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Abstract 1

Environmental scientists often have to predict a complex phenomenon from a heterogeneous collection of 2

datasets. This is particularly challenging if there are systematic differences between them, as is often the 3

case. Accounting for these differences requires a larger number of parameters and thus increases the risk 4

of overfitting. We investigate how Bayesian hierarchical models can help mitigate this problem by 5

allowing the practitioner to explicitly incorporate information about the dataset structure and general 6

domain knowledge. To this end, we look at a typical application in remote sensing: the estimation of leaf 7

area index (of white winter wheat), an important indicator for agronomical modeling, from 8

measurements of reflectance spectra collected at different locations and growth stages. Since the insights 9

gained from such a model could be used to inform policy or business decisions, the interpretability of the 10

model is a primary concern. We, therefore, focus on models that capture the association between leaf 11

area index and the spectral reflectance at various wavelengths by spline-based kernel functions, which 12

can be visually inspected and analyzed. We compare models with three different levels of hierarchy: a 13

non-hierarchical baseline model, a model with hierarchical bias parameter, and a model in which bias 14

and kernel parameters are hierarchically structured. We analyze them using Markov Chain Monte Carlo 15

sampling diagnostics and an intervention-based measure of feature importance. The improved robustness 16

and interpretability of this approach lead us to recommend Bayesian hierarchical models as a versatile 17

tool for environmental sciences and beyond, particularly in scenarios where the available data sources are 18

heterogeneous. 19

Introduction 20

The leaf area index (LAI) is a unitless measure (m2 m−2) of the one-sided leaf surface area of a plant 21

relative to the soil surface area. [1] It characterizes, among other variables, photosynthetic performance 22

of plants [1, 2, 3], and the size and density of the crop’s canopy and thus serves as an important 23

indicator for the plant’s growth stage and stand productivity [4, 5, 6, 7, 8]. Therefore, it plays a major 24

role in meteorological, ecological, and agronomical modeling [9, 10, 11, 12, 13, 14], as well as for studying 25

the influence of climate change on crop growth. [15, 16] 26

Various non-destructive methods exist to measure or estimate LAI directly [17], but they typically 27

require taking a large number of manual measurements in the field. Since this is a laborious process and 28

it can be difficult to control for confounding variables such as weather, alternative faster approaches to 29

infer LAI from indirect measures, e.g., spectroscopy, have been investigated [5]. Spectral reflectance 30

curves have been well understood and are relatively easy to measure. Since they can also be acquired 31

through aerial or satellite surveillance, this could greatly simplify monitoring crop growth across large or 32

remote areas [18]. 33
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However, the spectral reflectance is also affected by countless other factors, such as the crop type, 34

phenology, sun illumination, local micro-climate, the type of soil, or the amount of precipitation [19]. 35

The relationship between LAI and reflectance spectrum may also vary throughout the life-cycle of the 36

crop. A model that predicts LAI from reflectance spectra should be adjusted to these specifics, but this 37

poses a practical challenge: the potential confounding variables are too numerous to include in the 38

model, and instead, we have to account for them implicitly by allowing the model to vary across different 39

datasets. In addition, the amount of labeled training data that can be acquired for each field and/or 40

season is limited, so it is inefficient, if not impossible, to fit a separate model for each field and/or 41

growth stage. It is possible, in principle, to train a single model that generalizes across these conditions 42

by simply pooling multiple datasets that were acquired under different conditions (see [20], for example). 43

However, since all of the specifics of the individual dataset are lost in the process, such a model is likely 44

to perform worse than a field- and growth-stage-specific model could, given sufficient training data. 45

Ideally, we would like to find a compromise between these two extremes that allows us to generalize over 46

all the available datasets yet makes specifically adjusted predictions for each dataset. 47

We present a solution to this problem in the form of a hierarchical, parameter-efficient Bayesian 48

model. Our model learns an easily interpretable general relationship between reflectance spectra and 49

LAI, as well as the dataset-specific deviations from that baseline. We identify relevant spectral regions 50

and quantify their contribution to the prediction of LAI. By using a variant of 51

Markov-Chain-Monte-Carlo (MCMC) sampling, we can incorporate domain knowledge or regularization 52

through prior distributions of the parameters and provide a full posterior probability distribution over 53

these parameters, which allows the quantification of uncertainty. We compare two variants of this 54

hierarchical approach with a non-hierarchical alternative and find that it indeed offers a favorable 55

trade-off between prediction accuracy and model complexity. 56

Bayesian hierarchical models similar to the one suggested here are especially appealing for 57

environmental sciences [21], where they have seen increasingly widespread use. For example, several 58

recent studies applied Bayesian hierarchical models to time series of multispectral satellite images in 59

order to assess the effects of climate change through land surface phenology [22, 23, 24], or other 60

indicators such as Normalized Difference Vegetation Index [25]. A similar remote sensing approach has 61

been used to predict LAI and its spatio-temporal evolution for bamboo [26] and other forests [27, 28]. 62

