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ABSTRACT

Gradient Forest (GF) is increasingly being used to forecast climate change impacts, but remains

mostly untested for this purpose. We explore its robustness to assumption violations, and

relationship to measures of fitness, using SLiM simulations with explicit genome architecture

and a spatial metapopulation. We evaluate measures of GF offset in: (1) a neutral model with no

environmental adaptation; (2) a monogenic “population genetic” model with a single

environmentally adapted locus; and (3) a polygenic “quantitative genetic” model with two

adaptive traits, each adapting to a different environment. Although we found GF Offset to be

broadly correlated with fitness offsets under both single locus and polygenic architectures. It

could also be confounded by neutral demography, genomic architecture, and the nature of the

adaptive environment. GF Offset is a promising tool, but it is important to understand its

limitations and underlying assumptions, especially when used in the context of forecasting

maladaptation.
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INTRODUCTION

Climate change is a growing threat to biodiversity (Urban et al. 2016; Nunez et al. 2019). Given

the need to address environmental impacts on vulnerable populations, predictive models provide

a means to inform conservation (Bland et al. 2015; Freer et al. 2018; Razgour et al. 2018). Most

efforts to assess climate change impacts use species-level distribution models (Aitken et al.

2008; Ellis et al. 2012; Pacifici et al. 2015), but genomic data is increasingly being incorporated

to provide population-level assessments (Rellstab et al. 2015; Hoban et al. 2016; Waldvogel et

al. 2020a).

Gradient Forest (GF) is a machine learning algorithm that has been used to quantify and

predict changes in the composition of biodiversity. GF was conceived to characterize changes in

community composition (Ellis et al. 2012), but more recently GF has been used to identify

environmental drivers of allele frequency variation, as well as to forecast the degree of

maladaptation of locally adapted populations under new environments (Fitzpatrick & Keller

2015). While GF is growing in use as a predictive tool (Capblancq et al. 2020), neither its use in

forecasting nor its application to genetic datasets have been thoroughly evaluated using

“truth-known” simulations (i.e., analysis validation, sensu Lotterhos et al. 2018).

GF differs from Genotype-Environment Association (GEA) analyses (Rellstab et al.

2015; Hoban et al. 2016), which emphasizes the identification of environmentally-associated

alleles, typically using linear univariate approaches (Waldvogel et al. 2020b). In contrast, GF fits

an ensemble of regression trees using Random Forest (Breiman 2001) and then constructs

cumulative importance turnover functions (see Table 1 for definitions) from these models by
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determining how well partitions distributed at numerous “split values” along each gradient

explain changes in allele frequencies on either side of a split. These cumulative importance

curves are generated for each fitted response (e.g., a single nucleotide polymorphism (SNP), or a

single species count) and each environmental predictor, which are weighed and combined to

produce an aggregate cumulative importance curve for the genome (or a community of species)

along each significant predictor. The slope of a SNP-level cumulative importance curve should

indicate the rate of change in the allele frequency across the environmental gradient, but this

remains untested.

In addition to providing inference regarding the nature of allele frequency change along

spatial environmental gradients, GF has been proposed as a method to predict the frequency

change in locally adaptive alleles needed to maintain current levels of adaptation following a

change in environment (Fitzpatrick & Keller 2015; Fitzpatrick et al. 2018; Capblancq et al.

2020). In essence, GF’s turnover functions provide a means to transform (i.e., rescale)

environmental predictors from their original units (e.g., °C, mm) into common units of

cumulative importance. The transformed predictors can then be used to calculate expected

genetic differences as the Euclidean distance between populations in time and/or space

(Gougherty et al. 2021), a distance referred to as “genetic offset” by Fitzpatrick and Keller

(2015) and as “genomic vulnerability” by Bay et al. (2018) and Ruegg et al. (2018). We refer to

this distance as “GF Offset” to emphasize its derivation from GF and we suggest the term

“genomic vulnerability” should be avoided given that (1) it does not fit established definitions of

climate change vulnerability (Foden et al. 2019) and (2) it is not clear to what extent GF Offset

represents vulnerability, however defined.
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Several questions regarding the use of GF Offset as a metric of maladaptation (e.g.,

assuming increased GF Offset corresponds to increased fitness offset) remain unanswered,

including how it is affected by neutral demography. For example, changes in allele frequencies

could reflect simple genetic drift rather than adaptive signals (Rellstab et al. 2015; Hoban et al.

