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Abstract
RNA modifications such as m6A methylation form an additional layer of complexity in

the transcriptome. Nanopore direct RNA sequencing captures this information in the raw

current signal for each RNA molecule, enabling the detection of RNA modifications

using supervised machine learning. However, experimental approaches provide only

site-level training data, whereas the modification status for each single RNA molecule is

missing. Here we present m6Anet, a neural network-based method that leverages the

Multiple Instance Learning framework to specifically handle missing read-level

modification labels in site-level training data. m6Anet outperforms existing

computational methods, shows similar accuracy as experimental approaches, and

generalises to different cell lines with almost identical accuracy. We demonstrate that
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m6Anet captures the underlying read-level stoichiometry that can be used to

approximate differences in modification rates. m6Anet achieves this without retraining

model parameters, enabling the transcriptome-wide identification and quantification of

m6A from a single run of direct RNA sequencing.

Code Availability

The source code for m6Anet is available at https://github.com/GoekeLab/m6anet.

Installation instructions and online documentation is available at

https://m6anet.readthedocs.io/en/latest/.

Introduction

Modifications in RNA nucleotides were first discovered in the 1950s 1,2 in tRNAs and

rRNAs, and today, more than 150 different modifications on RNA have been described
3,4. One of the most common RNA modifications is m6A which was discovered in 1974

as the main internal methylation on mammalian mRNA 5,6. This modification presents

mostly at the consensus motif DRACH (D=A, G, or U, R=A or G while H is A, C or U)

and has been shown to profoundly impact RNA structure 7, stability 8,9, splicing 10, and

translation 11. Disruption of m6A homeostasis in animal models affects stem cell

regulation 12,13, fertility and developmental process 14 while in humans, this modification

plays an important role in cancer 15,16, cell-fate transition and determination 17,18 and

transition, development 19, and diseases 20,21.

Experimental identification of RNA modifications can be achieved with three main

approaches transcriptome-wide. Immunoprecipitation methods such as MeRIP-Seq 22,

m6A-Seq 23, PA-m6A-Seq 24, m6A-CLIP/IP 25, miCLIP 26, m6A-LAIC-Seq 27, m6ACE-Seq
28, and m6A-Seq2 29 use antibodies that specifically bind to the modified ribonucleotide.

Chemical-based detection methods such as Pseudo-Seq 30, AlkAniline-Seq 31, utilise

chemical compounds that selectively react with the modified ribonucleotide. Enzyme
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based approaches such as Mazter-Seq 32, m6A-REF-Seq 33 or DART-Seq 34 use specific

enzymes to selectively distinguish modified and unmodified bases. The three

approaches are similar in that they isolate the RNA after inducing changes to the

surrounding nucleotides, followed by reverse transcription and sequencing using short

read cDNA sequencing to detect these changes. While these approaches provide a

transcriptome-wide map of RNA modification sites, they are limited by the availability of

commercial antibodies and selective chemical reactivities for specific modifications 35,

they lack single nucleotide resolution 22,23 and are incapable of identifying modifications

for single RNA molecules.

The ability to sequence native RNA using Oxford Nanopore direct RNA-Seq can

potentially overcome these limitations 36. Nanopore direct RNA-Seq infers the RNA

sequence using the current intensity when an oligonucleotide passes through the pores.

Modified nucleotides will emit a different signal intensity compared to unmodified

nucleotides, allowing the computational identification of modified sites for each

individual RNA molecule using either supervised or comparative approaches.

Comparative approaches do not require training data for known RNA modifications but

instead use control or reference samples to detect meaningful shifts in signal-based

features that correlate to the presence of modifications. Comparative methods such as

Tombo 37, DRUMMER 38, nanoDOC 39, Nanocompore 40, ELIGOS41, xPore 42, and

Yanocomp 43 detect m6A sites by comparing with a sample with few or no m6A

modifications. While these methods are accurate, their success relies on the availability

of m6A-free control samples which typically involves silencing of specific writer genes

which can be a limiting factor.

Supervised detection of m6A modifications involves training a classifier using labels that

can either be obtained from synthetically modified RNA samples or existing

experimental protocols such as miCLIP, MeRIP-Seq or m6ACE-Seq . Methods such as

EpiNano 44,45, MINES 46, nanom6A 47, use training data to identify m6A using the
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sequencing error profile or shifts in the current signal intensity. Supervised methods

can potentially be applied on a single sample, overcoming the main limitation of

comparative methods for detection of specific RNA modifications. However, existing

approaches are limited to a specific nucleotide content 44–47, and they are currently less

accurate than comparative approaches using an m6A-free control 40,42,43.

One of the main challenges for supervised approaches applied to direct RNA-Seq data

is that training data labels are provided for a set of reads at the site-level, but not for

each individual read, which is known as a Multiple Instance Learning (MIL) problem in

the machine learning literature 48,49. Existing methods address this problem by averaging

read-based features 44–46. However, at any given site, we are likely to have a mixture of

modified and unmodified reads and as such, not all reads provide useful features to

detect m6A sites. Therefore, current approaches which do not consider the MIL

structure in the training data might fail to detect m6A modifications from sites with low

stoichiometry as it tends to obscure signals from the lowly expressed modified RNAs,

and it limits the ability to integrate variation in read-level features into a predictive

model.

