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Abstract 

Significance: The firefly enzyme luciferase has been used in a wide range of biological assays, 
including bioluminescence imaging of ATP. The biosensor Syn-ATP utilizes subcellular targeting 
of luciferase to nerve terminals for optical measurement of ATP in this compartment. Manual 
analysis of Syn-ATP signals is challenging due to signal heterogeneity and cellular motion in 
long imaging sessions. Here, we have leveraged machine learning tools to develop a method 
for analysis of bioluminescence images. 

Aim: Our goal was to create a semi-automated pipeline for analysis of bioluminescence imaging 
to improve measurements of ATP content in nerve terminals. 

Approach: We developed an image analysis pipeline that applies machine learning toolkits to 
distinguish neurons from background signals, and excludes neural cell bodies, while also 
incorporating user input.     

Results: Side-by-side comparison of manual and semi-automated image analysis 
demonstrated that the latter improves precision and accuracy of ATP measurements.  

Conclusions: Our method streamlines data analysis and reduces user-introduced bias, thus 
enhancing the reproducibility and reliability of quantitative ATP imaging in nerve terminals. 
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Introduction 

In nature, living organisms as diverse as bacteria, fireflies, copepods, and sea pansies produce 
natural light through bioluminescence 1. These organisms express the enzyme luciferase that 
emits visible light when it catalyzes the oxidation of its substrate luciferin powered by adenosine 
triphosphate (ATP). Bioluminescence imaging is a sensitive technique that relies on the 
detection of light emitted from the luciferase reaction 2. At saturating luciferin concentrations, 
luciferase light emission is proportional to ATP level, thus luciferase can be used as a sensitive 
cellular ATP sensor. Similar to fluorescence, electrons are excited to a higher energy level and 
emit photons as they return to their resting level 3. However, the excitation energy in 
bioluminesce is provided by the chemical reaction rather than exogenous illumination as in 
fluorescence (Fig. 1A). As a result, bioluminesce does not suffer from photobleaching of excited 
molecules or phototoxicity. Another advantage of bioluminescence as compared to fluorescence 
is lower background which allows for higher sensitivity and improved signal to noise ratio (SNR). 
In fluorescence imaging, biological materials emit significant endogenous fluorescence signals 
(autofluorescence), particularly in the green emission range, while autoluminescence of most 
cells is very low 4. As such, bioluminescence imaging, despite dimmer signals, is ideally suited 
for sensitive assays of biological activity. 

The first practical application of bioluminescence was the development of a reporter for gene 
expression using the North American firefly (Photinus pyralis) luciferase, which emits yellow-
green light (emission peak at 557 nm) 5,6. Since then, novel mutant bioluminescent reporters 
emitting red light (> 600 nm) have been engineered to improve tissue penetration for in vivo 
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bioluminescence imaging 7. Further modifications to luciferase thermostability and catalytic 
activity have led to the development of ATP sensors for monitoring subcellular ATP levels 8.  
Capitalizing on these improvements, a presynaptic ATP sensor, “Syn-ATP,” was developed to 
monitor ATP levels in the nerve terminals of cultured hippocampal neurons, particularly to 
investigate the energetic demands of electrical activity 9. Syn-ATP is a genetically encoded 
optical reporter of ATP, available on Addgene (plasmid # 51819; RRID: Addgene_51819) in 
which luciferase is targeted to synaptic vesicles through fusion with synaptophysin and 
additionally tagged with the fluorophore mCherry to normalize for reporter expression level (Fig. 
1B). 

Since its development, imaging data from Syn-ATP assays have been analyzed manually with 
the software Image J and Microsoft Excel. In this method, the ImageJ Plugin Time Series 
Analyzer allows for manual selection of regions of interest (ROIs) corresponding to individual 
nerve terminals, followed by calculation of signal intensity of fluorescence and luminescence  
over multiple time frames. Raw signal intensities are then subjected to background subtraction. 
Background-corrected luminescence intensities of individual terminals are then normalized to 
mCherry fluorescence to correct for variability in Syn-ATP expression and/or changes in the 
focal plane during imaging. To optimize performance, users need to select the maximal number 
of mCherry-positive terminals in a recorded field while excluding cell bodies or large cellular 
clumps. As described above, manual analysis is undesirable because it is time-consuming and 
subject to user bias. In addition, cellular motion and frame-to-frame movement of the selected 
ROIs in lengthy (several minutes) experiments complicates data analysis. To address the 
limitations of manual analysis, we have developed a semi-automated analysis pipeline based on 
machine-learning algorithms that measures Syn-ATP luminescence signals in individual 
neurons with appropriate background correction and normalization to fluorescence signals. 