For agronomical models of the LAI of food crops such as rice [29], Brazilian Cowpea [30] or white winter 63

wheat [31], local multispectral measurements are often used instead of – or in addition to – satellite 64

images. In most of these studies, Bayesian hierarchical models are used to impose prior domain 65

knowledge, combine multi-model data sources, and integrate data collected at multiple resolutions of 66

space and/or time, all of which ultimately improve prediction performance. By contrast, our primary 67

goal is to show how Bayesian hierarchical models and associated tools can be used from a data science 68

perspective to construct and diagnose simple and interpretable models, which can cope with the kind of 69

heterogeneous datasets often encountered in environmental sciences. 70

Methods 71

The dataset 72

We evaluate our proposed model on a combination of four datasets, totalling 191 pairs of measured 73

reflectance spectra (see also S1 Fig for examples) and corresponding measurements of the LAI on fields 74

of white winter wheat (lat. Triticum aestivum). The recorded spectra cover wavelengths in the range 75

from 350 nm to 2500 nm, of which we use the range from 400 nm to 1350 nm (for details see 1). We 76

preprocess these spectra by smoothing with a first-order Gaussian filter with width σ = 10 nm. Each 77

pair of measurements was taken on a different square plot of size 50 cm× 50 cm. The LAI values of each 78

plot were measured multiple times in a non-destructive way and averaged to a single value per plot. Five 79

reflectance spectra were acquired and averaged for each plot using a spectroradiometer from a height of 80

1.4 m above ground with a nadir view and converted to absolute reflectance values using a reflectance 81

standard of known reflectivity. The data were collected on four different fields in different years, 82
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corresponding also to different stages in the plants’ growth cycle, and there are minor differences in the 83

data collection procedure. 84

The first two sampling areas, which we call Field A and Field B in the following, are located near 85

Köthen, Germany, which is a part of one of the most important agricultural regions in Germany. The 86

region is distinctly dry, with 430 mm mean annual precipitation due to its location in the Harz 87

mountains. The mean annual temperature varies between 8 ◦C to 9 ◦C. The study area has an altitude of 88

70 m above sea level and is characterized by a Loess layer up to 1.2 m deep that covers a slightly 89

undulated tertiary plain. The predominant soil types of the region are Chernozems, in conjunction with 90

Cambisols and Luvisols. At two locations in this region, 57 measurements were recorded on 91

7th to 8th May 2011, and another 74 on 24th to 25th May 2012. In 2011 and 2012, respectively, 25° and 92

14° field of view optics were used for the spectroradiometer, and five and four LAI measurements were 93

averaged per plot. Data from this study area was also used and described in more detail in [20]. 94

The other two sampling areas, called Field C and Field D in the following, are located near Demmin, 95

Germany, with a mean annual precipitation of 550 mm, and a mean annual temperature of 8 ◦C. 96

Albeluvisols interspersed by Haplic Luvisols dominate the sand-rich area. The observed area is south of 97

the river Tollense, where the ground elevation drops from 70 m to 7 m due to glacial moraines causing 98

high variability in soil conditions. At two locations in this region, 26 measurements were recorded on 99

5th June 2015, and another 34 on 10th May 2016. In this case, six measurements of LAI were averaged 100

for each plot. 101

For a summary of these parameters, see table 1. 102

Field A Field B Field C Field D

collection date 7th to 8th May 2011 24th to 25th May 2012 5th June 2015 10th May 2016
measurements 57 74 26 34

location Köthen, Germany Demmin, Germany
LAI device SS1 SunScan LAI-2000 LAI-2000

spectral device ASD FieldSpec III SVC HR-1024 SVC HR-1024i
field of view 25° 14° 14°

measurement height 1.4 m above ground
reflectance standard Spectralon, Labsphere Inc., USA

spectral range measured 350 nm to 2500 nm
spectral range used 400 nm to 1350 nm at a resolution of 1 nm, smoothing with σ = 10 nm

LAI range 0.5 to 3.32 1.14 to 6.16 1.72 to 7.46 0.48 to 5.25

Table 1. Parameters of the dataset and the collection procedures.