To address these limitations we developed m6Anet, a MIL-based neural network model

that takes in signal intensity and sequence features to identify potential m6A sites from

direct RNA-Seq data. Our model takes into account the mixture of modified and

unmodified RNAs and outputs the m6A-modification probability at any given site for all

DRACH 5-mers represented in the training data. Unlike existing approaches, m6Anet

learns high-dimensional representation of individual reads from each suspected site

before aggregating them together to produce a more accurate prediction of m6A sites.

By applying m6Anet to direct RNA-Seq data from different human cell lines we

demonstrate that it is able to detect previously unlabelled m6A sites and also

generalises across different cell lines without a reduction in performance. The approach
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utilized to train m6ANet is general enough that the network can be retrained to classify

any natural or artificial RNA modifications given a set of labels.

Results

m6ANet identifies methylated positions with a multiple instance learning

approach

Here we present m6Anet, a neural-network based Multiple Instance Learning model that

combines learning the representation of each individual read with classifying m6a

modified sites. m6Anet comprises two separate modules that are optimized jointly - a

read level encoder and a pooling layer. The read level encoder uses signal and

sequence features from each read, and transforms them into a high-dimensional

representation before predicting the probability of each read being modified (Figure 1a).

The read level probability is then pooled to give a probability estimate that a site is

modified (Figure 1a). By combining features that represent signal and sequence

properties, m6Anet can learn a model that can be applied for all 5-mers that are

represented in the training data. Furthermore, the end-to-end training of our model

implicitly learns a representation of the data that is optimized towards predicting the

probability that a site is modified based on the assumption encoded within the pooling

layer. In our case, the pooling layer represents the probability that a particular site

contains at least one modified position, but in practice one can choose a pooling layer

that best captures the labelling process associated with the data collection step. While

we apply m6Anet to the task of m6A RNA modification detection, the framework

generalises to any other task for which training labels are available, such as DNA

modification detection or other RNA modifications of interest. m6Anet is implemented in

Python and available through GitHub (https://github.com/GoekeLab/m6anet).

Training data for m6Anet model parameter estimation

To learn the model parameters, m6Anet requires training data consisting of labels

(modified/unmodified) and direct RNA-Seq reads. In order to train a model for m6A we
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used labels obtained from m6ACE-Seq that identifies m6A at single nucleotide

resolution 28. m6Anet uses positions which are identified to have m6A as labels for the

modified class, and any other position with the same 5-mer sequences that are included

in the modified class will be used as the unmodified class. Since m6A modifications

occur at the DRACH motifs, we removed any non DRACH motifs from these data for

m6Anet, however, this step is not required for training data without prior knowledge

about the motifs. Since m6A modifications are rare compared to unmodified sites, we

oversample the modified sites during training to obtain a balanced data set. Here, we

used direct RNA-Seq data from the HCT116 cell line for which matched m6ACE-Seq

data is available as part of the Singapore Nanopore Expression Project 50.

Contribution of signal and sequence features to m6Anet predictions

m6Anet uses signal features corresponding to the normalised signal intensity, standard

deviation, and dwelling time for each position. To understand how each feature

contributes to the prediction of m6Anet, we explored the difference in features

distributions between the predicted modified sites and predicted unmodified sites for

each one of the DRACH motifs. Signal intensity of the center base pair showed the

strongest difference between predicted modified and predicted unmodified sites, with

dwell time showing the smallest difference in distributions (Figure 1b, Suppl. Figure 1a).

However, all features distinguish modified and unmodified sites and are informative for

m6A predictions.

As RNA modifications can affect the nanopore current signal at the neighbouring bases,

we tested whether information from additional positions increases the model accuracy.

We performed 5 fold cross validation with features extracted from 0 to 5 base pairs

flanking the candidate sites to evaluate the additional value of neighbouring positions,

splitting the data at the gene level to ensure independence between training set and test

set. Our results show that m6Anet performance is highest when 1 base pair flanking

positions were considered, whereas additional information from the neighbouring
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features beyond 1 base pair did not result in any further improvement of the classifier

(Supplementary Table 1).

A key feature of m6Anet is the ability to jointly model RNA modifications for all

candidate 5-mer sequences in the training data. To evaluate if this approach biases the

prediction of m6A sites based on the sequence, we compared the 5-mer frequency of

predicted m6A sites with the 5-mer frequency observed in m6ACE-Seq data on

positions that have not been used to train m6Anet model parameters. We find that

m6Anet predictions have a comparable 5-mer profile as the m6ACE-Seq data, with less

frequent motifs being equally represented (Figure 1c, Suppl. Figure 1b), showing that

m6Anet captures the expected modification rates per 5-mer from a single model that

combines features from signal and sequence.

