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Predicting the function of a protein from its amino acid se-
quence is a long-standing challenge in bioinformatics. Tradi-
tional approaches use sequence alignment to compare a query
sequence either to thousands of models of protein families
or to large databases of individual protein sequences. Here
we instead employ deep convolutional neural networks to di-
rectly predict a variety of protein functions – EC numbers and
GO terms – directly from an unaligned amino acid sequence.
This approach provides precise predictions which complement
alignment-based methods, and the computational efficiency of
a single neural network permits novel and lightweight software
interfaces, which we demonstrate with an in-browser graphi-
cal interface for protein function prediction in which all com-
putation is performed on the user’s personal computer with no
data uploaded to remote servers. Moreover, these models place
full-length amino acid sequences into a generalised functional
space, facilitating downstream analysis and interpretation. To
read the interactive version of this paper, please visit https:
//google-research.github.io/proteinfer/
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Introduction
Every day, more than a hundred thousand protein sequences
are added to global sequence databases (1). However, these
entries are of limited use to practitioners unless they are ac-
companied by functional annotations. While curators dili-
gently extract annotations from the literature, assessing more
than 60,000 papers each year (2), the time-consuming nature
of this task means that only 0.03% of publicly available pro-
tein sequences are manually annotated. The community has
a long history of using computational tools to infer protein
function directly from amino acid sequence. Starting in the
1980s, methods such as BLAST (3) relied on pairwise se-
quence comparisons, where a query protein is assumed to
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Fig. 1. Three approaches for mapping from an amino acid sequence to in-
ferred function: (1) finding similar sequences in a large database of sequences
with known annotation (e.g., BLAST), (2) scoring against a large database of statis-
tical models for each family of sequences with known function (e.g. InterProScan),
and (3) applying a single deep neural network trained to predict multiple output
categories (e.g., this work).

have the same function as highly similar sequences that have
already been annotated. Signature-based approaches were
later introduced, with the PROSITE database (4) catalogu-
ing short amino acid “motifs” found in proteins that share
a particular function. Subsequently, a crucial refinement of
signature-based approaches was the development of profile
hidden Markov models (HMMs) (5, 6). These models col-
lapse an alignment of related protein sequences into a model
that provides likelihood scores for new sequences, that de-
scribe how well they fit the aligned set. Critically, profile
HMMs allow for longer signatures and fuzzier matching and
are currently used to update popular databases such as In-
terpro and Pfam (7, 8). Subsequent refinements have made
these techniques more sensitive and computationally efficient
(7, 9–12), while their availability as web tools allows practi-
tioners to easily incorporate them into workflows (13–16).
These computational modelling approaches have had great
impact; however, one third of bacterial proteins still cannot be
annotated (even computationally) with a function (17). It is
therefore worthwhile to examine how new approaches might
complement existing techniques. First, current approaches
conduct entirely separate comparisons for each comparator
sequence or model, and thus may not fully exploit the fea-
tures shared across different functional classes. An ideal clas-
sification system, for example, might have a modular ATP-
binding region detector used in detection of both kinases and
ABC transporters (18). Separately modelling these targets in
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each family, like standard HMM approaches, increases the
computational cost and may also be less accurate. In addi-
tion, the process of creating many of these signatures is not
fully automated and requires considerable curatorial efforts
(19, 20), which at present are spread across an array of dis-
parate but overlapping signature databases (8).
Deep neural networks have recently transformed a number of
labelling tasks, including image recognition – the early layers
in these models build up an understanding of simple features
such as edges, and later layers use these features to identify
textures, and then entire objects. Edge detecting filters can
thus be trained with information from all the labelled exam-
ples, and the same filters can be used to detect, for instance,
both oranges and lemons (21).
In response, recent work has contributed a number of deep
neural network models for protein function classification
(22–30). These approaches train a single model to recog-
nise multiple properties, building representations of different
protein functions via a series of layers, which allow the same
low-level features to be used for different high-level classifi-
cations. Of special note is the layer preceding the final layer
of the network, which constructs an “embedding” of the en-
tire example in a high-dimensional vector space, and often
captures semantic features of the input.
Beyond functional annotation, deep learning has enabled sig-
nificant advances in protein structure prediction (31–36), pre-
dicting the functional effects of mutations (37–40), and pro-
tein design (41–47). A key departure from traditional ap-
proaches is that researchers have started to incorporate vast
amounts of raw, uncurated sequence data into model train-
ing, an approach which also shows promise for functional
prediction (48).
Of particular relevance to the present work is Bileschi et
al. (2019) (49), where it is shown that models with resid-
ual layers (50) of dilated convolutions (51) can precisely and
efficiently categorise protein domains. Dohan (2021) (52)
provides additional accuracy improvements using uncurated
data. However, these models cannot infer functional annota-
tions for full-length protein sequences, since they are trained
on pre-segmented domains and can only predict a single la-
bel. The full-sequence task is of primary importance to bio-
logical practitioners.
To address this challenge we employ deep dilated convo-
lutional networks to learn the mapping between full-length
protein sequences and functional annotations. The resulting
ProteInfer models take amino acid sequences as input and are
trained on the well-curated portion of the protein universe an-
notated by Swiss-Prot (2). We find that: 1) ProteInfer models
reproduce curator decisions for a variety of functional prop-
erties across sequences distant from the training data, 2) attri-
bution analysis shows that the predictions are driven by rele-
vant regions of each protein sequence, and 3) ProteInfer mod-
els create a generalised mapping between sequence space and
the space of protein functions, which is useful for tasks other
than those for which the models were trained. We provide
trained ProteInfer networks that enable other researchers to
reproduce the analysis presented and to explore embeddings