In the following, we will reference specific subsets of this data; hence we introduce some notation here: 103

We assume that all spectra-LAI-pairs are numerically indexed in the range J = {1, . . . , 191}, and we 104

defined four index sets J1, J2, J3, J4 ⊂ J that correspond to the measurements from Field A, Field B, 105

Field C, and Field D, respectively. We denote the ith reflectance spectrum from dataset j by the function 106

Rj
i (λ) of the wavelength λ ∈ [400 nm, 1350 nm], and the corresponding measured LAI value by Y j

i . 107

Feature extraction from reflectance spectra with a spline basis 108

The data collection and preprocessing steps outlined above result in reflectance spectra of wavelengths 109

400 nm to 1350 nm at a resolution of 1 nm. Since this representation is much too high dimensional for 110

direct use, we extract the most important information into a low dimensional representation by 111

computing the inner product between the preprocessed reflectance spectra and a set of eleven cubic basis 112

splines (B-splines) with adaptively placed knots (see figure 1). The positions κi, i ∈ {1, . . . , 10} of the 113

knots, which determine the shape of the individual basis splines, are chosen such that the cumulative 114

absolute curvature Q(κk+1)−Q(κk) of the average reflectance spectrum is equal between any two 115

successive knots k and k + 1. We compute the absolute curvature q(λ) by convolving1 the average 116

1This is equivalent to computing the curvature of the smoothed average reflectance spectrum g ∗ R̄.
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reflectance spectrum R̄ with the second derivative of the Gaussian function g, and then compute the 117

absolute value thereof. Formally, we can express this as follows: 118

g(λ) =
1 nm√

2πσ
exp

(
−λ

2

σ2

)
, σ = 10 nm

R̄(λ) =
1

|J |
∑
i∈J

Ri(λ)

q(λ) =
∣∣(R̄ ∗ g′′)(λ)

∣∣
Q(x) =

∫ x

400 nm

q(λ)dλ ∀x ∈ [400 nm, 1350 nm]

Qmax = Q(1350 nm)

κk = Q−1
(
k − 1

9
Qmax

)
∀k ∈ {1, . . . , 10}

The eleven basis functions bk are generated from this knot-vector κ using the standard Cox-DeBoor 119

algorithm [32], where the multiplicity of the first and last knot is three, i.e., all basis functions go to zero 120

at their respective start and end knots. 121

This heuristic algorithm results in a proportionally larger number of knots, and thus higher spatial 122

resolution, where the reflectance spectra have the largest absolute curvature and hence “have most 123

structure”; see also [33, 34, 35]. For each of the data-subsets Jj , j ∈ {1, . . . , 4}, we can then compute our 124

model’s feature or design matrix Xj using these basis functions bk(λ): 125

(Xj)i,k = 〈Rj
i , bk〉 =

∫ 1350 nm

400 nm

Rj
i (λ)bk(λ)dλ, ∀i ∈ Jj , k ∈ {1, . . . , 11} (1)

Bayesian Markov-Chain-Monte-Carlo regression for predicting LAI 126

Our primary objective is to construct a simple, interpretable model that can reliably predict the LAI 127

value of a wheat plot directly from a corresponding reflectance spectrum. We are additionally interested 128

in analyzing the model’s confidence, how well it generalizes, and which features it relies on most to make 129

a prediction. Since the total available data is limited and stems from four heterogeneous datasets, prior 130

constraints are required to prevent overfitting. 131

In order to meet all of these requirements, we design three different (non-)hierarchical Bayesian 132

generalized linear models (GLM) [36, 37] of different complexity. For each of these, we infer a full 133

posterior distribution over model parameters from training data and use this to provide a full posterior 134

predictive distribution over LAI scores on testing data. To generate representative samples from these 135

probability distributions, we use a specific type of Hamiltonian Monte Carlo sampling, namely 136

No-U-Turn-Sampling[38] (NUTS), as implemented by the probabilistic programming package pyMC3 [39]. 137

Model 1: A baseline model with pooled data 138

As a baseline (see figure 2), we construct a simple generalized linear model, which we apply to all of the 139

datasets Jj , j ∈ {1, . . . 4} together. This model merely pools all available data but does not account for 140

any systematic differences that might exist between the individual datasets. We assume the logarithm of 141

the observed LAI scores to be normally distributed around an affine linear predictor µj with deviation σ, 142

which is a parameter of the model with log-normal prior. The predictor µj is computed by the 143

matrix-vector product between the dataset’s feature matrix Xj and the model’s weight vector 144

w = (w1, . . . , w11), plus an additional bias parameter b. Including the unknown deviation parameter σ, 145

the model thus has a total of 13 free parameters to be inferred from data. The individual parameters wk 146
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Figure 1. Adaptive knot-placement for B-Splines. (A) For the measured reflectance spectra
Ri(λ), (B) we calculate the mean absolute curvature q(λ). (C) We then find knot positions such that
the integral Q(λ) of this measure between any two successive knots κk, κk+1 is identical. (D) The result
are 11 cubic spline basis functions bk(λ) with non-uniformly spaced knots.
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b w X1 X2 X3 X4

σ µ1 µ2 µ3 µ4

Y 1 Y 2 Y 3 Y 4

Figure 2. Dependency graph of the baseline model. For each dataset j (encoded in the feature matrix
Xj and corresponding labels Y j), the prediction depends on the same three shared parameters b, w and
σ. Circles represent random variables, rectangles represent deterministic variables, filled shapes represent
observed variables.

