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Abstract 

Quantifying the population sizes of distinct neuron types in different anatomical regions is an essential step 
towards establishing a brain cell census. Although estimates exist for the total neuronal populations in 
different species, the number and definition of each specific neuron type are still intensively investigated. 
Hippocampome.org is an open-source knowledge base with morphological, physiological, and molecular 
information for 122 neuron types in the rodent hippocampal formation. While such framework identifies all 
known neuron types in this system, their relative abundances remain largely unknown. This work 
quantitatively estimates the counts of all Hippocampome.org neuron types by literature mining and numerical 
optimization. We report the number of neurons in each type identified by main neurotransmitter (glutamate 
or GABA) and axonal-dendritic patterns throughout 26 subregions and layers of the dentate gyrus, Ammon’s 
horn, subiculum, and entorhinal cortex. We produce by sensitivity analysis reliable numerical ranges for each 
type and summarize the amounts across broad neuronal families defined by biomarkers expression and firing 
dynamics. Study of density distributions indicates that the number of dendritic-targeting interneurons, but not 
of other neuronal classes, is independent of anatomical volumes. All extracted values, experimental evidence, 
and related software code are released on Hippocampome.org. 

Keywords: Hippocampus, Entorhinal Cortex, Cell Census, Neuroinformatics, Hippocampome.org, Operations 
Research 

 

Introduction 

The brain is a highly complex organ encompassing an extraordinary quantity and diversity of cells. Compared 
to the high-level functional characterization of brain anatomy (Taubert et al., 2010; Lange et al., 1997), 
knowledge on low-level components such as neuron types remains incomplete. In particular, despite recent 
progress in single-cell transcriptomics, epigenomic profiling, and microscopic imaging, we still lack a complete 
census of brain cell types (Mukamel and Ngai, 2019). The US Brain Research through Advancing Innovative 
Neurotechnologies (BRAIN) Initiative emphasizes mathematical modeling, statistical analysis, and exploratory 
data mining to accelerate discoveries in this regard (Mott et al., 2018). Building upon this vision, the National 
Institutes of Health launched the BRAIN Initiative Cell Census Network (BICCN), a consortium of research 
projects tasked with generating a molecular and anatomical “parts list” at the cellular level within a three-
dimensional reference atlas of the mouse brain (Ecker et al., 2017).  
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The online knowledge repository Hippocampome.org classifies all known neuron types in the hippocampal 
formation: dentate gyrus (DG), CA3, CA2, CA1, subiculum (Sub), and entorhinal cortex (EC). This resource 
defines 122 neuron types based on their main neurotransmitter (glutamate or GABA) and the spatial 
distributions of their axons and dendrites (Wheeler et al., 2015). Hippocampome.org further annotates every 
neuron type with its reported connectivity (Rees et al., 2016), electrophysiological (Komendantov et al., 2019), 
molecular (White et al., 2020), synaptic (Moradi et al., 2020), morphological (Tecuatl et al., 2021), and 
functional (Sanchez-Aguilera et al., 2021) properties, in all cases providing links to the underlying experimental 
evidence. The ultimate goal of Hippocampome.org is to create biologically plausible computational models of 
the hippocampus (Venkadesh et al., 2019). Towards this aim, one key piece of information needed is the count 
of neurons in each type. The present study derives and publicly releases the first estimates of these values 
using numerical optimization of data mined from the existing scientific literature. 

More extensive research is typically available on principal cells than on interneurons (Cembrowski et al., 2016; 
Faber et al., 2001; Canto and Witter, 2012; Goebbels et al., 2006; Tahvildari and Alonso, 2005; Suzuki and 
Bekkers, 2011; Ehrlich et al., 2012). Among the hippocampal subregions, DG and CA1 have been most widely 
researched (Buckmaster et al., 1992; Han et al., 1994; Lubke et al., 1998; Mott et al., 1997; Ramsden et al., 
2003; Vida et al., 1998; Svoboda et al., 1999) followed by CA3 and EC (Rapp and Gallagher, 1996; Kaae et al., 
2012; Lister et al., 2006; Losonczy et al., 2004; Szabadics et al., 2010; Mercer et al., 2007). Sub and CA2 are the 
least researched areas of the hippocampal formation (Harris and Stewart, 2000; Mulders et al., 1997; Andrade 
2000; Bjerke et al., 2021). 

Traditional methods of quantification, such as unbiased stereology, are generally used to report layer-based 
total counts (Rasmussen et al., 1996; Murakami et al., 2018; Attili et al., 2019). Selected interneuron counts 
have also been estimated in computational models (Bezaire et al., 2016). However, many electrophysiological 
studies describe sampling and post-hoc identification of intracellularly recorded neurons, which can be used to 
derive ratios between the quantities of individual cell types (McBain et al., 1994; Sik et al., 1994; Buhl et al., 
1994; Hajos and Mody 1997; Kohus et al., 2016; Szabo et al., 2014). Other important sources of data are 
reports of proportions of neurons from specific hippocampal layers that express certain molecules (Kosaka et 
al., 1987; Kim et al., 2017). Here we transform every such relevant piece of evidence into mathematical 
relations. We then numerically optimize the resultant set of equations to obtain the population estimates for 
all neuron types in Hippocampome.org. 

 

Methods 

On a high level, the methodology to derive the population estimates of the 122 neuron types classified by 
Hippocampome.org consists of three steps: literature mining to identify relevant experimental evidence; 
equation generation, entailing the transformation of the extracted data; and numerical optimization, which 
produces the estimated counts for each neuron type of interest. 