m6Anet accurately identifies m6a sites from direct RNA-Seq data

To evaluate the performance of m6Anet we tested the model on direct RNA-Seq data

from the HEK293T cell line 42, using m6ACE-Seq 28 and miCLIP data 26 from the same

cell line as ground truth. Using these data, we compared the performance of m6Anet

against EpiNano 44,45, MINES 46, Tombo 37, and nanom6A 47 using the Area Under the

Curve (AUC) of the Receiver Operating Characteristic (ROC) and Precision Recall (PR)

curves to quantify the model accuracy. On the HEK293T cell line, m6Anet achieves a

ROC AUC of 0.83 and PR AUC of 0.35 (Figure 1d, Supplementary Table 2). Among the

other methods, only EpiNano and Tombo return predictions for all DRACH motifs,

however, at a lower accuracy compared to m6Anet (EpiNano: ROC AUC: 0.69-0.72, PR

AUC: 0.15-0.21; Tombo: ROC AUC:0.52, PR AUC: 0.08) (Figure 1d). Since MINES and

nanom6A output predictions only for 4 and 12 5-mers respectively, we ran separate

validation between MINES, nanom6A, and m6Anet on these motifs alone. On these

data, m6Anet achieved a ROC AUC of 0.83 (4 motifs and 12 motifs) and a PR AUC of

0.43 (4 motifs) and 0.37 (12 motifs) outperforming both MINES (ROC AUC: 0.71; PR

AUC: 0.28) and nanom6A (ROC AUC:0.71; PR AUC:0.18) (Figure 1e,f, Supplementary
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Tables 2), suggesting that m6Anet provides the most accurate predictions of candidate

m6A among existing methods.

Novel m6Anet predictions are sensitive to METTL3 knockout

While the overall accuracy for detection of m6A from direct RNA-Seq data is high, many

m6A sites predicted by m6Anet are not identified by these experimental approaches.

Different methods for profiling m6A have been described to identify different sets of m6A

sites 28. Indeed, in the HEK293T cell line, the largest number of sites are detected by

only one protocol (Figure 2a). Among the three protocols, m6Anet predictions show an

equal or higher fraction of support by other technologies, suggesting that m6Anet is

comparable to existing experimental protocols (Figure 2b).

In order to evaluate whether the novel sites predicted by m6Anet are valid m6A sites,

we identified positions which are sensitive to loss of the m6A writer METTL3 . Using an

existing comparative approach (xPore), we mapped m6A sites in the HEK293T cell line

by comparing it against a METTL3 knockout cell line that is depleted of m6A 28,42. We

then define DRACH sites which have a significant difference compared to this control as

knockout sensitive sites (KO sensitive), resulting in 1888 candidate positions when a

stringent threshold is used (Suppl. Table 2, see methods). The sites which are detected

by all three methods show the highest fraction of KO sensitive sites (57% Figure 2c).

Among the sites which are only detected by one method, m6Anet predictions have the

highest proportion of KO sensitivity detected by xPore (46%, Figure 2c), with a less

stringent method to define KO sensitive sites further increasing the fraction for all 3

protocols (Suppl Figure 2a). As the usage of a direct RNA-Seq based method for

evaluation might favour m6Anet predictions, we also investigated the enrichment of

m6A positions along the transcript coordinates. This analysis shows that all the sites

that are captured by the three methods are enriched in the 3’ end of the CDS as

expected for m6A (Figure 2d). m6A sites which are only found in one method show a

similar pattern, with m6ACE-Seq and m6Anet predictions showing the strongest

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.20.461055doi: bioRxiv preprint 

https://paperpile.com/c/Nd8iK1/KlQkp
https://paperpile.com/c/Nd8iK1/KlQkp+XJQx
https://doi.org/10.1101/2021.09.20.461055
http://creativecommons.org/licenses/by/4.0/


enrichment (Suppl Figure 2b), suggesting that many of these are indeed valid m6A

positions that are only detected by a single technology.

Including the additional METTL3 KO sensitive m6A sites into the validation set

increases the estimated precision for m6Anet and other methods based on direct

RNA-Sequencing (Figure 2e, Suppl. Figure 2c, Suppl. Table 2). These results confirm

that many novel m6A sites identified by m6Anet are sensitive to METTL3 loss and that

the true precision of m6Anet is underestimated when comparing it to labels obtained

from miCLIP or m6ACE-Seq, most likely reflecting technology-specific m6A predictions.

m6Anet generalises to new cell lines without loss in accuracy due to training

In order to test how well m6Anet generalises to data from a new cell line, we compared

the models trained on the HCT116 and HEK293T cells. For this comparison, we split the

dataset on the gene level into a training and test set, ensuring that the test sets on both

cell lines comprised the same genes (Figure 3a, b). We find that both models trained on

reads from HCT116 and HEK293T respectively generate predictions with a similar

accuracy when applied on the same cell line (Figures 3c,d, Suppl. Figures 2d-e,

Supplementary Tables 3,4). On the HCT116 cell line, the model learned on the

HEK293T data even shows a better performance than on the original cell line used for

training (Figure 3c,d). Furthermore, both models were able to identify m6A sites on

genes which are not expressed in the cell lines they were trained on (Figure 3e,f)

demonstrating that m6Anet generalises to other cell lines without a loss in accuracy due

to cell type-specific training data.

m6Anet provides single molecule m6A predictions

While the primary output of m6Anet is a site-level modification probability, it was

designed to learn a hyper-dimensional representation of each read based on its signal

and sequence features, which is then used to infer a read-level modification probability.