and b have normal priors with standard deviation 1 and 11, respectively, to allow the individual bias term 147

to counteract the effect of all 11 weights, if necessary. The baseline model is described by equation 2. 148

log(σ) ∼ Normal(0, 1)

b ∼ Normal(0, 11)

wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
µj = Xjw + b, ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µj

i , σ), ∀i ∈ I, j ∈ {1, . . . , 4}

(2)

Model 2: A model with hierarchical bias 149

Our second model (see figure 3) extends the baseline model by an additional bias parameter bj for each 150

dataset, and thus has a total of 17 free parameters. Due to the logarithmic link function, this additional 151

parameter per dataset allows accounting for the overall variation in scale between the four different 152

datasets. But rather than setting each parameter bj independently (and thus adding three full degrees of 153

freedom), we constrain them to be clustered around a common bias value b∗, which replaces the bias 154

term b in the baseline model. Therefore, the prior for the new variables bj is a Normal distribution 155

centered at b∗ with an order of magnitude smaller standard deviation of 11/10 = 1.1. The affine linear 156

predictor µj then depends on the dataset-specific bias term bj . The hierarchical bias model is described 157

by equation 3. 158

log(σ) ∼ Normal(0, 1)

b∗ ∼ Normal(0, 11)

bj ∼ Normal(b∗, 1.1) ∀j ∈ {1, . . . , 4}
wk ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
µj = Xjw + bj , ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µ, σ), ∀i ∈ I, j ∈ {1, . . . , 4}

(3)
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σ µ1 µ2 µ3 µ4

Y 1 Y 2 Y 3 Y 4

Figure 3. Dependency graph of the hierarchical model with dataset-specific bias terms. The predictions
for each dataset j depend on an individual bias parameter bj , which in turn depends on the shared mean
bias parameter b∗.

Model 3: Full hierarchical model 159

Our third model (see figure 4) extends the second model even further by also allowing the model weight 160

vector w to vary for each dataset. Just like we did for the bias terms, we introduce the new parameter 161

vectors wj , and we constrain the individual parameters wj
k to be clustered around the corresponding 162

common values w∗k with standard deviation 0.1. This increases the model’s degrees of freedom by an 163

additional 44 parameters (11 for each dataset), resulting in a total of 61 free parameters. The affine 164

linear predictor µj then depends on a dataset specific weight vector wj and a dataset specific bias term 165

bj . The full hierarchical model is described by equation 4. 166

log(σ) ∼ Normal(0, 1)

b∗ ∼ Normal(0, 11)

bj ∼ Normal(b∗, 1.1) ∀j ∈ {1, . . . , 4}
w∗k ∼ Normal(0, 1) ∀k ∈ {1, . . . , 11}
wj

k ∼ Normal(w∗k, 0.1) ∀k ∈ {1, . . . , 11}, j ∈ {1, . . . , 4}
µj = Xjwj + bj , ∀j ∈ {1, . . . , 4}

log(Y j
i ) ∼ Normal(µ, σ), ∀i ∈ I, j ∈ {1, . . . , 4}

(4)

Model selection using Pareto-Smoothed Importance Sampling 167

To get an unbiased estimate of our model’s generalization error from the very limited available data, we 168

would like to perform leave-one-out cross-validation (LOO-CV) and compute the expected log posterior 169

predictive density (ELPD) for new data. Unfortunately, this is a prohibitively expensive computation 170

when combined with MCMC sampling. However, the generated samples and their associated 171

log-likelihood values contain sufficient information to directly estimate the LOO-CV ELPD by an 172

appropriate weighting of the samples. This procedure is called Pareto-smoothed importance 173

sampling [40] (PSIS), and it is beneficial in situations like this, where an MCMC sampling-based model 174
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b∗ w∗

b1 b2 b3 b4 w1 w2 w3 w4 X1 X2 X3 X4

σ µ1 µ2 µ3 µ4

Y 1 Y 2 Y 3 Y 4

Figure 4. Dependency graph of the hierarchical model with dataset-specific bias and weight terms. The
predictions for each dataset j now depend on an individual bias parameter bj and weight vector wj ,
which in turn depend on the shared bias parameter b∗ and the shared weight vector w∗, respectively.

is trained on a small dataset. As a result, we get for each model the ELPD score, which we use to 175

compare the three proposed models, a parameter η, which can be interpreted as the effective number of 176

degrees of freedom in the model, and the so-called Pareto shape parameters ki, which assess for each 177

data point i in the dataset, how much it affects the ELPD estimation. For data points where ki exceeds 178