 

Materials and Methods 

All animal experiments were performed with wild-type rats of the Sprague-Dawley strain in 
accordance with protocols approved by the IACUC at Washington University School of Medicine 
in St. Louis. Hippocampi were dissected from 0-2 days-old neonatal rats of a mixed (male and 
female) litter, dissociated, and plated on poly-ornithine coated coverslips as previously 
described 10. Hippocampal neurons at DIV 14-20  were mounted in a laminar flow perfusion 
chamber, maintained at  37°C with an OkoLab stage top incubator in Tyrode's buffer containing 
(in mM) 119 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 50 HEPES (pH 7.4), 2 D-Luciferin potassium salt 
(Gold Biotechnology), 1.25 lactate and 1.25 pyruvate, supplemented with 10 µM 6-cyano-
7nitroquinoxalibe-2, 3-dione (CNQX), and 50 µM DL-2-amino-5phosphonovaleric acid (APV) to 
inhibit postsynaptic responses. Live imaging of the hippocampal neurons was performed on a 
custom-built, inverted Olympus IX83 epifluorescence microscope equipped for luminescence 
and fluorescence imaging. Fluorescence excitation of mCherry was achieved with the TTL-
controlled Cy3 channel of a Lumencor Aura III light engine. Both mCherry emission and Syn-
ATP luminescence were directed through a Chroma 590nm long-pass filter and an Olympus 
UPlan Fluorite 40X 1.3 NA objective. Image acquisition was performed with an Andor iXon Ultra 
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897 camera, cooled to -95°C to minimize the camera detection noise. Platinum-Iridium 
electrodes were used to evoke action potentials with 1ms electrical pulses creating field 
potentials of ~10 V/cm. In each experiment, data was collected from at least 10 coverslips from 
3 independent cultures prepared from separate litters. Unless otherwise indicated, all chemicals 
were obtained from Sigma-Aldrich. Image analysis was performed with Image J Time Series 
Analyzer (manual analysis) or the proposed semi-automated algorithm coded in python 
programming language, using Jupyter notebook, and scikit-learn machine learning library 11,12. 
Data visualization and statistical analysis were performed in GraphPad Prism v9.0. 

Results 

Hippocampal neurons expressing the Syn-ATP sensor were imaged (10 seconds at 2 Hz) for 
mCherry fluorescence using Cy3 excitation light, followed by a single luminescence frame 
collected with exposure time of 60 seconds. Emission light from luminescence and fluorescence 
were directed through a 590nm long-pass filter, instead of a conventional emission filter, to 
maximize luminescence photon collection (Fig. 1C). The alternating acquisition of fluorescence 
and luminescence images was repeated throughout the experiment to constitute multiple 
timepoints. The 20-frame fluorescence movie was averaged into a single image, hereafter 
referred to as the fluorescent image (Fig. 1D).  

Given that a large and labeled dataset of hippocampal nerve terminals was not publicly 
available, we decided to implement unsupervised machine learning algorithms for analysis of 
Syn-ATP images rather than supervised algorithms for detection of individual nerve terminals. 
Our analysis pipeline is composed of three main steps: (1) background detection, (2) cell body 
detection, and (3) signal estimation. In order to improve consistency, user input is requested to 
modify the model’s output for several steps of the process. Our images have two channels 
(mCherry fluorescence and luminescence) and we used the luminescence channel for 
background and cell body detection due to its low background signal. We then applied onto 
fluorescence images the background and cell body masks obtained from the luminescence 
channel. Details of this semi-automated image analysis pipeline and evaluation of its 
performance are outlined below. 

Development of a semi-automated analysis pipeline 

The first step of the proposed pipeline was to distinguish neurons from the background. The 
luminescence frame was used as the input image and is downsampled from its original size of 
512x512 pixels to 128x128 pixels. Since nerve terminals are about 1.5 µm (~4 pixels) in 
diameter, downsampling of the images helps to reduce the likelihood of misidentification of 
noise as terminals. The resultant image was then divided into regions of 4x4 pixels, which in our 
microscope setup with 40x objective magnification, corresponds to ~ 6.4 x 6.4 µm squares. 
Each region is then represented by its median pixel value. 

In the next step, pixel intensities were transformed into a one-dimensional vector of size 16,384 
(128x128). K-means clustering from the scikit-learn python library was applied to this vector to 
produce two clusters, one corresponding to the image background, and the other to the regions 
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of interest 12,13. Since K-means is an unsupervised machine learning algorithm, it does not 
require any training prior to application. We observed that this clustering scheme accurately 
distinguished background from regions of interest (Fig. 2A). We used luminescence images to 
create a background mask and applied the same mask on fluorescence images (Fig. 2B). 
Background signal in each channel was then calculated as the average intensity of the 
background pixels. 