This design allows the identification and visualisation of modifications for individual RNA

molecules at candidate m6A sites. To illustrate the ability to predict per molecule
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modification status, we extracted the read level representation and probabilities from

both the HEK293T wild type and knockout cell lines for candidate m6A positions (p>0.9

in wild type cells, p<0.2 in knockout cells, see methods). We then performed a Principal

Component Analysis (PCA) on the read-level features to map reads into a

2-dimensional space. We find that reads form two clusters that are dominated by the

knockout reads (unmodified cluster) and wild type reads (modified cluster) (Figure 4a,

Suppl. Figure 3a-k). Using these clusters we projected data from individual reads for the

positions identified to have the highest modification probability into this read-level

feature map (Figure 4b, Supplementary Table 5). While reads from the knockout sample

have low predicted m6A probabilities and fall into the knockout cluster, reads from the

wild type samples are enriched in the cluster with high m6A probability, providing

insights into the single molecule predictions by m6Anet (Figure 4c, Suppl. Figures 3l-n).

Site-level m6A probabilities capture differences in m6A stoichiometry

As m6Anet integrates read level probabilities to obtain the final site level probability,

these observations suggest that it might reflect the underlying modification

stoichiometry. To validate whether a change in the proportion of modified reads is

reflected in a change in site-level m6A probabilities, we analysed direct RNA-Seq data

from METTL3 knockout and wild type samples that were mixed at specific proportions

corresponding to an expected relative m6A stoichiometry of 0%, 25%, 50%, 75%, and

100% 42. On the set of sites which were predicted to be modified in the 100% wild type

samples (p>=0.9) and which are predicted to be unmodified in the knockout samples

(p<=0.2), we observed a gradual shift of reads from the modified cluster to the

unmodified cluster, corresponding to the expected changes in the relative m6A

stoichiometry (Figure 4d-f, Suppl. Figures 4a-b). Similarly, the m6A site-level probability

predictions are reduced corresponding to a reduction in expected modification rates on

the same set of sites (Figure 4g; Suppl. Figures 4c,d, Supplementary Table 6), further

suggesting that these probabilities reflect the change in the proportion of modified

reads. While the primary purpose of the site-level probability is to provide an estimate of
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confidence, these data suggest that it captures variation in the underlying modification

rates that can be used to compare sites within one sample, or to estimate global

differences in m6A abundance across multiple samples or conditions.

Discussion

Supervised approaches promise to enable the accurate detection of RNA modifications

from direct RNA-Seq data. These methods rely on accurate training data, which can be

obtained through experimental protocols such as m6ACE-Seq or miCLIP, or through

synthetic data. However, experimental methods only provide site-level modification

labels, whereas Nanopore data is provided for individual RNA molecules for which the

modification status is not observed. Here we address this by developing m6Anet, a

neural-network based Multiple Instance Learning model. m6Anet combines learning the

representation of each individual read with classifying m6a modification sites,

outperforming other existing computational methods and providing an accuracy that is

comparable to experimental approaches.

Even though m6Anet was designed to handle missing read-level modification

information, it still relies on the accuracy of site-level modification training data.

Depending on how these data were generated, such labels could be incomplete 51,52, or

include multiple distinct modifications 26,28 thereby introducing noise in the training data

and a reduction in the model performance. Here we find that the prediction accuracy on

m6A appears to be high even when different training data sets are used. Nevertheless,

additional training data on different modifications, species, and experimental protocols

will likely further improve the prediction accuracy for supervised approaches such as

m6Anet.

While supervised methods can identify RNA modifications in a single sample,

comparative methods facilitate the analysis across conditions 40,42,53. However, one of

the key advantages of supervised methods over comparative methods is their ability to

predict the occurrence of specific RNA modifications such as m6A. By predicting m6A
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modifications on candidate sites identified by comparative methods, m6Anet can

overcome their inability to assign specific modification types, thereby facilitating

modification-specific analysis of differential modifications.

In contrast to short-read based experimental approaches for profiling RNA

modifications, direct RNA-Seq is a simple assay that can make m6A profiling scalable.

However, similar to experimental protocols which are influenced by aspects such as

antibody-specificity 26,28 the accuracy of m6Anet will be influenced by aspects such as

the sequencing chemistry, basecalling algorithms or accuracy in the alignment of

reference sequence to signal. Improvements in the sequencing technology and

methods that extract summarised data from Nanopore signals can further increase the

accuracy of m6Anet. While we observe a high number of technology-specific m6A

predictions, our data supports that these are likely valid m6A sites, suggesting that

m6Anet and short read-based methods already have a comparable accuracy in

detection of m6A.