0.7, the PSIS-LOO-CV estimate becomes unreliable, which can also indicate an under-constrained model 179

or an outlier in the data [40]). 180

Evaluation of feature importance 181

To estimate the importance that our model assigns to each feature of the reflectance spectra, we 182

calculate a model-agnostic measure of feature importance [41] called model reliance (MR). Here, the 183

importance of an individual feature is calculated as the relative change in the model’s error when the 184

individual observations of only that feature are shuffled, compared to the error on non-shuffled data. MR 185

thus intentionally breaks the dependence between different correlated features2, and is, therefore, a tool 186

to diagnose the model, rather than the data. We use the same loss function as for the model selection, 187

namely ELPD. Since this measure already estimates the logarithm of a quantity of interest (the posterior 188

density), we use the difference between shuffled and non-shuffled ELPD instead of their ratio to estimate 189

the logarithm of the MR for the posterior density. Because we are only interested in qualitatively 190

ranking features by their importance, we normalize the resulting importance value of each feature by 191

their average. To improve the robustness of this measure, the shuffling is repeated multiple times (here, 192

ten times), and the results are averaged. Repeating this procedure for each feature of a model yields 193

positive scores for ranking all features by their importance. 194

2In our model, different features are computed by taking the inner product between the reflectance spectra and a set of
overlapping not independent basis functions, and are hence certainly correlated.
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Results 195

In this section, we evaluate each of the three models presented above, namely the non-hierarchical model, 196

the model with hierarchical bias term and the full hierarchical model. 197

Model predictions 198

First, we visualize the models’ accuracy and ability to generalize in a model-agnostic way by directly 199

plotting predictions against the corresponding measured “ground-truth” values. For this purpose, we 200

randomly select 80 % of all available data (the training set, shown in blue) to infer model parameters, 201

which we then use to predict the LAI for the remaining 20 % of the data (the test set, shown in green). 202

Due to the probabilistic nature of our models, a full posterior predictive distribution is given for each 203

data point, which we summarize in figure 5 (A),(C), and (E). We can observe that all three models 204

make reasonable predictions, i.e., that the predicted LAI grows in proportion to the measured LAI. 205

Because all our generalized linear models assume that the logarithms of the LAI scores are 206

homoscedastic, the standard deviation of the predictive distribution increases with the measured LAI, as 207

well. Rather than the raw residuals rji = Ŷ j
i − Y j

i , we therefore compute the relative residuals r̃ji = rji/Y j
i , 208

each normalized by the corresponding measured LAI value Y j
i , and summarize them in the cumulative 209

histograms shown in figure 5 (B),(D) and (F). For all three models, the relative residuals are similar 210

between training and test set, which indicates that they generalize well. 211

Model comparison 212

To quantify the generalization error of all three models more accurately, we use the PSIS-LOO-CV 213

method on all available data to estimate the ELPD on novel data. This procedure yields several highly 214

informative measures, which are summarized in table 2. To verify the convergence of the sampling 215

procedure for each model, we compare the marginal posterior distribution of each parameter across 216

multiple chains and find no discrepancies or divergences (see also S2 Fig, S3 Fig and S4 Fig). We can see 217

that the highest ELPD (indicating the lowest generalization error) is achieved for the two hierarchical 218

models, with little difference between them (−157.8 and −157.0, respectively, with a standard deviation 219

of ≈ 11.5 each). Suppose, for the sake of argument, that for a similar dataset we would select models 220

based purely on the ELPD. In that case, it might be a matter of chance whether we would pick the 221

model with only a hierarchical bias term (as in this case) or the full hierarchical model. 222

Pareto k
ELPD η (-Inf, 0.5] (0.5, 0.7] (0.7, 1] (1, Inf)

model

Naive -185.5±12.2 13.3 191 0 0 0
Hier. Full -157.8±11.5 24.9 180 8 3 0
Hier. Bias -157.0±11.5 15.0 187 3 1 0

Table 2. Comparison of the three models using PSIS-LOO-CV. The ELPD ± one standard
deviation are listed for each model. η denotes the effective number of parameters. For each model, we
show the number of data-points for which the Pareto shape parameter k falls into either of four different
intervals.

However, due to the limited amount of training data and considering that the number of parameters 223

ranges from 13 for the non-hierarchical baseline model to 17 for the model with hierarchical bias term to 224

57 for the full hierarchical model, we are also concerned with model complexity and the risk of 225

overfitting. Since LOO-CV estimates generalization error directly (unlike information criteria like AIC or 226

WAIC), it does not need to explicitly penalize a large number of parameters, which is a significant 227

advantage when comparing Bayesian hierarchical models. Instead, it allows us to estimate the model 228

complexity of the three models by the so-called effective number of parameters η, which provides some 229
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Figure 5. Model predictions of LAI. For the three models, (A), (C) and (E) plot for each data
point (training data in blue and testing data in green) the predicted LAI values against the actually
measured LAI values. Error-bars indicate the interquartile range of the predictive distributions. Dots
represent the expected value. The gray line shows the optimal predictions; the best 50% of model
predictions lie within the gray cone around it. (B), (D) and (F) show the cumulative distribution
function of the residuals, each normalized by the corresponding measured LAI value for training and
testing data (blue and green lines). The gray areas show the same interquartile range as the cones in
(A), (C) and (E).
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intuition about how many degrees of freedom the model has to approximate the available data. As we 230