of their proteins of interest, via both a command line tool1,
and also via an in-browser JavaScript implementation that
demonstrates the computational efficiency of deep-learning
approaches.

Methods
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Fig. 2. A deep dilated convolutional architecture for protein function predic-
tion. Amino acids are one-hot encoded, then pass through a series of convolutions
implemented within residual blocks. Successive filters are increasingly dilated, al-
lowing the top residual layer of the network to build up a representation of high-
order protein features. The positional embeddings in this layer are collapsed by
mean-pooling to a single embedding of the entire sequence, which is converted
into probabilities of each functional classification through a fully connected layer
with sigmoidal activations.

A neural-network for protein function prediction
In a ProteInfer neural network (Fig. 2), a raw amino acid
sequence is first represented numerically as a one-hot ma-
trix and then passed through a series of convolutional layers.
Each layer takes the representation of the sequence in the pre-
vious layer and applies a number of filters, which detect pat-
terns of features. We use residual layers, in which the out-
put of each layer is added to its input to ease the training of
deeper networks (50), and dilated convolutions (51), mean-
ing that successive layers examine larger sub-sequences of
the input sequence. After building up an embedding of each
position in the sequence, the model collapses these down to
a single n-dimensional embedding of the sequence using av-
erage pooling. Since natural protein sequences can vary in
length by at least three orders of magnitude, this pooling is
advantageous because it allows our model to accommodate
sequences of arbitrary length without imposing restrictive
modeling assumptions or computational burdens that scale
with sequence length. Finally, a fully-connected layer maps
these embeddings to logits for each potential label, which are
the input to an element-wise sigmoid layer that outputs per-
label probabilities. We select all labels with predicted prob-
ability above a given confidence threshold, and varying this
threshold yields a tradeoff between precision and recall. To
summarize model performance as a single scalar, we com-
pute the Fmax score, the maximum F1 score (the geometric
mean of precision and recall) across all thresholds (53).
Each model was trained for about 60 hours using the Adam
optimizer (54) on 8 NVIDIA P100 GPUs with data paral-
lelism (55, 56). We found that using more than one GPU

1https://github.com/google-research/proteinfer
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for training improved training time by allowing an increased
batch size, but did not have a substantial impact on accuracy
compared to training for longer with a smaller learning rate
and smaller batch size on one GPU. The models have a small
set of hyperparameters, such as the number of layers and the
number of filters in each layer, which were tuned using ran-
dom sampling to maximize Fmax on the random train-test
split. Hyperparameter values are available in the Supple-
ment.