Syn-ATP is first synthesized in neural cell bodies where it enters the secretory pathway for 
trafficking to terminals. However, inclusion of Syn-ATP data from the cell body may be 
confounding because ATP metabolism in this compartment may differ from nerve terminals. 
Therefore, the second step in our algorithm was to detect the neural cell body and exclude it 
from further analysis. In this step, the user provides input to set the custom width (d) of the cell 
body. Alternatively, the default preset value is set at 32 pixels which corresponds to 50 microns 
in our setup. A square of size d x d pixels was then moved one pixel at a time, and the mean 
pixel intensity was calculated for each region. The region with the highest mean intensity was 
defined as the cell body (Fig. 2A). Since neural cell bodies have variable shapes and sizes, and 
a cell body is not captured in some images, the user is asked to provide their input determining 
whether the cell body is accurately detected. Otherwise, the user has the option to manually set 
a custom-sized bounding box to cover the cell body. Once detected, the cell body was masked, 
as was done for the background, and omitted from further analysis in both luminescence and 
fluorescence images. 

The final step in our pipeline was the determination of signal intensity from masked images. The 
total intensity of pixels in each of the luminescence and fluorescence images was calculated, 
followed by subtraction of background intensity to determine net luminescence and fluorescence 
intensities. This process was iterated for each imaging time point. The L/F value (see below) 
was plotted against time to represent the ATP content of nerve terminals in a single neuron over 
time. 

L/F = (Luminescence- Background)/ (Fluorescence - Background)] 

It is important to note that while L/F is directly proportional to ATP concentration in nerve 
terminals, the absolute L/F value is dependent on image acquisition parameters that may need 
to be modified during a project. For modifications that produce a linear change in signal 
intensity, such as adjustments to camera electron-multiplying (EM) gain settings, we introduced 
a simple true/false argument to adjust calculations of ATP levels by a coefficient factor. 

Performance Evaluation 

To evaluate the performance of our analysis pipeline, raw fluorescence and luminescence 
images from neural samples (n=26 neurons) were analyzed both manually and with our semi-
automated tool. The experiment consisted of four baseline 1-minute time points, followed by 1 
minute of electrical stimulation at 10 Hz applied between time points 4 and 5. Neurons were 
imaged for 3 additional time points after stimulation. The reduction in L/F values (Fig. 3A) during 
electrical stimulation was previously attributed to acidification of the cytosol which reduces the 
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enzymatic activity of luciferase given that its pKa (7.03) is close to the cytosolic pKa (6.8). 
Indeed, both manual and semi-automated analysis methods detect a decline in L/F values 
during activity which can be fully corrected by taking into account the pH effects using 
previously described correction factors  (Fig. 3B) 9. 

Compared to manual analysis, our semi-automatic method generated higher L/F values (Fig. 
3C). We speculated this was at least partly due to the more precise determination of 
background signals through our clustering algorithm. In fact, we examined this hypothesis with a 
subset of randomly selected neurons from our dataset and demonstrated that background 
fluorescence values calculated with our semi-automated pipeline were ~20% higher than 
manual analysis. The mean intensity for manual and semi-automated were 1120 +/-142 and 
921+/- 87 units, respectively. (p-value =0.002) (Fig. 3D). In contrast, background luminescence 
values were not significantly different in the two methods (p-value=0.08) (Fig. 3D).  The higher 
fluorescence background values would result in lower background-subtracted F values when 
using the semi-automated pipeline thus raising the L/F compared to manual measurements as 
we observed (Fig. 3C). 

A major challenge in manual analysis of Syn-ATP is the high variability in L/F measurements of 
the same neuron over time. To determine whether semi-automated yields more consistent 
values, we compared the variability of L/F measurements obtained from our semi-automated 
pipeline to manual analysis. In our experiments, the time points prior to stimulation represent 
baseline ATP levels with minimal biological variation. We calculated the L/F values of the initial 
three timepoints using both methods and determined the measurement variability (ΔL/F) as % 
deviation from the mean baseline L/F value for each neuron. The semi-automated approach 
significantly decreased measurement variabilities (p-value = 0.001) thus increasing the reliability 
of Syn-ATP analysis. The variation among the three baseline data points across cells (n=26) 
was 3.4+/-0.9% and 6.8 +/-0.6% in semi-automated and manual analysis, respectively (Fig. 3E). 
These findings demonstrate that our pipeline improves measurement consistency, by 
minimizing user sampling bias. 

We then sought to assess the validity of the semi-automated pipeline in correctly identifying 
differences in L/F levels in distinct neural populations. Syn-ATP experiments were performed in 
a population of control neurons and neurons carrying a mitochondrial mutation that impairs 
mitochondrial ATP production. Following determination of baseline L/F values as in Fig. 3C, the 
two populations were combined, mean and standard deviation of baseline L/F values were 
calculated, and the z-score of each neuron was determined. Comparison of z-scores for control 
and mutant neurons revealed significantly lower z-score in the mutant (control: 0.027+/-0.17, 
mutant: -1.81+/-0.17, p-value=0.001) Therefore, we conclude that the semi-automated method 
successfully distinguishes differences in Syn-ATP L/F values of distinct genotypes (Fig. 3F).  