see in table 2, η = 13.3 is quite close to the parameter count of the non-hierarchical model on the pooled 231

dataset. This only increases slightly to η = 15.0 for the hierarchical bias model, despite the fact that it 232

has four additional parameters. However, adding another 44 parameters for the full hierarchical model 233

increases η substantially to 24.9. 234

Since PSIS-LOO-CV emulates conventional LOO-CV, it provides additional information that can 235

help us understand how prone each model is to overfitting: For each data point, the procedure yields the 236

shape parameter k of a Pareto distribution, which indicates whether estimating the generalization error 237

for that data point is reliable (k ∈ [−∞, 0.7], ideally k ≤ 0.5), potentially unreliable (k ∈ [0.7, 1]) or 238

entirely unreliable (k ∈ [1,∞]). As table 2 shows, the full hierarchical model struggles with 239

PSIS-LOO-CV for three data points, which may indicate that the model is more prone to overfitting to 240

these potential “outliers” (see also S5 Fig). 241

As these numbers suggest, the model with a hierarchical bias term is the best choice because it is 242

barely more complex than the non-hierarchical model, yet it performs at least as well as the full 243

hierarchical model. 244

An interpretable kernel function 245

As outlined above, all three models derive their predictions of LAI from a weighted linear combination of 246

features, which we compute by taking inner products between the measured reflectance spectra and a set 247

of B-spline basis functions. These linear operations can be equivalently expressed as taking the inner 248

product between each reflectance spectrum and an inferred kernel function κj(λ), which provides a 249

different, more interpretable perspective on the model. 250

To motivate this equivalent perspective, we look at how the reflectance spectra affect the linear
predictors µj

i of the respective GLMs in equations 2 to 4, ignoring the contribution of the inferred bias
terms here. For all three models3, we can use equation 1 to rewrite the contribution of the features
extracted from the ith reflectance spectrum Rj

i of the jth dataset as follows:

µj
i − bj =

∑
k

(Xj)i,kw
j
k

=
∑
k

〈Rj
i , bk〉wj

k

= 〈Rj
i , κ

j〉 where κj(λ) =
∑
k

wj
kbk(λ)

(5)

Since the parameters wj
k are random variables, the kernel functions κj are random variables, samples 251

of which can be generated by combining the (static) basis functions bk with samples of wj
k. Figure 6 (A) 252

shows the distribution of the inferred kernel function for our model of choice, i.e., the hierarchical bias 253

model (for the other two models, see S6 Fig and S7 Fig). By analyzing this kernel function, we can 254

identify regions of the reflectance spectrum that contribute positively or negatively (e.g., around 255

λ ≈ 700 nm and λ ≈ 1300 nm) to the predicted LAI score, and relate them to physical mechanisms. 256

Feature importance 257

In addition to the sign and magnitude of each feature’s contribution (which are determined by the 258

inferred weights; c.f. S2 Fig to S4 Fig), we are also interested in how important each individual feature is 259

for the model’s prediction. We quantify this via MR as described above. Figure 6 (B) shows that, with 260

one exception, all features are indeed important for the prediction accuracy of the model. The only 261

notable exception is the fourth feature corresponding to the narrowest basis function b4 centered around 262

730 nm (see figure 6 (C)), which indicates that this feature could be removed or an alternative 263

knot-placement procedure could be chosen to reduce model complexity. 264

3To simplify notation, we write wj and bj for the (possibly) dataset specific weight and bias terms, and set wj = w or
bj = b for models that don’t make these dataset specific distinctions.
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Figure 6. Inferred kernel function and feature importance. (A) shows the posterior distribution
of the inferred kernel function. The black line represents the expected kernel. We can relate several
ranges of the reflectance spectrum to physical phenomena, namely effects due to green leaf pigment
(400 nm to 700 nm [42, 43]) and photosynthetic capacity (495 nm to 680 nm, peak at 670 nm [42, 43, 44])
and the red edge region (690 nm to 720 nm [45]) in the visible light range, as well as the canopy’s water
content (1150 nm to 1260 nm [46], peak absorption at around 1200 nm [44, 47]) in the near-infrared range.
(B) shows a stem-plot of the relative importance of each feature (enumerated; normalized by the average
feature importance) as well as the resulting estimated importance of each wavelength.
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Discussion 265

In this case study, we investigated how an agronomical variable, the LAI of white winter wheat, can be 266

reliably predicted from measurements of reflectance spectra. The task is challenging because the 267

available dataset is small and consists of multiple heterogeneous sets of measurements carried out at 268

different locations and times. This setting is representative of many problems in data science, 269

particularly in environmental sciences and remote sensing, and Bayesian hierarchical models seem ideally 270

suited to address it [21]. Our results confirm that using a Bayesian hierarchical model not only leads to 271

an improvement in the prediction accuracy over a non-hierarchical approach, but more importantly, it 272

yields several qualitative benefits regarding interpretability, model complexity, and robustness. 273