A machine-learning compatible dataset for protein
function prediction

The UniProt database is the central global repository for in-
formation about proteins. The manually curated portion,
Swiss-Prot, is constructed by assessing 60,000 papers each
year to harvest 35% of the theoretically curatable informa-
tion in the literature (2). We focus on Swiss-Prot to en-
sure that our models learn from human-curated labels, rather
than labels generated by a computational annotation pipeline.
Each protein in Swiss-Prot goes through a 6-stage process
of sequence curation, sequence analysis, literature curation,
family-based curation, evidence attribution, and quality as-
surance. Functional annotation is stored in UniProt largely
through database cross-references, which link a specific pro-
tein with a label from a particular ontology. These cross-
references include: Enzyme Commission (EC) numbers, rep-
resenting the function of an enzyme; Gene Ontology (GO)
terms relating to the protein’s molecular function, biologi-
cal process, or subcellular localisation; protein family infor-
mation contained in the Pfam (7), SUPFAM(57), PRINTS
(58), TIGR (59), PANTHR (60) databases, or the umbrella
database InterPro (61); as well as other information includ-
ing ortholog databases and references on PubMed. Here, we
focus on EC and GO labels, though our model training frame-
work can immediately extend to other label sets.
We use two methods to split data into training and evaluation
sets. First, a random split of the data allows us to answer
the following question: suppose that curators had randomly
annotated only 80% of the sequences in Swiss-Prot. How
accurately can ProteInfer annotate the remaining 20%? Sec-
ond, we use UniRef50 (62) clustering to split the data, to
model a challenging use-case in which an unseen sequence
has low sequence similarity to anything that has been pre-
viously annotated. Note there are alternative methods for
splitting (48, 63, 64), such as reserving the most recently-
annotated proteins for evaluating models. This approach,
which is used in CAFA and CASP (63, 64), helps ensure a
fair competition because labels for the evaluation data are
not available to participants, or the scientific community at
large, until after the competition submissions are due. Such
a split is not available for EC classification, which is the pri-
mary focus of our analyses below. Finally, note that all of the
above approaches typically lack reliable annotation for true
negatives (65).
To facilitate further development of machine learning meth-
ods, we provide TensorFlow (66) TFrecord files for Swiss-

Fig. 3. ProteInfer performance for predictions within all 7 top-level enzyme
groups.

Prot 2. Each example has three fields: the UniProt acces-
sion, the amino acid sequence, and a list of database cross-
reference labels. UniProt annotations include only leaf nodes
for hierarchical taxononomies such as EC and GO. To al-
low machine-learning algorithms to model this hierarchy,
we added all parental annotations to each leaf node during
dataset creation.

Results

Prediction of catalysed reactions

We initially trained a model to predict enzymatic catalytic ac-
tivities from amino acid sequence. This data is recorded as
Enzyme Commission (EC) numbers, which describe a hierar-
chy of catalytic functions. For instance, β amylase enzymes
have an EC number of EC:3.2.1.2, which represents the leaf
node in the following hierarchy:

EC:3.–.–.– (hydrolases)
EC:3.2.–.– (glycolsylases)

EC:3.2.1.– (glycosidases)
EC:3.2.1.2 (hydrolysis of (1→4)-α-D-
glucosidic linkages in polysaccharides)

Individual protein sequences can be annotated with zero
(non-enzymatic proteins), one (enzymes with a single func-
tion) or many (multi-functional enzymes) leaf-level EC num-
bers. These are drawn from a total of 8,162 catalogued chem-
ical reactions. Our best Fmax was achieved by a model con-
taining 5 residual blocks with 1100 filters each (full details
in Supplement). For the dev set, Fmax converged within
500,000 training steps. On the random split, the model
achieves Fmax = 0.977 (0.976-0.978) on the held-out test
data. At the corresponding confidence threshold, the model
correctly predicts 96.7% of true labels, with a false positive
rate of 1.4%. Results from the clustered test set are discussed
below. Performance was roughly similar across labels at the
top of the EC hierarchy, with the highest Fmax score ob-
served for ligases (0.993), and the lowest for oxidoreductases

2https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/proteins/
proteinfer/datasets/
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Fig. 4. Linking sequence regions to function with class activation mapping for C-1-tetrahydrofolate synthase (accession P11586). A. Ground truth annotation of
function on Uniprot (2). B. The three horizontal bars are the sequence region ProteInfer predicts are most involved in each corresponding reaction. This concurs with the
known function localization.