Here we applied m6Anet to identify m6A modifications, however it was designed to

facilitate training on any RNA modification phenotype of interest. While m6Anet could be

used to identify other naturally occurring RNA modifications, it can also be trained to

predict artificial modifications that help to identify single molecule RNA structures 54. A

key advantage of direct RNA-Sequencing is the ability to profile the modification status

of individual reads. While the evaluation of single molecule predictions is still limited due

to the inability to generate single molecule reference data, our analysis suggests that

m6Anet single molecule predictions correspond to the expected global modification rate.

As m6Anet generalises well to new data, it can be directly used for the standalone

identification of m6A and possibly other modifications after retraining. However, it will

also complement existing experimental approaches by increasing confidence and

resolution, enabling the accurate site level modification prediction while facilitating the

additional exploration of single molecule modification probabilities from a single run of

direct RNA-Seq data.
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Methods

m6Anet: a Multiple Instance Learning based Neural Network

m6Anet performs RNA modification detection using direct RNA-seq data by formulating

it as a Multiple Instance Learning problem. Each position corresponds to a k-mer

sequence S of length with:

Here corresponds to the nucleotide of position . For each position, the

site modification status is given by where

We also assume that each read at position has a modification status described by

given by:

While can be observed, cannot be observed and remains unknown. Each read

at position is described by the feature vector with:

where represents the normalized mean nanopore raw signal of read at position

represents the normalized standard deviation of the nanopore raw signal of read

at position , and represents the normalized dwelling time of read at position .

Furthermore, we encode all possible 5-mer sequence motifs S that are included in

the training data into a 2-dimensional vector using a neural network embedding layer

, with in the case of m6A (DRACH). Thus, the quantity
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gives the k-th dimension of the embedded vector of the 5-mer motif , with .

Each position with reads is then described by

In the first step, m6Anet estimates the read level modification probability of the read

at position being modified:

where is parameterized by a neural network with two hidden layers of

dimension 150 and 64 respectively. In the second step, m6Anet pools the read level

probability using a noisy-OR pooling layer to estimate the site level modification

probability :

The noisy-OR pooling layer captures the assumption that a site is modified if at least

one of its reads is modified. In practice, the noisy-OR pooling layer encourages any

gradient-based learning methods to update the model parameters with respect to all

reads instead of just a single modified reads. As a result, the site probability estimated

by m6Anet should reflect the changes in the number of modified reads between

different sites.

To train the network, we minimize the average cross entropy loss between and

for all sites

Here and are learnt in an end-to-end fashion by minimizing the cross entropy loss

with the Adam optimizer. Consequently, the network learns to predict the individual

read probability along with optimized sequence representation that will

minimize the discrepancy between and with respect to the noisy-OR pooling layer.
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We have evaluated alternative pooling layers, such as the Attention and gated

Attention-based pooling 55 but have not found any statistically significant improvement in

the performance of m6Anet compared to the noisy-OR pooling layer for m6A detection.

Preprocessing for m6Anet

m6Anet requires the output from Nanopolish eventalign function 56 in order to group

continuous Nanopore current measurements from each read into events and map them

to their corresponding positions in the transcriptome. Each nanopolish event comprises

the mean, standard deviation, and dwelling time of its constituting raw signals and since

multiple events can be assigned to the same location in the transcriptome, m6Anet then

takes a weighted average of each of these features based on the size of their respective

groups. Afterwards, m6Anet discards positions with mismatched 5-mers and computes

the mean and standard deviation of the signal features for each possible 5-mer motif

across the transcriptome. Lastly, m6Anet performs z-normalization on the weighted

average features based on the mean and standard deviation of the 5-mers motif of the

given segment. The preprocessing function is implemented in m6Anet.

Data Processing

Processing of direct RNA sequencing data

All data used in this work was obtained from 42, 50. To train and validate m6Anet, we

downloaded a single replicate (replicate 2 run 1) of the HCT116 cell line and a single

replicate of the HEK293T cell line (replicate 1) while to run xPore, we downloaded all

replicates of the HEK293T cell lines as recommended . Data was basecalled from the

raw fast5 files using Guppy and aligned to the transcriptome with minimap2.1

(minimap2 ‘-ax map-ont -uf–secondary=no’) using the GRCh38 Ensembl annotations

release version 91. We used a combined FASTA file containing coding and noncoding

RNA reference annotations, keeping only the transcripts that matched the reference
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genome annotations (nf-core/nanoseq: https://doi.org/10.5281/zenodo.3697960).

Afterwards, we ran Nanopolish 0.11.3 with the --scale-events and --signal-index options.

m6A-cross-linking-exonuclease sequencing

Modified positions for m6ACE-seq are obtained from 28, 42 where we also follow their

preprocessing steps for the HEK293T cell lines and include only those positions that are

METTL3-dependent (WT/KO relative methylation level ratio ≥4.0, P value of one-tailed

t-test, <0.05). As for the HCT116 cell line, we consider any sites that appear in the

m6ACE-seq library to be modified since the absence of METTL3-KO data means we

are not able to filter based on the WT/KO relative methylation level like in the HEK293T

cell lines.

m6A individual-nucleotide-resolution cross-linking and immunoprecipitation

Modified positions from miCLIP were obtained from 26 where we combine both CIMS

and CITS miCLIP libraries from the supplementary and consider a position to be

modified if it is found in any of these libraries.