One important benefit of the Bayesian hierarchical approach is that an appropriate choice of priors 274

and model structure allows us to integrate additional model parameters without excessively increasing 275

model complexity. For example, the number of spectral features used in our model directly determines 276

the scale of the respective spline basis functions, which determines the resolution of our kernel function. 277

This can create a trade-off between a model with lower spectral resolution and a model with a larger 278

number of parameters. In the Bayesian approach, we can choose the model with more parameters 279

without the risk of overfitting if we formalize our uncertainty and prior assumptions about the 280

parameters appropriately. This is particularly important for hierarchical models, where we might want to 281

add a large number of parameters to account for the specific variations in each subset of the data. 282

Compare, for example, our full hierarchical model with its 51 parameters to the non-hierarchical baseline 283

model with 13 parameters. Here, the addition of 38 new parameters only increases the effective degrees 284

of freedom of the model by 11 and appears to only moderately increase the risk of overfitting. In our 285

hierarchical bias model, we directly incorporate the fact that each of the four data subsets was recorded 286

at a different growth stage of the plants, which affects the expected LAI, and hence requires a separate 287

bias parameter. However, by simultaneously inferring the shared prior distribution over these separate 288

parameters, we can ensure that the prediction on any one subset of the data benefits from the 289

information contained in all the others. Of course, a non-hierarchical model can also benefit from 290

heterogeneous data (see e.g. [20]), but it may fail in subtle ways if systematic differences between the 291

data subsets obscure the relevant associations within each dataset 4. In general, Bayesian hierarchical 292

models allow us to conveniently include additional information about the dataset, domain knowledge, 293

and regularizing priors, and are particularly useful for small and heterogeneous datasets such as those 294

commonly found in environmental sciences [21]. 295

We employ MCMC sampling to generate unbiased samples of the full posterior distributions over 296

parameters and predictions, which allow us to use additional diagnostic tools and error measures. For 297

example, we can directly estimate posterior densities, credible intervals, and even generalization errors 298

via sample-based methods such as PSIS-LOO-CV, which are more broadly applicable than information 299

criteria such as AIC, WAIC, or BIC [49]. In particular, we saw that a hierarchical model might have a 300

considerably larger number of parameters with a comparatively minor increase in model complexity, 301

making any form of regularization based directly on the number of parameters difficult. Besides better 302

diagnostics, sample-based measures can also provide insights about the data itself, e.g., indicating which 303

data points are potential “outliers” that the model is susceptible to (see S5 Fig). 304

In addition to descriptive statistics, we also estimate feature importance using an intervention-based 305

model-agnostic method that artificially breaks the dependence between naturally correlated features and 306

thus allows us to infer exactly which features the model relies on for its prediction – independently from 307

the magnitude of the respective parameters. Such information can help domain experts identify potential 308

problems, e.g. if supposedly relevant features are ignored or irrelevant features are relied on. This simple 309

example shows how methods from causal analysis [50] can help explain or interpret the model in 310

4In S6 Fig we show that this is indeed the case here, as wavelength around 1200 nm lead to a pronounced dip in the
kernel function when data from multiple datasets is pooled, but this association disappears if the model is instead fit to
any individual dataset. Looking at the pooled dataset, we would therefore be led to conclude that lower spectral power
around 1200 nm is a strong predictor of higher LAI. While this is correct on the artificially pooled dataset, it appears to be
incorrect on any of the individual datasets. This is an instance of Simpson’s paradox [48], which suggests that a hierarchical
model is more appropriate here
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qualitatively different ways than descriptive statistics alone. 311

Because we use a generalized linear model, we can additionally analyze and interpret the model’s 312

linear predictor directly in the measurement space. Since the individual features are extracted from the 313

spectra using B-spline basis functions, this linear predictor is just an inner product between a reflectance 314

spectrum and a kernel function plus an additive bias term. Due to the logarithmic link function, the bias 315

term ultimately has a scaling effect on the LAI predictions. The kernel function directly shows which 316

wavelengths are associated with higher LAI, e.g., short wavelengths of the visible spectrum and much of 317

the near-infrared spectrum, or lower LAI, e.g., around 600 nm to 750 nm. These results can be directly 318

linked to physical phenomena and examined with domain knowledge. For example, the positive 319

association for short wavelengths in the range 400 nm to 550 nm may be attributable to the effect of 320

green leaf pigment, which reflects light in the range 400 nm to 700 nm [42, 43]. Similarly, the pronounced 321

drop around the so-called red-edge region (690 nm to 720 nm [45]), which is related to the plants’ 322

chlorophyll content [51, 52], total nitrogen [53, 54] and yield [55, 56], may be attributable to the plants’ 323

photosynthetic capacity (495 nm to 680 nm [42, 43, 44]) that peaks at around 670 nm. 324