The literature mining process began with a structured search for relevant sources. For every neuron type, 
Hippocampome.org offers a core list of scientific sources of information providing supporting evidence for its 
reported properties. We reviewed each of these articles as well as all their cited references. Moreover, we 
searched Google Scholar for any publication that cited those core sources. From the union of these ‘cited 
search’ and ‘citing search’, hundreds of journal articles were mined to identify any references to one or more 
neuron types defined by Hippocampome.org. As there is no standardized nomenclature of hippocampal 
neurons, it is common for independent researchers to use different names for the same type or the same 
name for different types (Hamilton et al., 2016). Hence, the first step of the literature mining phase was to 
identify the properties of the neurons described in each article and map them to the appropriate type(s) from 
Hippocampome.org, using the putative neurotransmitter and the locations of the soma, axon, and dendrites. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.460986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.460986
http://creativecommons.org/licenses/by-nc-nd/4.0/


The rare instances with ambiguous or incomplete morphological patterns were resolved by including 
molecular expression as additional factors in the identification and mapping process. In all cases, data were 
limited to rats or mice at least 2-week-old. 

In order to translate research data into a computable format, we assigned a variable for each neuron type 
with exclusive somatic location in every subregion of the hippocampus. In other words, one neuron type 
corresponds to multiple variables if its soma can be found in more than one layer. For example, per 
Hippocampome.org, CA1 Basket cells may have their soma in stratum pyramidale (SP) or stratum oriens (SO). 
In this case, we assigned two distinct variables to this neuron type: one for SP-Basket and for SO-Basket. The 
reason for this choice is that those variables typically take part in different equations (for example, those 
representing the count of somata in each layer). Through this process, the 122 neuron types gave rise to 198 
variables based on their somatic location. Moreover, in order to account for information regarding neuronal 
groups in certain layers that did not correspond to any Hippocampome.org neuron type, we added 9 ancillary 
variables: CA2 stratum lacunosum-moleculare (SLM) excitatory, CA2 SLM inhibitory, CA2 SO inhibitory, CA2 
stratum radiatum (SR) inhibitory, CA3 SLM excitatory, Sub polymorphic layer inhibitory, EC deep layer 
inhibitory, medial EC layer I inhibitory, and lateral EC layer I inhibitory. The assignment of multiple variables 
per neuron types by somatic layer as described earlier and the addition of 9 ancillary neuronal groups resulted 
into 207 variables for numerical optimization as follows: 22 in DG, 37 in CA3, 9 in CA2, 64 in CA1, 5 in Sub, and 
70 in EC (Table 1). The complete list of variables assigned for neuron types based on this classification system 
can be found in the Supplementary Material. 

Data mined from various sources were recorded in a structured format that included the bibliographic 
reference, location of the excerpt of interest, animal species, and interpretation of the content. Each 
interpretation was converted into an algebraic equation and normalized to unity for use as part of the 
objective function. A multiplicative scaling factor of 2.44 was applied to convert mouse data to rat (Herculano-
Houzel et al., 2006). Numerical densities were converted into neuronal numbers by multiplying with volumes 
of the corresponding anatomical parcels (Ero et al., 2018; Tecuatl et al., 2021). 

 

Table 1: The number of neuron types, variables (including the 9 neuronal groups added), equations by type 

and the residual errors for the six subregions of the hippocampal formation.  

Subregion 

Number of 

neuron 

types 

Number of 

variables 

Total Number of equations Residual 

Error 
Sum Ratio Inequality 

DG 18 22 
115 12.66% 

37 28 50  

CA3/CA2 30 46 
167 18.65% 

38 31 98  

CA1 40 64 
210 22.03% 

43 77 90  

SUB 3 5 
30 11.45% 

18 1 11  
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EC 31 70 
129 

6.22% 
50 39 40 

 

Data sources containing neuron type information mined for this work can be divided in three categories that 
result in distinct types of equations: stereological sums, electrophysiological ratios, and marker inequalities 
(Table 2). Unbiased stereology measurements and whole-brain high-throughput image-processing methods 
yielded quantified estimates of neuron counts, where the reported numbers represent totals in a given 
anatomical parcel (Grady et al., 2003), such as a particular layer of a hippocampal subregion. For example, a 
study utilizing the optical fractionator reported the presence of 324,000 cells in CA1 pyramidal layer (Hosseini-
Sharifabad and Nyengaard, 2007). In these cases, we formulate a linear equation setting the sum of all 
Hippocampome.org neuron types with soma in CA1 SP to match the reported numerical value. 

Another source of relevant information comes from numerical reports of intracellularly characterized cells 
that are morphologically identified post-hoc. From this identification, we derive possible proportions of the 
corresponding neuron types in that recording location. For example, an electrophysiological study in CA3 SP 
found that, out of 61 parvalbumin-expressing cells, 30 had axons confined in SP but not targeting the axonal 
initial segment, whereas 31 had axons concentrated at the SP/SO border and targeting the axonal initial 
segment (Gulyas et al., 2010). These profiles (and the accompanying illustrations) unambiguously match the 
Hippocampome.org descriptions of fast-spiking CA3 basket and axo-axonic cells, respectively. Hence, we can 
formulate an equation setting the ratio of Basket to Axo-axonic cells to 30:31 in CA3. We mined several such 
electrophysiology-based experimental sources for each subregion. 