2016; Fitzpatrick et al. 2018; Borrell et al. 2020). Smaller populations will tend to exhibit greater

signatures of drift than larger populations (Wright 1929; Buri 1956; Helgason et al. 2003) and

potentially greater allele frequency turnover in regions with smaller population sizes, and less

turnover in regions with large population sizes. If these gradients in population structure are

aligned with environmental gradients, they will be reflected in the fitted cumulative importance

curves from GF (i.e., steeper slopes where allele frequency turnover is high, flatter slopes where

turnover is low) and therefore could artificially inflate predicted GF Offsets.

In addition, a complexity inherent to interpretations of GF Offset in the context of

forecasting maladaptation is that it is a multivariate distance of allele frequencies from a

presumed optimum, meaning that regardless of the direction of change (increase or decrease) in

allele frequencies across a gradient, GF Offset will always be positive. The underlying

assumptions being that a population already occupies its adaptive optimum when sampled and

therefore any change in allele frequency composition will reduce fitness. However, because

fitness could decrease or increase in response to environmental change, it is unclear how GF

Offset actually relates to fitness, especially when contrasted with other better known distance

metrics, such as FST. To evaluate GF Offset as a potential measure of fitness offset, we sought to

address the following questions:
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Q1) Variation in N. What effect do neutral processes, operating on a cline in population

size across an environmental gradient, have on GF Offset? We tested the hypothesis that a

decrease in population size would result in an increased GF Offset, due to increased

genetic drift operating in small populations.

Q2) Relationship between GF Offset and fitness offset. Given equal deme sizes in a

metapopulation, how well does GF Offset predict changes in fitness when populations

experience an immediate environmental change (i.e., with no associated evolutionary

change)? We tested the hypothesis that GF Offset is inversely related to fitness, by

conducting in silico common garden experiments under monogenic and polygenic

architectures.

Q3) GF Offset versus other measures of offset. Given equal deme sizes in a

metapopulation, how does GF Offset perform relative to environmental distance or FST?

We tested the hypothesis that GF Offset outperforms both environmental distance and

genetic distance, because GF appropriately weights and scales the environmental

gradients to reflect their genetic importance.

We tested the performance of GF and other offset measures in their ability to predict fitness of

genotypes when transplanted to common gardens (avoiding the confounding longer-term

dynamics of dispersal and gene flow) across the species range in silico. Using SLiM (Haller &

Messer 2019), we simulated different genome architures that underlie a phenotype, and different

relationships between the phenotypic optimum and a single environmental variable. We then

evaluated GF Offset from three scenarios: (1) a neutral model with clinal population size across

the environment; (2) a monogenic “population genetic” model with adaptation to a single
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environment; and (3) a polygenic “quantitative genetic” model with two environmentally

adaptive traits, each responding to a different environmental gradient. Overall we find that GF

Offset was strongly correlated with fitness offset, but that there are multiple sources of

confounding effects.

MATERIALS & METHODS

Demography and genetic architecture

We generated simulations using SLiM v3.4. Ten thousand individuals (N) were split across a

metapopulation consisting of 100 demes arranged in a 10×10 connectivity matrix (Fig S1- supp).

Each deme (Dx,y) was assigned at least one environmental value that could vary over generational

time (Ej,t , where j is a deme, and t is the generation). When two environmental variables were

considered, they are referred to as Environment1 and Environment2 (E1j,t & E2j,t). Symmetric

migration was simulated between adjacent demes at a per-generation migration rate (m), and

each deme contained equal proportions of males and females, with bi-parental mating producing

the subsequent generation.