(0.963) (Fig. 3A). For all classes, the precision of the network
was higher than the recall at the threshold maximising Fmax.
Precision and recall can be traded off against each other by
adjusting the confidence threshold at which the network out-
puts a prediction, creating the curves shown in Fig. 3B.
BLASTp is arguably a practitioner’s default choice for func-
tional annotation, so we implemented an alignment-based
baseline in which BLASTp is used to identify the closest se-
quence to a query sequence in the train set. Labels are then
imputed for the query sequence by transferring those labels
that apply to the annotated match from the train set.
We produced a precision-recall curve by using the bit score of
the closest sequence as a measure of confidence, varying the
cutoff above which we retain the imputed labels (63, 67). We
also considered an ensemble of neural networks (49), where
the average of the ensemble elements’ predicted probabilities
is used as a confidence score. (See Fig. S7, Fig. S8.)
We found that BLASTp was able to achieve higher recall val-
ues than ProteInfer for lower precision values, while Prote-
Infer was able to provide greater precision than BLASTp at
lower recall values. We wondered whether a combination of
ProteInfer and BLASTp could synergize the best properties
of both approaches. We found that even the simple ensem-
bling strategy of rescaling the BLAST bit score by the av-
erages of the ensembled CNNs’ predicted probabilities gave
a Fmax score (0.991, 95% confidence interval [CI]: 0.990–
0.992 ) that exceeded that of BLAST (0.984, 95% CI: 0.983–
0.985) or the ensembled CNN (0.981, 95% CI: 0.980–0.982)
alone. On the clustered train-test split based on UniRef50
(see clustered in Fig. 3B), we see a performance drop in all
methods: this is expected, as remote homology tasks are
designed to challenge methods to generalize farther in se-
quence space. The Fmax score of a single neural network
fell to 0.914 (95% CI: 0.913–0.915, precision: 0.959 recall:
0.875), substantially lower than BLAST (0.950, 95% CI:
0.950–0.951), though again an ensemble of both BLAST and
ProteInfer outperformed both (0.979, 95% CI: 0.979–0.980).
We find that neural network methods learn different infor-
mation about proteins than alignment-based methods, and a

combination of the two further improves remote homology
detection.
We also examined the relationship between the number of
examples of a label in the training dataset and the perfor-
mance of the model. In an image recognition task, this is
an important consideration since one image of, say, a dog,
can be utterly different to another. Large numbers of labels
are therefore required to learn filters that are able to predict
members of a class. In contrast, for sequence data we found
that even for labels that occurred less than five times in the
training set, 58% of examples in the test set were correctly
recalled, while achieving a precision of 88%, for an F1 of
0.7 (Fig. S9). High levels of performance are maintained
with few training examples because of the evolutionary rela-
tionship between sequences, which means that one ortholog
of a gene may be similar in sequence to another. The sim-
ple BLAST implementation described above also performs
well, and better than a single neural network, likely again ex-
ploiting the fact that many sequence have close neighbours
in sequence space with similar functions. We again find that
ensembling the BLAST and ProteInfer outputs provides per-
formance exceeding that of either technique used alone.