Several articles published counts or densities of neurons expressing specific molecular biomarkers. We used 
these numbers to construct inequalities in conjunction with transcriptomics data on Hippocampome.org. 
Hippocampome.org indicates every neuron type as ‘positive,’ ‘negative,’ or ‘undetermined’ for nearly 100 
biomarkers (White et al., 2020). The undetermined cases are largely due to unknown expression of specific 
neuron types for particular molecules but also include instances of conflicting expression results, location-
dependent gradients, and weak signals. To account for undetermined expression, indicating neuron types that 
might be positive or negative for a given biomarker, we formulated these data into inequalities. For example, 
the number of parvalbumin (PV) positive neurons in the granule layer of DG is 3,680 (Jinno and Kosaka, 2006). 
Hippocampome.org reports two neuron types expressing this molecule in that layer: Axo-axonic and SG PV+ 
Basket cells; moreover, three additional neuron types have undetermined status for this expression: Total 
Molecular Layer, Outer Molecular Layer, and MOLAX. All other neuron types in the DG granule layer are PV-
negative. We interpret these data as indicating that the number of PV positive neurons in the granule layer is 
at most 3,680, and the combined number of PV positive and PV undetermined neurons is at least 3,680 (Table 
2). 

We added weights to each equation based on the experimental method described in the source. We 
considered unbiased stereology measurements and whole-brain high-throughput image-processing counts as 
most reliable, because these approaches are specifically designed to obtain accurate population counts. In 
contrast, we considered electrophysiological ratios and biomarker inequalities relatively less reliable. This is 
because electrophysiological experiments have comparatively small sample sizes and less emphasis on 
unbiased sampling, while biomarker inequalities are intrinsically limited by the uncertainty on neuron type 
with undetermined expression. Therefore, sums from stereology and image-processing were weighted 10:1 
against ratios from electrophysiological studies and inequalities from molecular expression data. 

Each equation was thus transformed into a normalized, weighted, least squared form and the corresponding 
residuals were summed into an objective function for each subregion: 
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 r = ∑ 𝑤𝑖((𝑧𝑖
𝑡𝑦𝑝𝑒

− 𝑧𝑖
𝑑𝑎𝑡𝑎)/𝑧𝑖

𝑑𝑎𝑡𝑎)2𝑛
𝑖 ,  

where r is the overall residual to be minimized by numerical optimization, i is the equation number, n is the 

total number of equations, w is the weight, 𝑧𝑖
𝑡𝑦𝑝𝑒

 represents the relation between neuron types for the 

specific equation, and 𝑧𝑖
𝑑𝑎𝑡𝑎  provides the corresponding numerical value extracted from the literature. For 

instance, in the ratio example described above (second column of Table 2), ztype is x6/x8 (number of CA3 PV+ 
basket cells divided by number of CA3 axoaxonic cells) and zdata is 1.0333 (31/30). The objective function is 
then minimized to obtain estimates for the unknown variables (neuron types by layer). Table 1 lists, for each 
subregion, the number of neuron types, the number of equations generated from the different sources, and 
the corresponding residual errors. The complete list of equations, interpretations, and sources can be found in 
the Supplementary Material. 

 

Table 2: Three types of equations obtained from the data transformation process. 

Equation 
Type 

Sum Ratio Inequality 

Source Hosseini-Sharifabad and Nyengaard, 
2007 

Gulyas et al., 2010 Jinno and Kosaka, 2006 

Region CA1 CA3 Dentate Gyrus 

Species Rat Mouse Mouse 

Evidence 
excerpt 

Table 3 row #6, column 4 
 
“Total number of neurons in the 
granular and pyramidal layers of the 
rat hippocampus 
(unilateral values in millions)” 

From […] 61 PV-EGFP cells 
recorded […], in 30 cases the 
[…] boutons were localized 
to st. pyramidale and only 
rarely approached ankyrin G-
stained profiles (Fig. 1c1–3) 
suggesting their FSBC origin. 
Conversely, in the remaining 
31 cases the axonal arbor 
was densest in st. pyramidale 
and neighboring st. oriens 
[…] and the boutons formed 
close appositions with 
ankyrin G-immunoreactive 
segments […], similar to the 
axon terminals of AAC. 

Table 4 row#15, columns 1 & 2 
 
“Numerical densities (×103 mm-3) of 
chemically defined GABAergic neuron 
subtypes in the mouse hippocampus” 

Location in 
publication 

Page 6, left center Page 4, left center Page 12, Left center 

Interpretati
on 

Total number of neurons in the 
pyramidal layer of CA1 is 324,000 

Ratio between PV+ basket 
and axoaxonic cells is 30:31 

Number of parvalbumin positive 
neurons in granule layer is 3,680 
(refer to ‘DG-Biomarkers’ row #6 of 
supplementary table for data 
transformation details) 

Equation 𝑥69 + 𝑥72 + 𝑥75 + 𝑥79 + 𝑥81 + 𝑥84

+ 𝑥86 + 𝑥87 + 𝑥91 

+ 𝑥94 + 𝑥96 + 𝑥97 

+ 𝑥100 + 𝑥114 

+ 𝑥131 = 324000 

𝑥6

𝑥8

=
31

30
 

𝑥7 + 𝑥8 ≤  3680 
𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22 ≥  3680 

Normalized 
form 

 30𝑥6

31𝑥8

− 1 =  0 
𝑥7 + 𝑥8

3680
 −  1 ≤  0 

𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22

3680
 −  1 >

=   0 
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(𝑥69 + 𝑥72 + 𝑥75 + 𝑥79 + 𝑥81 

