).
620	39.	L. J. O'Reilly, B. J. Harris, D. J. L. Agassiz, M. W. Holderied, Convergent
621		evolution of wingbeat-powered anti-bat ultrasound in the Microlepidoptera.
622		Frontiers in Ecology and Evolution 9, 1–15 (2021).
623	40.	G. Koay, H. E. Heffner, R. S. Heffner, Audiogram of the big brown bat (<i>Eptesicus</i>
624	101	<i>fuscus</i>). <i>Hearing Research</i> 105 , 202–210 (1997).
625	41.	G. R. Long, H. U. Schnitzler, Behavioural audiograms from the bat, <i>Rhinolophus</i>
626		ferrumequinum. Journal of Comparative Physiology A 100 , 211–219 (1975).
627	42.	N. I. Hristov, W. E. Conner, Effectiveness of tiger moth (Lepidoptera, Arctiidae)
628	12.	chemical defenses against an insectivorous bat (<i>Eptesicus fuscus</i>). <i>Chemoecology</i>
629		15 , 105–113 (2005).
630	43.	J. M. Ratcliffe, J. H. Fullard, B. J. Arthur, R. R. Hoy, Tiger moths and the threat of
631	чэ.	bats: decision-making based on the activity of a single sensory neuron. <i>Biology</i>
632		Letters 5, 368–371 (2009).
633	44.	H. Bennet-Clark, The first description of resilin. <i>The Journal of Experimental</i>
634	44.	Biology 210, 3879–3881 (2007).
635	45.	W. E. Conner, A. J. Corcoran, Sound strategies: the 65-Million-year-old battle
636	45.	between bats and insects. Annual Review of Entomology 57, 21–39 (2012).
637	46.	G. D. Ruxton, M. Speed, T. N. Sherratt, Evasive mimicry: When (if ever) could
638	40.	mimicry based on difficulty of capture evolve? <i>Proceedings of the Royal Society</i>
639 640	17	B: Biological Sciences 271, 2135–2142 (2004).
	47.	L. McInnes, J. Healy, UMAP: Uniform manifold approximation and projection for dimension reduction. ArXiv (2020)
641 642	10	dimension reduction. ArXiv (2020).
642 643	48.	M. P. Speed, Muellerian mimicry and the psychology of predation. <i>Animal</i>
644	49.	<i>Behaviour</i> 45 , 571–580 (1993). W. Conner, "Un chant d'appel amoureux": acoustic communication in moths. <i>The</i>
645	47.	Journal of Experimental Biology 202 (Pt 13, 1711–23 (1999).
646	50.	R. Nakano, <i>et al.</i> , Moths are not silent, but whisper ultrasonic courtship songs. <i>The</i>
647	50.	Journal of Experimental Biology 212 , 4072–4078 (2009).
648	51.	M. Zuk, G. R. Kolluru, Exploitation of sexual signals by predators and parasitoids.
649	51.	The Quarterly Review of Biology 73 , 415–438 (1998).
650	52.	M. D. Greenfield, M. Baker, Bat avoidance in non-aerial insects: The silence
651	52.	response of signaling males in an acoustic moth. <i>Ethology</i> 109 , 427–442 (2003).
652	53.	K. L. Akre, H. E. Farris, A. M. Lea, R. A. Page, M. J. Ryan, Signal perception in
653	55.	frogs and bats and the evolution of mating signals. <i>Science</i> 333 , 751–752 (2011).
654	54.	E. I. Greig, M. D. Greenfield, Sexual selection and predator avoidance in an
655	54.	acoustic moth: discriminating females take fewer risks. <i>Behaviour</i> 141 , 799–815
656		(2004).
	55	
657 658	55.	R. Nakano, T. Takanashi, N. Skals, A. Surlykke, Y. Ishikawa, To females of a
658		noctuid moth, male courtship songs are nothing more than bat echolocation calls.
659	56	Biology Letters 6, 582–584 (2010).
660	56.	R. Nakano, T. Takanashi, A. Surlykke, Moth hearing and sound communication.
661		Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and
662		<i>Behavioral Physiology</i> 201 , 111–121 (2014).