Deep models link sequence regions to function
Proteins that use separate domains to carry out more than
one enzymatic function are particularly useful in interpret-
ing the behaviour of our model. For example, S. cerevisiae
fol1 (accession Q4LB35) catalyses three sequential steps of
tetrahydrofolate synthesis, using three different protein do-
mains (Fig. 4A). This protein is in our held-out test set, so
no information about its labels was directly provided to the
model.
To investigate what sequence regions the neural network is
using to make its functional predictions, we used class ac-
tivation mapping (CAM) (68) to identify the sub-sequences
responsible for the model predictions. We found that sep-
arate regions of sequence cause the prediction of each enzy-
matic activity, and that these regions correspond to the known
functions of these regions (Fig. 4B). This demonstrates that
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Fig. 5. Embedding reflects enzyme functional hierarchy. UMAP projection of embeddings for the subset of test set sequences which have only one leaf-level EC
classification. Points are colour-coded at successive levels of the EC hierarchy in each panel. (A) colours denote top level EC groups, (B) colours denote second level EC
groups within EC2.*, (C) colours denote third level EC groups within EC:2.7.*, (D) colours depict terminal EC groups within EC:2.7.4.*

our network identifies relevant elements of a sequence in de-
termining function.
We then assessed the ability of this method to more gen-
erally localize function within a sequence, even though the
model was not trained with any explicit localization informa-
tion. We selected all enzymes from Swiss-Prot that had two
separate leaf-node EC labels for which our model predicted
known EC labels, and these labels were mappable to corre-
sponding Pfam labels. For each of these proteins, we ob-
tained coarse-grained functional localization by using CAM
to predict the order of the domains in the sequence and com-
pared to the ground truth Pfam domain ordering(see supple-
ment for details of the method). We found that in 296 of
304 (97%) of the cases, we correctly predicted the ordering,
though we note that the set of bifunctional enzymes for which
this analysis is applicable is limited in its functional diversity
(see supplement). Although we did not find that fine-grained,
per-residue functional localization arose from our application
of CAM, we found that it reliably provided coarse-grained
annotation of domains’ order, as supported by Pfam. This
experiment suggests that this is a promising future area for
research.

Neural networks learn a general-purpose embedding
space for protein function
Whereas InterProScan compares each sequence against more
than 50,000 individual signatures and BLAST compares
against an even larger sequence database, ProteInfer uses a
single deep model to extract features from sequences that
directly predict protein function. One convenient property
of this approach is that in the penultimate layer of the net-
work each protein is expressed as a single point in a high-
dimensional space. To investigate to what extent this space
is useful in examining enzymatic function, we used the Pro-
teInfer EC model trained on the random split to embed each
test set protein sequence into a 1100-dimensional vector.
To visualise this space, we selected proteins with a single
leaf-level EC number and used UMAP to compress their em-
beddings into two dimensions (69).
The resulting representation captures the hierarchical nature
of EC classification, with the largest clusters in embedding
space corresponding to top level EC groupings (Fig. 5A).
These clusters in turn are further divided into sub-regions on
the basis of subsequent levels of the EC hierarchy (Fig. 5B).
Exceptions to this rule generally recapitulate biological prop-
erties. For instance, Q8RUD6 is annotated as Arsenate reduc-
tase (glutaredoxin) (EC:1.20.4.1) (70) was not placed with
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(a) Nucleotide binding (b) Structural constituent of ribosome (c) Intrinsic component of membrane
Fig. 6. A neural network trained on enzyme function learns general protein properties, beyond enzymatic activity. This figure shows EC-trained ProteInfer embeddings
for all non-enzymatic sequences in the test set, projected using UMAP. To illustrate the structure contained in these embeddings we highlight genes based on GO labels (on
which this network was never trained).