Model Evaluation

Contribution of Flanking Regions to m6Anet Performance

In order to evaluate the performance of m6Anet under different combinations of

features, we performed a 5-fold cross validation on the HCT116 dataset. In each fold,

we train our model on 75% of our training data for 60 epochs and choose the model that

performs the best on the remaining 25% of the training data and validate the

performance of the model on the test set. We also ensure that no genes are shared

between the train, validation, and test set during the evaluation. During training the

parameters of the model are learnt by minimizing the cross entropy loss using the Adam

optimizer 57 with amsgrad 58 turned on . On each site, we sample 20 reads and during

test time, we run the model 5 times and average the probability value across the 5 runs.
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Results are shown in Supplementary Table 1. All models are implemented on Pytorch

v1.7.1 59. Training is done with a fixed learning rate of 0.0004 and a mini-batch size of

512 on a single NVIDIA GeForce GTX 1080 Ti.

Comparison between m6ANet and other models on HEK293T Cell Line

In order to have a fair comparison between m6Anet and existing methods to detect m6A

modifications, we performed the comparison against other models on the HEK293T cell

line which was not used to train the m6Anet model. We consider a position to be

modified if it is captured by either miCLIP or m6ACE-Seq as modified and we only

consider DRACH sites that have at least 20 reads.

Tombo

We ran Tombo version 1.5.1 from https://github.com/nanoporetech/tombo. To detect

modifications, we first resquiggled the raw reads with tombo-resquiggle and performed

de-novo detection with tombo detect_modifications de_novo. Since tombo outputs a

fraction of modified reads per position, we treat this as the probability of a site being

modified for our comparison.

EpiNano

We ran EpiNano 1.1 and 1.2 from https://github.com/enovoa/EpiNano and in both

cases, we excluded feature generations for positions that do not contain AC center

nucleotides (without this step, the results were not returned within 7 days on a AMD

EPYC 7R32 server with 180GB of memory). There are 4 SVM models on EpiNano 1.1

and 1 SVM model on EpiNano 1.2 that could work with a single sample of direct RNA

sequencing data. We numbered these models from 1 to 5 respectively.

MINES

We ran MINES from https://github.com/YeoLab/MINES on cDNA mode, following the

steps that are specified in the readme file on the github page. The original MINES
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model does not output the probability of a site being modified but instead only shows

sites that are considered modified. For this comparison, we modified the code so that

the RandomForest model outputs the probability of a site being modified and we

compared the results with m6Anet on sites shared between the two methods. The

modified code is available at https://github.com/chrishendra93/MINES.git.

nanom6A

We ran nanom6A from https://github.com/gaoyubang/nanom6A. Similar to Tombo, it

only outputs a fraction of reads that are modified for each site and so we treat these

numbers as the probability of a site being modified.

Comparison between m6Anet, m6ACE-Seq, and miCLIP

In order to evaluate the relative performance between m6Anet and other commonly

used experimental protocols, we performed a comparison with miCLIP and m6ACE on

the HEK293T cell line. We set a P=0.9 threshold for m6Anet site probability to select

modified sites. miCLIP and m6ACE-Seq data was obtained and processed as described

above.

To calculate whether a site is knockout sensitive or not, we ran xPore 1.0 on replicate 1,

2, and 3 of the HEK293T samples provided by 42 with pooling option and a minimum

read threshold of 20. To be conservative about our estimates, we imputed any sites that

are not present in the xPore run with P value of 1 (not differentially modified). We

performed multiple test corrections using Benjamini-Hochberg procedure and set an

alpha rate of 0.05.

To obtain a second (less stringent and less accurate) estimate for knockout sensitive

sites we also ran Welch’s t-test from the scipy package’s function ttest_ind (setting

equal variance to false). Similar to the analysis with xPore, we pooled reads from all

three replicates and required tested positions to have a minimum of 20 reads. We then

performed multiple test corrections using Benjamini-Hochberg procedure, set an alpha
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rate of 0.05 and imputed any other sites that do not meet the filter criteria with a P value

of 1.

Metagene plot

To visualise the distribution of m6A sited across the transcript (metagene plot), we first

mapped each gene coordinate to transcript coordinate based on the most expressed

transcripts per gene. Afterwards, we annotate each position based on its location along

the transcript as 3’UTR, 5’UTR, or coding sequence. We then calculate the relative

position of each position on the transcript and plot the abundance of those positions that

are considered modified by m6Anet, m6ACE-seq or miCLIP.

Comparison of m6Anet performance on HEK293T and HCT116 cell

lines
In order to measure the robustness of m6Anet across different cell lines, we train two

different models on the HEK293T and HCT116 cell lines respectively and measure the

performance of each model on both HEK293T and HCT116 test sets. We randomly

select 500 genes that are present in both cell lines to form two test sets for both cell

lines and use the remaining genes as training data. We further split 20% of the training

set for each cell line at the gene level into a validation set for model selection.