+ 𝑥84 + 𝑥86 + 𝑥87

+ 𝑥91 + 𝑥94 + 𝑥96 

+ 𝑥97 + 𝑥100 

+ 𝑥114 

+ 𝑥131)/324000 
− 1 = 0 

Least 
squares 
form 

 
((𝑥69 + 𝑥72 + 𝑥75 + 𝑥79 + 𝑥81 

+ 𝑥84 + 𝑥86 + 𝑥87

+ 𝑥91 + 𝑥94 + 𝑥96 

+ 𝑥97 + 𝑥100 

+ 𝑥114 

+ 𝑥131)/324000 
− 1)2 = 0 

(
30𝑥6

31𝑥8

− 1)
2

= 0 𝑚𝑎𝑥 (0,
𝑥7+𝑥8

3680
−  1)

2

= 0 

𝑚𝑎𝑥 (0, 1 −
𝑥7+𝑥8+𝑥17+𝑥21+𝑥22

3680
)

2

= 0 

With 
weights 

𝑟 = 10 × ((𝑥69 + 𝑥72 + 𝑥75 + 𝑥79 

+ 𝑥81 + 𝑥84 + 𝑥86 

+ 𝑥87 + 𝑥91 + 𝑥94 

+ 𝑥96 + 𝑥97 

+ 𝑥100 + 𝑥114 

+ 𝑥131)/324000 
− 1)2 

𝑟 = 1 (
30𝑥6

31𝑥8

− 1)
2

 𝑟 = 1 × 𝑚𝑎𝑥 (0,
𝑥7 + 𝑥8

3680
−  1)

2

 

𝑟 = 1 × 𝑚𝑎𝑥(0, 1 − (𝑥7 + 𝑥8 + 𝑥17

+ 𝑥21

+ 𝑥22)/3680)2 

 

After thorough testing of several optimization algorithms, we adopted PSwarm for minimization of residuals 
(Vaz and Vicente, 2007). PSwarm is a global optimizer that combines pattern search (Lewis and Torczon, 2002) 
and particle swarm (Kennedy and Eberhart, 1997) algorithms for bound constrained problems. We used a 
lower bound of 10 and an upper bound of 106 for each neuron type variable. With the exception of CA2 and 
CA3, the sets of equations were independent across hippocampal subregions. Thus, DG, CA2+CA3, CA1, Sub, 
and EC were each optimized separately. 

To exploit the stochastic nature of PSwarm, we ran 200 optimization iterations and selected the results with 
the lowest error. In certain cases, multiple iteration runs tied for lowest error but returned widely differing 
values for restricted subsets of neuron types. Examination of these situations revealed systematic 
interdependencies among those neuron types in that their sums were always constant.  These relations are 
indicative of insufficient experimental observations to fully constrain the population sizes of all individual 
neuron types. For the purpose of subsequent analyses, we assigned an equal population size to each neuron 
type in the subset. For example, multiple optimization iterations yielded a constant sum of 6,351 for three CA3 
neuron types in SO: Interneuron Specific Oriens, O-LMs, and Trilaminars. In this case, the residual error could 
be minimized by assigning an arbitrary numerical value from 0 to 6351 to any of the three types; then 
assigning to one of the remaining two types any numerical value from 0 to the difference between 6351 and 
the value given to the first type; and finally assigning to the third type the difference between 6351 and the 
sum of values given to the first two types. We assigned a value of 2117 to each of those three neuron types.  

We also conducted sensitivity analysis to determine acceptable numerical estimate ranges for every neuron 
type. Specifically, we computed the lower and upper bounds for each type by programmatically identifying the 
deviations from the optimal numerical value causing a 5% increase in the residual error for that subregion.  

The volumes of the anatomical parcels for density analyses were derived from published data as described in 
previous quantitative analyses of Hippocampome.org data (Tecuatl et al., 2021). To assess statistical 
significance of linear correlations, p-values were calculated using Pearson’s coefficient and the number of data 
points; those p-values were then corrected for multiple testing using the Bonferroni method. 
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Results 

The primary goal of this work is to obtain estimated population sizes of all neuron types from the six 
subregions of the rodent hippocampus as defined by Hippocampome.org. To this aim, we apply operations 
research methods to knowledge extracted from the peer-reviewed scientific literature as recently 
demonstrated for DG (Attili et al., 2020). Here we improve that approach with the addition of biomarker 
expression inequalities and expand the effort to the entire hippocampal formation. 

The structured literature search described in the Methods yielded a broad collection of 6241 articles, 
consisting of the union of the 101 ‘core’ articles of Hippocampome.org 
(hippocampome.org/php/Help_Bibliography.php), 1289 publications cited by the above core articles, and 
5035 publications citing the above core articles. We manually triaged this broad collection by perusing titles, 
abstracts, and illustrations of each publication in search of indications that the content might include data 
relevant to the quantification of neuron types. This operation resulted in a narrower collection of 570 articles 
that we mined in-depth by full-text reading. We identified and extracted actionable data from 155 
publications, from which we derived 651 equations. Sums from stereological and image processing studies 
accounted for 186 equations; ratios from electrophysiological studies for 176; and inequalities from molecular 
biomarker expression for 289 (Table 1). As expected, the highest amount of evidence and, hence, the largest 
number of equations were available for CA1, which is extensively researched. The least number of articles and 
subsequently of equations pertained to Sub, with DG, CA3+CA2, and EC falling in between.  

In all cases the numerical optimization converged to a relatively small residual error, ranging from 6% in EC to 
22% in CA1. These residual errors quantify the extent of inconsistent information in the literature and may be 
due to a combination of measurement errors, variation in experimental procedures (e.g., animal sex, strain, 
and age; use of gene or protein expression in biomarker determination; or longitudinal location of the 
sampled region along the septal-temporal axis of the hippocampus), limit of the scaling rule from mice to rats, 
and additional factors.  