Ten genomic linkage groups each containing 50K sites were simulated in each individual,

for a total of 500K sites per haploid copy of the diploid genome. The neutral mutation rate (μ)

was (a metapopulation-scaled mutation rate NT * of 0.001), and a base recombination rate10−7 𝜇

(r) of (NT * r = 0.1) was used to approximate a distance of 50 cM per linkage group. The10−5

population-scaled mutation and recombination rates were chosen to approximate the resolution

that would be observed from sampling SNPs from a larger genome, i.e., allowing SNPs 50K
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bases away to be unlinked, while allowing for signatures of linkage to arise within each linkage

group (Lotterhos 2019). All simulation parameters are listed in Table 2.

Simulations were output as tree-sequence files (Haller & Messer 2019; Haller et al. 2019)

following a burn-in period and a period of stable environmental values (the length of these

periods is explained below). The software packages msprime and pyslim were used to

prepend a simulation of neutrally coalesced ancestry onto the SLiM-generated file to guarantee

every site was fully coalesced (referred to as “recapitation”), and neutral variants were then

overlaid on that recapitated file (Haller et al. 2019). We used vcftools to filter for minor

allele frequencies above 0.01, which is on the lower range of MAF filtering criteria in genomics

studies (Danecek et al. 2011; Byrne et al. 2013; Linck & Battey 2019) but ensures that in our

multilocus simulations we included more local causal alleles in our analyses. Out of the 10,000

individuals simulated, 10 individuals from each deme (for a total of 1,000 individuals) were

randomly selected for downstream analysis.

Thought experiments

To elucidate what drives the shape of the cumulative importance function, we created five allele

frequency patterns across a gradient representing an environmental variable and analyzed them

in GF: (1) different sampling schemes of a steep allele frequency cline along one or multiple

environmental variables, (2) different slopes of allele frequency clines along an environmental

variable, (3) different non-monotonic relationships between allele frequency and an

environmental variable, (4) a comparison of linear and non-monotonic allele frequency

relationships with an environmental variable, and (5) a comparison of a linear allele frequency
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relationship with an environmental variable and the same relationship with noise added by

sampling from a normal distribution with 0 mean and variance of 0.1.

Variation in N

Wright–Fisher neutral model

To test the hypothesis that GF Offset could be influenced by variation in genetic drift, we

simulated a linear environmental gradient with values from −1 to 1, in three neutral scenarios:

equal deme size (Nd); increasing Nd; and decreasing Nd (Fig 1). In the equal Nd scenario, each

deme contained 100 individuals. In order to maintain a consistent NT for the increasing and

decreasing deme size scenarios, the sum of Nd within each row of the metapopulation grid was

made to equal 1,000 individuals (e.g., increasing Nd scenario D1y-10y: 10, 10, 50, 50, 95, 95, 145,

145, 200, 200; the decreasing Nd scenario was the opposite). Each scenario was replicated ten

times.

Q1: Effect of Nd on GF Offset

GF analysis, implemented in R (R Core Team 2021) in the ‘gradientForest’ package (Ellis et al.

2012), was performed using filtered allele frequencies and environmental values sampled as

described for Nd above. We measured the GF Offset of each deme based on an adjacent

environmental shift. We tested the null hypothesis of no relationship between Nd and the GF

Offset with Pearson’s correlation coefficient in R. If GF Offset is not affected by genetic drift,

then this correlation should equal 0. However, if higher drift at one end of an environmental cline

results in more allele frequency turnover (and higher GF offsets for those populations), then the

correlation between Nd and GF Offset should be negative.
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Q2: Relationship between GF Offset and fitness offset

Our goal was to use these simulations to assess the predictive potential of GF Offset for a

straightforward demography, in which population size was equal for all demes. These

simulations evolved a simple isolation-by-distance population structure. We evaluated the

relationship between GF Offset and mean deme fitness, after individuals from that deme were

transplanted into another environment in the simulation, for both monogenic and polygenic

scenarios. In order to reduce computation load, we explore best-case scenarios for GF (e.g.,

where there is strong environmentally driven local adaptation), migration values were chosen

which gave high levels of local adaptation, such that the average deme fitness was approximately

15–25% greater in the home environment than in allopatric environments.