Visualisation of single molecule modification probabilities

Principal Component Analysis and Read Level Feature Map

In order to learn the read level feature map that visualises single molecule m6A

probability predictions, we project the high-dimensional read representations of m6Anet

using a Principal Component Analysis and visualize the first two principal components.

We sampled 100 reads from each position and extracted the 64-dimensional features

generated by the second last layer of m6Anet from each of these reads. We ran PCA

from the python package scikit-learn 60 with n_components set to 0.99 and svd_solver
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set to full so that the algorithm will choose the number of components that will result in

total variance explained to be as close as possible to 1.

To better visualize the features that are representative of both modified and unmodified

reads, we first filtered for positions that are highly modified in the WT sample (P >= 0.9)

or unmodified in the KO sample (P <=0.2) and which contain the 5-mer motifs GGACT,

GAACT, GGACA, or AGACT. These motifs are chosen because they represent the most

modified 5-mer motifs in the HEK293T cell lines based on miCLIP annotations or

m6ACE-seq annotations. We further sampled 20 reads from each of these positions in

order to minimize running time. We then calculated the density plot and hex plot on both

the wild type reads and knockout reads on the first two principal components of the read

features using Python seaborn package. We then use the resulting density plot as a

read level feature map to visualise individual molecule modification probabilities.

Quantification of m6Anet on HEK293T mixtures

Analysis of wild-type - METTL3 knockout mixture samples

To analyse the ability of m6Anet to estimate m6A stoichiometry we used the Wild Type -

METTL3 knockout mixtures from 42 that have an expected relative average modification

rate of 0% (METTL3 knockout), 25%, 50%, 75%, and 100% (wild type). We filter for

those positions that are present in all samples and are either fully modified (probability

greater than 0.9 in the 100% Wild Type sample) or not modified (probability less than

0.2 in the KO samples).

Data Availability
The HCT116 cell lines data were obtained from the Singapore Nanopore Expression

Project 50 through ENA (PRJEB44348) while the HEK293T cell lines data along with its
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KO variants and KO mixture variants were obtained from 42 through ENA

(PRJEB40872).
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Supplementary Tables:
● Supplementary Table 1. Cross validation results on the HCT116 cell line with 0

to 5 base pairs neighboring positions on 3 different model selection criteria

(average loss, best ROC AUC and best PR AUC). Columns show the accuracy

as measured by the Area under the ROC Curve (roc_auc) and the PR Curve

(pr_auc).

● Supplementary Table 2. Predicted modification probabilities on the HEK293T

cell line on the 18 DRACH motifs by m6Anet, Tombo, EpiNano, MINES, and

nanom6A. Columns show the individual probability score by each model along

with the adjusted P value given by xPore and t-test, labels from m6ACE-Seq and

miCLIP.

● Supplementary Table 3. Probability scores of models trained on HCT116 cell

line and HEK293T cell line on the HCT116 test set. Columns show the individual
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probability score of each model and the modification status value of 1 indicates

that the site is modified while 0 indicates that the site is not modified based on

m6ACE-Seq data.

● Supplementary Table 4. Probability scores of models trained on HCT116 cell

line and HEK293T cell line on the HEK293T test set. Columns show the

individual probability score of each model and the modification status value of 1

indicates that the site is modified while 0 indicates that the site is not modified

based on m6ACE-Seq data.

● Supplementary Table 5 Probability scores of sites shared by the wild type and

knock out variants of the HEK293T cell lines. Columns show the transcriptomic

and genomic coordinates along with the probability scores of each sample and

the 5-mer motifs of each position

● Supplementary Table 6 Probability scores of sites shared by the wild type and

mixtures of knock out variants of the HEK293T cell lines. Columns show the

transcriptomic and genomic coordinates along with the probability scores of each

sample and the 5-mer motifs of each position
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Figures

Figure 1. Schematic of m6Anet and evaluation on detection of m6A in human cell lines.

(a-b) m6Anet model schematics. (b) Box plot showing the difference in average features

distribution between different m6Anet prediction. The horizontal lines on the boxes show

median, Q1, and Q3 and 1.5 interquartile range (c) Comparison of the proportion of modified

sites predicted as modified by m6Anet and by m6ACE on the top 4 modified 5-mers (GGACT,

GAACT, GGACA, AGACT). (d) ROC Curve and PR Curve of m6anet against all 5 EpiNano

models and Tombo. (e) ROC Curve and PR Curve of m6anet against nanom6A and Tombo. (f)

ROC Curve
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Figure 2. Performance comparison between m6Anet, m6ACE-seq and miCLIP on

HEK293T cell line. Experimental design: Comparison is done with labels obtained from m6ACE

and miCLIP on all DRACH positions (a-b) Total number of modified sites captured by m6Anet,

m6ACE-seq and miCLIP (c) Percentage of captured sites that show significant shift in signal

distribution against METTL3-KO for each of the three protocols (d) Metagene plot of the

modified sites captured by the three protocols against the background distribution of all DRACH

sites in the data that has at least 20 reads (e) The adjusted true positive rate after including

position sensitive to METTL3-KO of m6Anet and EpiNano.
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Figure 3. Comparison of m6Anet model across two different cell lines.