The numerical optimization process yielded the best values and ranges for all 207 variables, each correspond 
to a Hippocampome.org neuron type in a specific layer, with all numbers referring to rats. In the subsequent 
analysis, these variables were combined to obtain overall counts by anatomical parcel (subregions and layers), 
by neuron type (summing across the layers in which they were present), or by broader neuron families with 
specific properties (e.g., firing pattern or molecular expression). The original values and ranges for all 
variables, along with the equations and residual errors, are available in the Supplementary Material.  

The total number of neurons across all types from all subregions was 2,958,500, with the highest proportion 
(1,200,734) in DG and the lowest (29,493) in CA2 (Fig. 1A). EC has been divided into the lateral (LEC) and 
medial (MEC) areas. Surprisingly, LEC has a higher number of neurons at 583,002 compared to the MEC 
population size at 196,452. Corresponding ranges determined by sensitivity analysis indicated a higher degree 
of uncertainty for GABAergic than for glutamatergic neurons (Fig. 1B). The total count of interneurons 
(299,377) was very close to 10% of the overall population, though this proportion varied in individual 
subregions, from <4% in DG to >25% in MEC. Next, we examined the proportions of excitatory and inhibitory 
neuron types across the individual layers of each subregion (Fig. 1C). As expected, the majority of 
glutamatergic cells occupied the principal cell layers. The GABAergic cells displayed a diverse and uneven 
laminar distribution among subregions, with SO as the most interneuron-rich layer in CA1 and CA3, and SLM in 
CA2. We also divided the glutamatergic and GABAergic neurons in two families each: principal cells and other 
glutamatergic cells; and perisomatic and dendritic-targeting interneurons (Fig. 1D). Hippocampome.org does 
not identify any non-principal glutamatergic cells in CA2 and Sub, nor any dendritic-targeting interneurons in 
Sub. Among the rest of subregions and families, the proportion of non-principal glutamatergic cells is highest 
in LEC and lowest in CA1, while the proportion of perisomatic interneurons is highest in MEC and lowest in DG. 
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Figure 1: Neuron counts in the rat hippocampal formation by subregion, layer, and neurotransmitter. A. 
Proportions of neurons by subregions (total counts: DG 1,197,548; CA3 293,278; CA2 29,493; CA1 435,735; 
SUB 222,992; LEC 583,002; MEC 196,452). B. Totals and ranges (in log scale) for excitatory (left) and inhibitory 
(right) neurons by sub-region. C. Percentages of neurons across the layers of each subregion for excitatory and 
inhibitory types. Abbreviations: outer stratum (s.) moleculare (SMo), inner s. moleculare (SMi), s. granulosum 
(SG), hilus (H); s. lacunosum-moleculare (SLM), s. radiatum (SR), s. lucidum (SL), s. pyramidale (SP), s. oriens 
(SO); s. moleculare (SM), polymorphic layer (PL); EC layers I–VI. D. Population size by subregion and neuron 
families: principal cells vs. other glutamatergic cells and dendritic-targeting vs perisomatic cells. 

 

The individual neuron type counts and their upper and lower bound ranges varied widely across subregions 
(Fig. 2). Generally, dendritic-targeting interneurons were more numerous than perisomatic ones. The most 
abundant interneuron types in each subregion were DG MOCAPs, CA3 QuadD-LMs, CA2 SLM inhibitory, CA1 
Neurogliaforms, SUB SP interneurons, and EC deep layer interneurons. The numerical optimization yielded 
definite counts and ranges for the majority of neuron types (indicated by blue dots in Fig. 2). These are neuron 
types that are extensively researched and for which sufficient quantitative evidence is available, including in 
most cases stereological counts. For approximately a quarter of neuron types (33/122: orange dots in Fig. 2), 
the lower bound reached 0, making the range significantly wider. These are neuron types for which relevant 
information is sparser, with often undetermined molecular identity, and typically entangled in numerical 
interdependencies where the sum of certain subsets is constant. Those numerical interdependencies are also 
explicitly listed in Table 3. Lastly, four neuron types (pink dot in Fig. 2) returned population size estimates at 
the lower bound values set by the optimization algorithm (10): DG HIPROMs, DG Outer Molecular Layer 
interneurons, CA3 Lucidum ORAX, and CA1 Quadrilaminar. These are types whose very existence cannot be 
reliably confirmed based on available evidence. 
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Table 3: Interdependencies among variables and their numerical resolutions. 

Subregion Variable Neuron Type Estimate Interdependencies 

CA3 x34 CA3 IS Oriens SO 2117 x34+x50+x58=6350 
Each -> 6350/3 x50 CA3 O-LM SO 2117 

x58 CA3 Trilaminar SO 2117 

CA1 x87 SP IS LMO-O 90 (x88+x95+x98)+x24 = 1962; (x88+x95+x98)=981 & 
x24=981 

 
x91+x92 = 2446; x91=2446-x92 = 2446-981 = 1465 

 
(x87+x94+x97)+x91 = 1734; (x87+x94+x97)= 1734-1465 

= 269 

x88 SR IS LMO-O 327 

x91 SP IS LMR-R 1465 

x92 SR IS LMR-R 981 

x94 SP IS O-Targeting 90 

x95 SR IS O-Targeting 327 

x97 SP IS RO-O 90 

x98 SR IS RO-O 327 

EC x141 LI-II Multipolar-
Pyramidal LECI 

41397 x141+x145=82794; each -> 82794/2 
 

x152+x164=20781; each -> 20781/2 
 

x192+x193=4698; x192=4698/2=2349; 
x193=4698/2=2349 

 
x190+x193=8080; x190=8080-x193=8080-2349=5731 

 
x194+x195=5281; x194=5281/2=2641; 