other oxidoreductases (EC:1.-.-.-) but rather with Sulfurtrans-
ferases (EC:2.8.1.-). Q8RUD6 can however act as a sulfer-
transferase (71).
Note that the model is directly trained with labels reflect-
ing the EC hierarchy; the structure in Fig. 5 was not discov-
ered automatically from the data. However, we can also ask
whether the embedding captures more general protein char-
acteristics, beyond those on which it was directly supervised.
To investigate this, we took the subset of proteins in Swiss-
Prot that are non-enzymes, and so lack any EC annotations.
The network would achieve perfect accuracy on these ex-
amples if it e.g. mapped all of them to a single embedding
that corresponds to zero predicted probability for every enzy-
matic label. Do these proteins therefore share the same rep-
resentation in embedding space? The UMAP projection of
these sequences’ embeddings revealed clear structure to the
embedding space, which we visualised by highlighting sev-
eral GO annotations which the network was never supervised
on. For example, one region of the embedding space con-
tained ribosomal proteins, while other regions could be iden-
tified containing nucleotide binding proteins, or membrane
proteins (Fig. 6). To quantitatively measure whether these
embeddings capture the function of non-enzyme proteins,
we trained a simple random forest classification model that
used these embeddings to predict whether a protein was an-
notated with the intrinsic component of membrane GO term.
We trained on a small set of non-enzymes containing 518
membrane proteins, and evaluated on the rest of the exam-
ples. This simple model achieved a precision of 97% and
recall of 60% for an F1 score of 0.74. Model training and
data-labelling took around 15 seconds. This demonstrates the
power of embeddings to simplify other studies with limited
labeled data, as has been observed in recent work (43, 72).

Rapid client-side in-browser protein function predic-
tion
Processing speed and ease-of-access are important consider-
ations for the utility of biological software. An algorithm that
takes hours or minutes is less useful than one that runs in sec-
onds, both because of its increased computational cost, but
also because it allows less immediate interactivity with a re-
searcher. An ideal tool for protein function prediction would
require minimal installation and would instantly answer a bi-

ologist’s question about protein function, allowing them to
immediately act on the basis of this knowledge. Moreover,
there may be intellectual property concerns in sending se-
quence data to remote servers, so a tool that does annotation
completely client-side may also be preferable.
There is arguably room for improvement in this regard from
classical approaches. For example, the online interface to
InterProScan can take 147 seconds to process a 1500 amino
acid sequence34, while running the tool may make the search
faster, doing so requires downloading a 9 GB file, with an
additional 14 GB for the full set of signatures, which when
installed exceeds 51 GB. Meanwhile, conducting a BLAST
search against Swiss-Prot takes 34 seconds for a 1500 amino
acid sequence 5.
An attractive property of deep learning models is that they
can be run efficiently, using consumer graphics cards for ac-
celeration. Indeed, recently, a framework has been developed
to allow models developed in TensorFlow to be run locally
using simply a user’s browser (73), but to our knowledge this
has never been deployed to investigate biological sequence
data. We therefore built a tool to allow near-instantaneous
prediction of protein functional properties in the browser.
When the user loads the tool, lightweight EC (5MB) and
GO model (7MB) prediction models are downloaded and all
predictions are then performed locally, with query sequences
never leaving the user’s computer. Inference in the browser
for a 1500 amino-acid sequence takes < 1.5 seconds for both
models (Sup. Note G).

Comparison to experimental data
To assess our model’s performance using an additional
experimentally-validated source of ground truth, we focused
our attention on a large set of bacterial genes for which func-
tions have recently been identified in a high-throughput ex-
perimental genetic study (17). In particular, this study listed
newly identified EC numbers for 171 proteins, represent-
ing cases when there was previously either misannotation
or inconsistent annotation in the SEED or KEGG databases.

3Protein Q77Z83.
4It should be noted that the individual databases that make up InterProScan

may return matches faster, with the online interface to Pfam taking 14–20
seconds for a 1500 amino acid sequence.

5A target database with decreased redundancy could be built to reduce this
search time, and other optimizations of BLAST have been developed.

6 | bioRχiv Sanderson et al. | ProteInfer

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.09.20.461077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461077
http://creativecommons.org/licenses/by/4.0/


Fig. 7. ProteInfer predictions for a set of genes recently experimentally re-
annotated by high-throughput phenotyping. ProteInfer makes confident and
largely accurate predictions at the earliest levels of the EC hierarchy. Accuracy
falls at the finest levels of classification (for this set of challenging genes) but for-
tunately the network declines to make a prediction in most cases, with every label
failing to meet the threshold for positive classification.