Anti-Bat Ultrasound in Moths


663	57.	J. S. Wilson, et al., North American velvet ants form one of the world's largest
664		known Müllerian mimicry complexes. Current Biology 25, R704–R706 (2015).
665	58.	J. Joshi, A. Prakash, K. Kunte, Evolutionary assembly of communities in butterfly
666		mimicry rings. The American Naturalist 189, E59–E76 (2017).
667	59.	A. A. Agrawal, Toward a predictive framework for convergent evolution:
668		integrating natural history, genetic mechanisms, and consequences for the diversity
669		of life. The American Naturalist 190 , S000–S000 (2017).
670	60.	D. D. Yager, H. G. Spangler, Behavioral response to ultrasound by the tiger beetle
671		<i>Cicindela marutha</i> Dow combines aerodynamic changes and sound production.
672		The Journal of Experimental Biology 200, 649–59 (1997).
673	61.	B. C. Leavell, et al., Fireflies thwart bat attack with multisensory warnings.
674		<i>Science Advances</i> 4 , 1–6 (2018).
675	62.	K. Krivoruchko, et al., Fireflies produce ultrasonic clicks during flight as a
676		potential aposematic anti-bat signal. <i>iScience</i> 24 , 102194 (2021).
677	63.	J. M. Ratcliffe, C. P. H. Elemans, L. Jakobsen, A. Surlykke, How the bat got its
678		buzz. Biology Letters 9, 1–4 (2013).
679	64.	Y. Kinoshita, et al., Prey pursuit strategy of Japanese horseshoe bats during an in-
680		flight target-selection task. Journal of Comparative Physiology A 200, 799–809
681		(2014).
682	65.	K. D. Roeder, A. E. Treat, J. S. Vandeberg, Auditory sense in certain sphingid
683		moths. <i>Science</i> 159 , 331–333 (1968).
684	66.	K. Pearson, LIII. On lines and planes of closest fit to systems of points in space.
685		The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
686		<i>Science</i> 2 , 559–572 (1901).
687	67.	L. van der Maaten, G. Hinton, "Visualizing Data using t-SNE" (2008).
688	68.	F. Pedregosa, et al., Scikit-learn: Machine learning in python. Journal of Machine
689		Learning Research 12, 2825–2830 (2011).
690	69.	W. Mckinney, "pandas: a foundational python library for data analysis and
691		statistics" (2011).
692	70.	D. Smilkov, et al., Embedding projector: Interactive visualization and
693		interpretation of embeddings in 30th Conference on Neural Information
694		Processing Systems, (2016).
695	71.	M. Espeland, et al., A comprehensive and dated phylogenomic analysis of
696		butterflies. Current Biology 28, 1–9 (2018).
697	72.	P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, W. Hallwachs, Ten
698		species in one: DNA barcoding reveals cryptic species in the neotropical skipper
699		butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences
700		101 , 14812–14817 (2004).
701	73.	K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version
702		7: Improvements in performance and usability. Molecular Biology and Evolution
703		30 , 772–780 (2013).
704	74.	L. T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A fast and
705		effective stochastic algorithm for estimating maximum-likelihood phylogenies.
706		Molecular Biology and Evolution 32 , 268–274 (2015).


Anti-Bat Ultrasound in Moths

- 707 75. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin,
 708 ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nature*709 *Methods* 14, 587–589 (2017).
- 710 76. S. A. Smith, B. C. O'Meara, TreePL: Divergence time estimation using penalized likelihood for large phylogenies. *Bioinformatics* **28**, 2689–2690 (2012).
- 712 77. L. J. Revell, phytools: An R package for phylogenetic comparative biology (and
- 713 other things). *Methods in Ecology and Evolution* **3**, 217–223 (2012).