x195=5281/2=2641 
 

x189+x190+x191=19680 => x189+x191=19680-
x190=13949; x189=13949/2=6975; x191=13949/2=6975 

 
x195+x196+x199=6393 => x196+x199=6393-x195=3752; 

x196=3752/2=1876; x199=3752/2=1876 
 

x196+x198+x199=6738 => x198 = 6738-3752 = 2986 

x145 LI-II Pyramidal-Fan LECI 41397 

x152 LII-III Pyramidal-Tripolar 
LECIII 

10391 

x164 LIII Stellate LECIII 10391 

x189 LII Axo-axonic MECII 6975 

x190 LII Axo-axonic LECII 5731 

x191 MEC LII Basket  6975 

x192 LII Basket-Multipolar 
Interneuron MECII 

2349 

x193 LII Basket-Multipolar 
Interneuron LECII 

2349 

x194 LEC LIII Multipolar 
Interneuron 

2641 

x195 MEC LIII Multipolar 
Interneuron  

2641 

x196 MEC LIII Superficial 
Multipolar Interneuron  

1876 

x198 LIIII Pyramidal-Looking 
Interneuron  

2986 

x199 MEC LIII Superficial 
Trilayered Interneuron  

1876 

 

Hippocampome.org has collated expression information about ~100 molecular biomarkers for each neuron 
type (White et al., 2020). Moreover, the knowledge base includes information regarding the intrinsic firing 
pattern of the neuron types and defines 23 electrophysiological phenotypes accordingly (Komendantov et al., 
2019). Given the practical and functional importance of these characterizations, we analyzed the neuron 
census obtained in this work by grouping the neuron types into molecular and electrophysiological families 
(Fig. 3). Specifically, we quantified the layer-wise counts for all GABAergic interneurons expressing each of the 
nineteen most studied biomarkers (Fig. 3A). The highest number of interneurons in the hippocampal 
formation are positive to Neuropeptide Y, and the lowest number are positive to enkephalin. Among the firing 
patterns, the majority of neurons in the hippocampal formation was adapting spiking (ASP), while transient 
stuttering followed by silence (TSTUT.SLN) was exhibited by the least number of neurons (Fig. 3B). Interesting 
regional and laminar trends also emerged, with delayed non-adapting spiking (D.NASP) almost entirely 
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confined to the DG granular layer and (non-delayed) non-adapting spiking (NASP) more commonly observed in 
the deep layers of EC. 

 

 

Figure 2: Counts and ranges (in log scale) for all 122 Hippocampome.org neuron types. Excitatory neurons are 
in green (bold for principal cells), inhibitory in red (bold for perisomatic). Blue dots: higher reliability; orange 
dots: medium reliability; pink dot: lower reliability.  
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Figure 3: Neuron counts by molecular expression and firing patterns across the 26 layers of the six 
hippocampal subregions. A. Population sizes of neuron families defined by the expression of 19 molecular 
biomarkers. CB: Calbindin; CR; Calretinin; PV: Parvalbumin; CB1: Cannabinoid receptor type 1; mGluR1a: 
metabotropic glutamate receptor 1 alpha; Mus2R: muscarinic type 2 receptor; vGluT3: vesicular glutamate 
transporter 3; CCK: Cholecystokinin; ENK: Enkephalin; NPY: Neuropeptide Y; SOM: Somatostatin; VIP: 
Vasoactive intestinal polypeptide; nNOS: Neuronal nitric oxide synthase; RLN: Reelin; 5HT_3 - Serotonin 
receptor 3; Sub_P_Rec: Substance P receptor; GABAA-α1: GABAA alpha 1 subunit; a-act2: alpha actinin 2; 
CoupTF_2: chicken ovalbumin upstream promoter transcription factor IIB. Population sizes of neuron families 
defined by 23 firing pattern phenotypes. ASP.: adapting spiking; ASP.ASP.: adapting spiking followed by 
(slower) adapting spiking; ASP.NASP.: non-adapting spiking preceded by adapting spiking; ASP.SLN: silence 
preceded by adapting spiking; D.: delayed spiking; D.ASP.: delayed adapting spiking; D.RASP.NASP: non-
adapting spiking preceded by delayed fast-adapting spiking; D.NASP: delayed non-adapting spiking; D.PSTUT: 
delayed persistent stuttering; D.TSWB.NASP: non-adapting spiking preceded by delayed transient slow-wave 
bursting; RASP.: fast-adapting spiking; RASP.ASP.: fast-adapting spiking followed by adapting spiking; 
RASP.NASP: non-adapting spiking preceded by fast-adapting spiking; RASP.SLM: silence preceded by fast 
adapting spiking; NASP: non-adapting spiking; PSTUT: persistent stuttering; PSWB: persistent slow-wave 
bursting; TSTUT.: transient stuttering; TSTUT.ASP.: transient stuttering followed by adapting spiking; 
TSTUT.NASP: non-adapting spiking preceded by transient stuttering; TSTUT.SLN: silence preceded by transient 
stuttering; TSWB.NASP: non-adapting spiking preceded by transient slow-wave bursting; TSWB.SLN: silence 
preceded by transient slow-wave bursting. 