Therefore, this set of genes may be enriched for proteins
whose functions are difficult to assess computationally. We
examined how well our network was able to make predictions
for this experimental dataset at each level of the EC hierarchy
(Fig. 7), using as a decision threshold the value that optimised
F1 identified during tuning. The network had high accuracy
for identification of broad enzyme class, with 90% accuracy
at the top level of the EC hierarchy. To compute accuracy,
we examined the subset of these 171 proteins for which there
was a single enzymatic annotation from (17), giving us pre-
dictions for 119 enzymes. At the second level of the hierar-
chy, accuracy was 90% and the network declined to make a
prediction for 12% of classes. Even at the third level, accu-
racy was 86% with the network making a prediction in 77%
of cases. At the finest level of classification, the proportion of
examples for which a prediction was made fell to 28%, with
42% of these predictions correct.
As an example, the Sinorhizobium meliloti protein Q92SI0
is annotated in UniProt as a Inosine-uridine nucleoside N-
ribohydrolase (EC 3.2.2.1). Analysing the gene with Inter-
ProScan (74) also gives this prediction, but our model instead
predicts it to be a uridine nucleosidase (EC 3.2.2.3), and this
was indeed the result found in this experimental work. Sim-
ilarly, Pseudomonas fluorescens A0A166Q345 was correctly
classified by our model as a D-galacturonate dehydrogenase
(EC 1.1.1.203) as opposed to a misannotation on UniProt and
with InterProScan.
It was notable that for many of these proteins, the network
declined to make a prediction at the finest level of the EC
hierarchy. This suggests that by training on this hierarchical
data, the network is able to appropriately make broad or nar-
row classification decisions. This is similar to the procedure
employed with manual annotation: when annotators are con-
fident of the general class of reaction that an enzyme catal-
yses but not its specific substrate, they may leave the third
or fourth position of the EC number blank (e.g. EC:1.1.-.-).
Due to training on hierarchical data, our network is able to
reproduce these effects by being more confident (with higher
accuracy) at earlier levels of classification.

A model predicting the entire gene ontology
Given the high accuracy that our deep learning model was
able to achieve on the more than five thousand enzymatic
labels in Swiss-Prot, we asked whether our networks could
learn to predict protein properties using an even larger vo-
cabulary of labels, using a similar test-train setup. Gene On-
tology (75–77) (GO) terms describe important protein func-
tional properties, with 28,079 such terms in Swiss-Prot that
cover the molecular functions of proteins (e.g. DNA-binding,
amylase activity), the biological processes they are involved
in (e.g. DNA replication, meiosis), and the cellular compo-
nents to which they localise (e.g. mitochondrion, cytosol).
These terms are arranged in a complex directed acyclic graph,
with some nodes having as many as 12 ancestral nodes.
We note that there has been extensive work in GO label pre-
diction evaluated on a temporally-split dataset (constructing
a test set with the most recently experimentally annotated
proteins), e.g., (63), and stress that our comparison is based
on the random and clustered splits of Swiss-Prot described
above. This approach to splitting the data into train and test
has advantages and disadvantages as compared to a temporal
split, which depend on the desired application for the method
being evaluated.
We trained a single model to predict presence or absence for
each of these terms and found that our network was able to
achieve a precision of 0.918 and a recall of 0.854 for an F1
score of 0.885 (95% CI: 0.882–0.887).
An ensemble of multiple CNN elements was again able to
achieve a slightly better result with an F1 score of 0.899 (95%
CI: 0.897–0.901), which was exceeded by a simple transfer
of the BLAST top pick at 0.902 (95% CI: 0.900–0.904), with
an ensemble of both producing the best result of 0.908 (95%
CI: 0.906–0.911).
To benchmark against a common signature-based methodol-
ogy, we used InterProScan to assign protein family signatures
to each test sequence. We chose InterProScan for its coverage
of labels as well as its use of multiple profile-based annota-
tion methods, including HMMER and PROSITE, mentioned
above. We note that while InterProScan predicts GO labels
directly, it does not do so for EC labels, which is why we
did not use InterProScan to benchmark our work on predict-
ing EC labels. We found that InterProScan gave good pre-
cision, but within this UniProt data had lower recall, giving
it a precision of 0.937 and recall of 0.543 for an F1 score
of 0.688. ProteInfer’s recall at a precision of .937 is sub-
stantially higher (0.835) than InterProScan at assigning GO
labels.
There are multiple caveats to these comparisons. One chal-
lenge is that the completeness of Swiss-Prot’s GO term an-
notations varies (78). As an extreme example, Pan panis-
cus (Pygmy Chimpanzee) and Pan troglodytes (Chimpanzee)
have an identical Apolipoprotein A-II protein,6, where the
first protein has 24 GO annotations, while the latter has 143
GO annotations.7 One way this is reflected in the perfor-