Experimental design: Comparison is done with labels obtained from m6ACE on HCT116 cell line

and both m6ACE and miCLIP for HEK293T cell line. We split each cell line into training set and

test set on the gene level with the test set selected from common genes across the two cell

lines to ensure that each model is not trained on a set of genes used for training.(a-b)

Distribution of modified positions across both cell lines on the training sets and the test sets. (c)

ROC Curve and PR Curve of the models trained on the HCT116 train set and HEK293T train set

on the HEK293T Test set (d) ROC Curve and PR Curve of the models trained on the HCT116

train set and HEK293T train set on the HCT116T Test set (e-f) Distribution of probability score of

HEK293T (HCT116) model on the genes that are expressed only on the HCT116 cell test set

(HEK293T test set). Histogram shows that m6Anet trained on both cell lines can make accurate

predictions on a set of genes that are not present in their original training data
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Figure 4. Quantification of m6Anet on HEK293T cell line

Experimental design: We sample 100 reads from each DRACH sites and extract the output from

the second last layer of m6Anet for each of these reads and visualize them on two dimensional

space using PCA (a) Density plot of the top 4 modified 5-mer (GGACT, GAACT, GGACA,

AGACT) for both Wild Type and Knockout sample after filtering for positions that are almost

100% modified on the Wild Type sample (p >= 0.9) and almost 0% modified on the KO sample

(p <= 0.2) (b) Ranking plot of the positions in (a) and the genes associated with the top positions

(c) Scatter plot of 20 randomly sampled reads from the top ranked position(d-f) Hex plots of the

read level feature map for 0%, 50%, and 100% KO mixtures on filtered positions. Changes in

the concentration of points as visualized on the first two principal components of the same PCA

space as in Figure 4. The gradual shifts from (d) to (f) suggests that m6Anet read features

capture the expected change in the stoichiometry of m6A modifications. (e) Violin plot of the

probability score of the top predicted positions by m6Anet across the 5 mixtures. The plot shows

an expected decrease in the predicted m6A probability as the percentage of METTL3-KO reads

increases.
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Supplementary Figure 1. (a) Box plot showing the difference in average features distribution
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between different m6Anet prediction across all 5-mers. The horizontal lines on the boxes show

median, Q1, and Q3 and 1.5 interquartile range (b) Comparison of the proportion of modified

sites predicted as modified by m6Anet and by m6ACE across all 5-mers.
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Supplementary Figure 2. Performance comparison between m6Anet, m6ACE-seq and

miCLIP on HEK293T cell line. (a) Percentage of captured sites that show significant shift in

signal distribution against METTL3-KO for each of the three protocols (b) Metagene plot of the

modified sites captured exactly by one of the three protocols against the background distribution

of all DRACH sites in the data that has at least 20 readsTotal number of modified sites captured

by m6Anet, m6ACE-seq and miCLIP (c) The adjusted true positive rate after including position

sensitive to METTL3-KO of m6Anet and all 5 EpiNano models (d-f) Scatter plot of the predicted

probability of the HEK293T model against the predicted probability of the HCT116 model on the

HCT116 test set and HEK293T test set. The plot shows strong linear relationship between the

prediction of the two models, indicating that m6Anet shows robustness in its prediction despite

being trained on different cell lines.
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Supplementary Figure 3. Quantification of m6Anet on HEK293T cell line
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Experimental design: We sample 100 reads from each DRACH sites and extract the output from

the second last layer of m6Anet for each of these reads and visualize them on two dimensional

space using PCA (a) Hex plot of the top 4 modified 5-mer (GGACT, GAACT, GGACA, AGACT)

for Wild Type sample, (b) Knockout sample (c) Both Wild-Type and Knockout sample after

filtering for positions that are almost 100% modified on the Wild Type sample (p >= 0.9) and

almost 0% modified on the KO sample (p <= 0.2) (d-f) Scatter plot of 20 randomly sampled

reads from the second, third, and fourth ranked positions sorted by predicted modification

probability on the Wild Type sample after the filter (g-n) Density plots of selected DRACH

5-mers that contain at least 20 modified sites (p >= 0.9 on WT samples) and at least 20

unmodified sites (p <= 0.2 on KO samples)
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Supplementary Figure 4. Changes in expected representation and predicted probability

on the HEK293T Knockout Mixtures

Experimental design: We extract 100 reads from positions that show both high probability of

modification (p >= 0.9) on the Wild Type sample and low probability of modification (p <= 0.2) on

the corresponding KO sample and expressed across all 5 Wild Type - KO mixtures (a-e)

Changes in the concentration of points as visualized on the first two principal components of the

same PCA space as in Figure 4. The gradual shifts from (a) to (b) suggests that m6Anet read

features capture the expected change in the stoichiometry of m6A modifications (c-d) Violin plot

of the probability score of the top predicted positions by m6Anet across the 5 mixtures with less

stringent requirement on the minimum probability of modification on the Wild Type samples. The
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plots still show the expected decrease in the predicted m6A probability as the percentage of

METTL3-KO reads increase even with less stringent thresholds.
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