 

Next, we investigated the variation of the population counts for the main excitatory and inhibitory families 
(principal neurons, other glutamatergic cells, perisomatic interneurons, and dendritic-targeting interneurons) 
as a function of the volumes of each anatomical parcel (subregion and layer) in the hippocampal formation. If 
each neuronal population has (approximately) constant density across parcels, the population count should be 
proportional to the anatomical volumes. If, in contrast, the population counts themselves were approximately 
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constant, then the densities should be inversely proportional to the anatomical volumes. We tested these 
alternative hypotheses by plotting the population counts against parcel volumes and the densities against the 
inverse of the volumes for each of the four populations (Fig. 4). As general trends, neuron counts were 
proportional to anatomical volumes for other (non-principal) glutamatergic neurons and for perisomatic 
interneurons. In those two cases the densities did not vary with the inverse of volumes. In contrast, in the 
other populations, principal cells and dendritic-targeting interneurons, the counts did not vary with volumes. 
Instead, for the dendritic-targeting interneurons, the densities were inversely proportional to the volume with 
high statical significance (p<10-4 after multiple testing correction). The analysis results were the same when 
analyzing either rat or mouse data. Thus, we conclude that dendritic-targeting interneurons have constant 
counts independent of the volume of the anatomical parcel in which their somata reside. 

 

 

Figure 4: Variation of the counts and densities of four main neuron families by anatomical volumes. Left 
panels: relations between neuron counts and volumes. Right panels: relations between neuron densities and 
inverse of volumes. Top panels: principal cells (left axes) and other glutamatergic neurons (right axes). Bottom 
panels: dendritic-targeting (left axes) and perisomatic (right axes) GABAergic interneurons. The number of 
neuron types corresponding to each of the 4 families is reported in parentheses after Pearson coefficients. 

 

We have made all software scripts and mined data available through the Supplementary Material for further 
research and analysis. All neuron type counts (optimization estimates and ranges) have been released on 
Hippocapome.org on the corresponding neuron pages (Fig. 5). The ‘neuron type census’ page1 
(hippocampome.org/counts) provides a browsable matrix with the rat and mouse numerical estimates for all 

 
1 Access to all data and functionality described in the manuscript are provided via hippocampome.org/counts with a password. Please email 
ascoli@gmu.edu for the access code; the password protection and this note will be removed upon acceptance of the manuscript in a peer-
reviewed journal. 
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122 neuron types and displays the ranges upon cursor hover-over. As for all Hippocampome.org content, 
clicking on a value dynamically pulls all underlying experimental evidence supporting the annotated 
knowledge. In this case, the evidence page includes all literature references and excerpts related to each 
equation pertaining to that neuron type and corresponding interpretations. 

 

 

Figure 5: New Hippocampome.org pages and functionality (Hippocampome.org/counts). The neuron type 
census matrix (left) displays the list of neuron type and their estimated counts for rats and mice with ranges 
appearing in overlay upon hover-over. The information is also reported for each type in the corresponding 
neuron page (top right). Every numerical value is dynamically linked to the collection of evidence (bottom 
right) supporting all equations pertaining to the related neuron type. 

 

The number of neurons in each type can be multiplied with recently derived connection probabilities (Tecuatl 
et al., 2021) to derive the average numbers of neurons of each type receiving synaptic contacts from a given 
cell (network divergence) or sending synaptic contacts to a given cell (network convergence). Further 
multiplying the above values by the average number of computed synaptic contacts per pair of connected 
cells, also available at Hippocampome.org (Tecuatl et al., 2021) provides an estimate of the total number of 
synapses a single neuron receives from (or sends to) every neuron type with which it directly interacts in the 
circuit. For example, the connection probability between CA3 Pyramidal cells is 0.01034, with an average of 
7.24 contacts per connected pair. From the count of 183,844 obtained here, it is possible to derive a number 
of ~13,763 synapses each CA3 Pyramidal cells receives from other ipsilateral CA3 Pyramidal cells. This estimate 
is consistent with the value reported for the quantity of dendritic spines in CA3 Pyramidal cells in strata oriens 
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and radiatum, corresponding to recurrent collaterals (Sunanda et al., 1995, Major et al., 1994). The same 
quantitative reasoning can be extended to cases for which confirmatory data are not yet available, thus 
providing a valuable estimate for computational modeling. For instance, it is possible to compute that a CA3 
Pyramidal cell receives approximately 792 synapses from CA3 O-LM interneurons in CA3 SLM (connection 
probability of 0.020 times 18.7 contacts per connected pairs times 2117 presynaptic cells) while an O-LM 
interneurons receives approximately 4,847 synapses from CA3 Pyramidal cells in stratum oriens (connection 
probability of 0.0055 times 4.79 contacts per connected pair times 183,844 presynaptic cells). 

 

Discussion 

This work constitutes, to the best of our knowledge, the first comprehensive cell census for any mammalian 
neural system based on a consistent neuron type classification framework. The systematic application of an 
efficient numerical optimization workflow to all relevant published evidence yielded population size estimates 
for all 122 neuron types of Hippocampome.org. Therefore, this open access knowledge base now includes 
first-approximation cell counts of all known neuron types in the rodent hippocampus and entorhinal cortex 
defined on the basis of their main neurotransmitters and axonal-dendritic patterns. 