Discussions and Conclusions 
Syn-ATP represents a powerful and robust application of bioluminescence imaging for 
measurement of ATP levels in nerve terminals. However, analysis of Syn-ATP data has been 
challenging due to the potential for user selection bias. Standardizing image analysis through 
advanced computational methods, particularly machine learning, would improve data accuracy 
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and reproducibility. Here, we developed a semi-automated pipeline that facilitates the analysis 
of dual fluorescence and luminescence images. First, our pipeline enables the user to determine 
background signals in both channels in an unbiased manner. Second, it enables the user to 
mask specified regions such as the cell body of a neuron. In imaging sessions that last for 
several minutes, axonal movement shifts the position of nerve terminals in the field of view and 
poses challenges for manual tracking of several data points in an image stack. Our approach 
circumvents this problem by analyzing the entire image rather than individual user-selected 
ROIs representing nerve terminals.  

Despite its advantages, we acknowledge that our semi-automated approach has its own 
limitations. For example, sudden changes in the background signal interfere with the code and 
reduce the reliability of the results. Furthermore, user input is required to validate selection of 
the cell body. Our future endeavors with expanded datasets would be directed toward full 
automation of the code as well as resolving technical issues that arise from faulty image 
acquisition. 

In summary, we have developed a semi-automated pipeline for analysis of dual 
fluorescence/luminescence imaging of ATP in nerve terminals. Our pipeline analyzes signals in 
the entire field of view thereby reducing user sampling error. It also standardizes background 
signal measurement and reduces variability in measurement of ATP level in nerve terminals.  

The code is publicly available on the GitHub library (https://github.com/ashrafilab/SynATP-
Analysis) and can be modified for customized bioluminescence image analysis.  
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Figures:  
 
Figure 1  

 
Bioluminescence imaging of cytosolic ATP in nerve terminals. A) The bioluminescence 
chemical reaction in which the enzyme luciferase uses luciferin and ATP to produce light 
denoted as hν. B) Schematic of a hippocampal nerve terminal expressing Syn-ATP in which 
luciferase is anchored to synaptic vesicles and mCherry is used as an inert fluorophore.C) An 
optimized dual fluorescence and luminescence microscopy setup (bottom) where a long-pass 
590 nm filter replaces an emission filter to maximize luminescence photon collection (top).  D) 
Representative luminescence and mCherry fluorescence images of a hippocampal neuron (top) 
and an axon bearing several nerve terminals (bottom). scale bar, 30 µm.  
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Figure 2 

 
An Image analysis pipeline for background signal determination and cell body removal. 
A) The luminescence image of a neuron was downsampled from 512x512 pixels to 128x128 
pixels. K-means clustering algorithm was implemented on pixel values to produce two 
complementary clusters of background and desired signals. A background mask was applied to 
remove background signals from the image (black and white panel). Next, the region with the 
highest total signal intensity was detected and deemed as the cell body. Both background and 
cell body were removed from further analysis. B) Background and cell body masks generated 
from the luminescence image were applied to the fluorescence image.   
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Figure 3  

 
Quantitative comparison of Syn-ATP image analysis by the manual and semi-automated 
methods. Hippocampal neurons expressing Syn-ATP (n=26) were imaged for 8 minutes, and 
were electrically stimulated for 1 min at 10Hz frequency (crimson bar). A) Average traces of 
Syn-ATP luminescence normalized by fluorescence intensity (L/F) analyzed by manual and 
semi-automated methods (n=52 neurons). B) L/F traces were corrected for cytosolic pH 
changes that occur during electrical stimulation.  C) Baseline pre-stimulation L/F values 
obtained from semi-automated analysis were significantly higher than manual analysis (paired t-
test: p=0.0006). D) Semi-automated analysis yielded higher background fluorescence values 
than manual analysis (paired Wilcoxon test: p=0.002, n=10 neurons) while not affecting 
luminescence background determination (paired Wilcoxon test: p=0.084, n=10 neurons). E) 
Measurement variability of pre-stimulus L/F values was determined as % deviation from the 
mean of each neuron (ΔL/F), indicating lower variability with semi-automated analysis  (paired t-
test: p=0.001, n=52 neurons). F) Measurement validity of semi-automated method was 
assessed by comparing z-scores of two population of control and mitochondrial mutant neurons 
with different baseline L/F values, indicating significantly lower z-scores for the mutant 
(Unpaired t-test, p=0.001, ctrl=32 neurons, mutant=10 neurons).  
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