6Accessions P0DM95 and Q8MIQ5.
7This count is done using not only the set of all labels that appear in Swiss-

Prot, but also any parents of those labels.
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mance of the models is that some BLAST matches that have
extremely large bit-scores are not annotated identically, and
thus reduce the precision of the BLAST model. It is also
important to note that our model has the advantage of be-
ing specifically trained on the UniProt labelling schema upon
which it is being evaluated. InterPro works quite differently,
with GO terms being assigned to families, and so inconsisten-
cies in terms of how these are assigned can explain reduced
performance – for instance InterPro families simply do not
feature all of the GO terms found in UniProt. Thus these re-
sults should be seen as specific to the task of reproducing the
curated results in UniProt.

Discussion
We have shown that neural networks trained and evaluated
on high-quality Swiss-Prot data accurately predict functional
properties of proteins using only their raw, un-aligned amino
acid sequences. Further, our models make links between the
regions of a protein and the function that they confer, pro-
duce predictions that agree with experimental characterisa-
tions, and place proteins into an embedding space that cap-
tures additional properties beyond those on which the mod-
els were directly trained. We have provided a convenient
browser-based tool, where all computation runs locally on the
user’s computer. To support follow-up research, we have also
released our datasets, code for model training and evaluation,
and a command-line version of the tool.
Using Swiss-Prot to benchmark our tool against traditional
alignment-based methods has distinct advantages and dis-
advantages. It is desirable because the data has been care-
fully curated by experts, and thus it contains minimal false-
positives. On the other hand, many entries come from experts
applying existing computational methods, including BLAST
and HMM-based approaches, to identify protein function.
Therefore, the data may be enriched for sequences with func-
tions that are easily ascribable using these techniqueswhich
could limit the ability to estimate the added value of us-
ing an alternative alignment-free tool. An idealised dataset
would involved training only on those sequences that have
themselves been experimentally characterized, but at present
too little data exists than would be needed for a fully super-
vised deep-learning approach. Semi-supervised approaches
that combine a smaller number of high quality experimental
labels with the vast set of amino acid sequences in TrEMBL
may be a productive way forward.
Further, our work characterizes proteins by assigning labels
from a fixed, pre-defined set, but there are many proteins with
functions that are not covered by this set. These categories of
functions may not even be known to the scientific commu-
nity yet. There is a large body of alternative work that iden-
tifies groups of related sequences (e.g. (79)), where a novel
function could be discovered, for example, using follow-up
experiments.
Finally, despite the successes of deep learning in many
application domains, a number of troublesome behaviours
have also been identified. For example, probabilities out-
put by deep models are often over-confident, rather than

well-calibrated (80), and networks perform poorly on out-
of-distribution data without being aware that they are outside
their own range of expertise (81). Though these issues still
need to be addressed and better understood by both the ma-
chine learning and bioinformatics communities, deep learn-
ing continues to make advances in a wide range of areas re-
lating to the understanding protein function. We thus believe
deep learning will have a central place in the future of this
field.
Our code, data, and notebooks reproducing the analy-
ses shown in this work are available online at https:
//github.com/google-research/proteinfer
and https://console.cloud.google.com/
storage/browser/brain-genomics-public/
research/proteins/proteinfer/datasets/.
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