Since our method heavily relies on the existing scientific literature, the data mining phase is critically 
important. We carefully followed a step-by-step literature search process with the goal of obtaining every 
single published scientific report that was relevant to any of the neuron types of interest. The results clearly 
reflect the amount of research conducted on specific anatomical regions and cell types. The DG granule and 
CA1 pyramidal layers, for instance, have been extensively studied by multiple independent teams, hence 
yielding rich evidence for the corresponding neurons. These mainly consist of glutamatergic principal cells 
respectively providing the input and output communication pathways of Ammon’s Horn (Wang et al., 2006; 
Barkai and Hasselmo, 1994; Yang et al., 1996; Hestrin et al., 1990). GABAergic interneurons in those principal 
cell layers, such as Basket and Axo-axonal cells, providing perisomatic inhibition to the principal cells, are also 
well characterized compared to the highly diverse interneurons in other layers.  

In contrast, the subiculum and CA2, the relatively small area between CA1 and CA3, have been less studied 
compared to the rest of the hippocampal formation, resulting in fewer constraints for the numerical 
optimization. Occasionally we found evidence supporting the presence of certain neurons without a 
corresponding neuron type defined by Hippocampome.org. For example, no excitatory neuron types have 
been characterized yet in CA3 SLM, but glutamatergic biomarkers were quantified in that layer (Ero et al., 
2018). In those cases, we defined a variable for the unknown type(s) and added the relation into the 
optimization process. By homology with the adjacent area CA1, we speculate that the missing type in this 
particular instance may be Cajal-Retzius neurons (Quattrocolo and Maccaferri, 2014). Other similar situations 
likely reflect more complex scenarios, such as the expected diversity of GABAergic interneurons in layers IV, V, 
and VI of medial and lateral entorhinal cortices for which no detailed identification is available. All ad-hoc 
variables listed in the supplementary material that do not correspond to identified Hippocampome.org types 
indicate potential ‘low hanging fruits’ of new neurons awaiting discovery. 

Our emphasis on including all relevant published data we could find in the peer-reviewed literature implies 
that we did not filter any outlier, nor did we attempt to manually reconcile seemingly contrasting data. For 
example, one stereological study reported 380,000 CA1 principal layer neurons (West et al., 1991), whereas 
another reported 262,181 (Fitting et al., 2009). Similarly, the ratio between DG SMo MOPP and Neurogliaform 
cells varies across publications from 6:11 or 0.54 (Armstrong et al., 2011) to 14:17 or 0.82 (Ceranik et al., 
1997). The post-optimization residuals for each subregions de facto quantify the overall extent of data 
variability in the underlying scientific publications. Those values, ranging from 6% to 22% are relatively modest 
considering that we pooled together mouse and rat data using an admittedly coarse scaling rule (Herculano-
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Houzel et al., 2006) across a broad heterogeneity of animal strain, sex, caging conditions, and experimental 
techniques.  

In light of this diversity in research methodology, our mathematical optimization approach aimed to find the 
best estimate accounting for all available data. Moreover, sensitivity analysis allowed us to determine 
reliability ranges around each estimated optimum value by identifying the upper and lower limits at which the 
residual for the corresponding subregions would exceed 5% of the minimum. For example, our results indicate 
an optimal value of 299,408 for the count of Pyramidal neurons in CA1 SP, with a range from 224,807 to 
363,841. At those lower and upper bounds, the residual for CA1 increases from the minimum of 22.03% to 
over 23.13%. 

In a limited number of cases, the available evidence was insufficient to uniquely determine an optimal value 
for the cell counts of a subset of neuron types. These circumstances always resolved to reveal 
interdependences between neuron types, whereas the number of neurons in each type could vary widely but 
only as long as the sum over those types would remain constant. These circumstances reflect the inability to 
unequivocally associate one or more pieces of experimental evidence with a single neuron type. Similar to the 
situation of ‘unknown’ types described above, these ambiguities identify under-studied areas of research and 
the need for additional or more specific distinguishing properties between neuron types, especially selective 
molecular biomarkers. 

We analyzed neuron type-specific cell counts by subregion and layer, by transcriptomic expression (White et 
al., 2020), and by spiking patterns (Komendantov et al., 2019). This mapping of population size estimates to 
commonly used neuronal properties provides an overview of the proportions of neuron types in each broad 
anatomical, molecular, or physiological family. Interestingly, the numerical densities of dendritic targeting 
GABAergic interneurons (but not of perisomatic interneurons, principal cells, or other glutamatergic neurons) 
were inversely proportional to anatomical volumes. This finding implies that the abundance of these inhibitory 
cells across the hippocampal formation does not follow the generally observed trend of increasing with the 
size of the space in which they reside (e.g., Attili et al., 2019). It remains to be established whether this 
observation extends to other neural systems beyond the hippocampus and entorhinal cortex. Notably, 
dendritic targeting interneurons are the most diverse group of cells, accounting for half of all 
Hippocampome.org neuron types. 

The complete set of results from this research project are freely released to the scientific community with the 
publication of this report both as Supplementary Materials and through the searchable and browsable online 
portal of Hippocampome.org. These include the optimized numerical estimates and ranges for all neuron 
types, literature excerpts for all supporting evidence and related interpretations, and all associated source 
code. We anticipate that these data will be used by future projects that involve the development of working 
models of the rodent brain and related computational simulations. Together with recently reported 
connection probabilities (Tecuatl et al., 2021), the neuron type population sizes will also enable a more 
thorough quantification of the hippocampal-entorhinal circuit formation thus extending previous qualitative 
graph-theoretic analyses (Rees et al., 2016). Last but not least, our methodology can be adapted and 
expanded to obtain estimated cell counts for the neuron types of other brain regions and animal species. 
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