Finally, we opted for a simplistic, interpretable model of LAI as a function of spectral power, but the 325

hierarchical Bayesian modeling approach makes it easy to extend the proposed model further. One could 326

include more datasets, additional levels of hierarchy (e.g. to extend the model to other related plant 327

species or different geographical regions), or other factors such as soil moisture content [57], the influence 328

of climate change and CO2 concentration on crop growth [15, 16], daily variations in weather due to 329

climate change [58], effects of microclimate [59], the influence of the amount of soil conditioner on the 330

crops [60], and ammonium level in the soil. 331

Conclusion 332

We are convinced that besides accuracy, interpretability is a crucial factor for a model to be applied at 333

large, and therefore focus on a simplistic but instructive example here. The choice of priors and 334

hierarchical structure of Bayesian hierarchical models makes it possible to incorporate domain knowledge 335

into the model. Conversely, the linear predictor of our GLM, particularly the inferred kernel, can be 336

analyzed and interpreted by a domain expert. We also use an intervention-based method to estimate 337

feature importance, which can be considered an application of simple causal analysis and provides a 338

qualitatively different perspective that aids interpretability. In addition, we use diagnostic tools such as 339

PSIS-LOO-CV to estimate generalization errors and verify modeling assumptions. Our results show that 340

Bayesian hierarchical models are a powerful and versatile tool for environmental sciences, especially 341

when the available data is scarce and comes from heterogeneous sources. 342
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S1 Fig. Reflectance spectra from the four datasets. Solid lines show five randomly selected
spectra from each dataset. The dashed lines show the average for the respective dataset, and the gray
regions show the value range (from minimum to maximum) for each wavelength.
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S2 Fig. Marginal posterior distributions of all parameters of the baseline model. For each
of four Markov chains, the mean (dot), the interquartile range from the 25 % to 75 % quantile (thick
horizontal lines) as well as the 2.5 % to 97.5 % quantile (thin horizontal lines) are shown. For all
parameters, these summary statistics of the marginal distribution are similar across all four chains,
indicating convergence of the MCMC sampling scheme.
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S3 Fig. Marginal posterior distributions of all parameters of the hierarchical bias model.
For each of four Markov chains, the mean (dot), the interquartile range from the 25 % to 75 % quantile
(thick horizontal lines) as well as the 2.5 % to 97.5 % quantile (thin horizontal lines) are shown. (C) to
(F) show the differences between the shared bias parameter b∗ and the dataset-specific bias parameters
bj . For all parameters, these summary statistics of the marginal distribution are similar across all four
chains, indicating convergence of the MCMC sampling scheme.
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S4 Fig. Marginal posterior distributions of all parameters of the full hierarchical model.
For each of four Markov chains, the mean (dot), the interquartile range from the 25 % to 75 % quantile
(thick horizontal lines) as well as the 2.5 % to 97.5 % quantile (thin horizontal lines) are shown. (B) to
(E) show the differences between the shared weight parameters w∗k and the dataset-specific weight

parameters wj
k, and (G) to (J) show the differences between the shared bias parameter b∗ and the

dataset-specific bias parameters bj . For all parameters, these summary statistics of the marginal
distribution are similar across all four chains, indicating convergence of the MCMC sampling scheme.
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S5 Fig. Evaluation of PSIS-LOO-CV diagnostic for full hierarchical model. (A) shows the
shape parameters (Pareto k) computed for each datapoint by the PSIS-LOO-CV method for the full
hierarchical model. For three measurements (color-coded), the shape parameter exceeds the critical value
of 0.7 and PSIS-LOO-CV becomes unreliable. (B) shows the reflectance spectra corresponding to these
three datapoints (solid lines, color-coded) as well as the mean reflectance spectra of the respective
datasets (dashed lines).
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S6 Fig. Inferred kernel for baseline model. (A) shows the kernel of the baseline model when fit
to the entire pooled dataset. For reference, (B) through (E) show the different kernels that the baseline
model would infer from each of the four datasets in isolation. We can see large, qualitative differences
between the five shown kernel functions. In particular, the pooled data results in a kernel function with
a sizeable dip around a wavelength of 1200 nm, which is entirely absent from any of the kernels inferred
for the individual datasets. This indicates that systematic differences between the datasets might
introduce spurious associations between spectral features and LAI predictions, which pose a risk for
misinterpretation. This effect is avoided entirely by a full hierarchical model (see S7 Fig) and much
reduced by the hierarchical bias model (see figure 6).
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S7 Fig. Inferred kernel for full hierarchical model. (A) shows the shared kernel function of the
full hierarchical model, and (B) through (E) show the specific kernel functions inferred for each dataset.
The inferred dataset-specific kernels deviate only little from the shared kernel, yet in contrast to the
baseline model in S6 Fig, there is no pronounced dip around the wavelength 1200 nm.
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