Relationship between environment and fitness

Single-locus single-environment population genetic simulations

In our “population genetic” model of environmental adaptation, a single allele had a linear

relationship with fitness across an environmental cline. To avoid a scenario where maladapted

individuals persist at the range edge, we modeled individual fitness for each genotype as a

function of the environment, with the ancestral allele (a) considered to be antagonistically

pleiotropic (sensu Savolainen et al. 2013) to the emerging derived allele (A). See supplement S1

for more details.
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Multilocus two-trait two-environment quantitative genetic model.

In our “quantitative genetic” two-trait, two-environment model of environmental adaptation,

QTNs were allowed to arise at a rate of μQTN = μ/4 = 2.5x10-6 (Table 2) across 9 of the 10 linkage

groups in the genome, with the final linkage group maintained as a neutral genomic reference.

We assumed a quantitative genetic model where alleles contributed additively to two distinct

phenotypes for each individual i in deme j (P1,ij and P2,ij) with no dominance. When an ancestral

allele mutated, the bivariate effect size of the derived allele was drawn from a multivariate

normal distribution with a standard deviation of σQTN = 0.1 (without covariance) for both traits,

which gives flexibility for mutations to evolve with effects on one or both traits (i.e., pleiotropy).

For each deme the phenotypic optimum simply equaled the environmental value.

The relative fitness of individual i in deme j (ωij) was based on how far their P1,ij and P2,ij

phenotypes fell from the bivariate optimum in that patch (Θ1jt and Θ2jt) using a multivariate

normal distribution with standard deviation σk to represent the strength of stabilizing selection in

each deme:

ω
𝑖𝑗

= 𝑒
− 1

2

𝑃
1,𝑖𝑗

 − Θ
1𝑗𝑡

σ
𝑘

( )2

+
𝑃

2,𝑖𝑗
 − Θ

2𝑡𝑗

σ
𝑘

( )2( )
All relative fitness values were normalized by ωmax, where Pij = Θjt. We ran a cumulative burn-in

period of 3000 generations, consisting of a 1000 generation homogeneous initial burn-in,

followed by a 1000 generation transition burn-in (see supplement S1).
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Local adaptation and migration

An elevated migration rate (m = 0.2) was chosen to allow a high degree of local adaptation to

quickly arise across the metapopulation. We measured the mean local adaptation across each

simulation as the difference between mean sympatric fitness (𝜔S) and mean allopatric fitness

(𝜔A) (Blanquart et al. 2013). Mean sympatric fitness was quantified as the average value along

the diagonal of the common-garden fitness matrix, while mean allopatric fitness was quantified

as the average of all of the off-diagonal values.

Case scenarios

Four cases were considered within the multilocus model (Fig 3). Except as noted, the

post-burn-in optima ranged from −1 to 1 for both environments, and the strength of selection

equaled 1.25. Case 1 simulates simple linear clines, in which genetic distance is linearly related

to environmental distance. Two orthogonal environmental clines were simulated: environment 1

varying left-to-right, environment 2 varying bottom-to-top (Fig 3 Case 1). Case 2 simulates a

situation in which geographic distance does not relate linearly to environmental distance. Here

we simulated two non-monotonic environments, with the two orthogonal environments

increasing from one edge to the middle of the metapopulation, and then decreasing again to the

opposite edge. The 4 corners of the landscape thus had the same environment, but were

geographically distant (Fig 3 Case 2). In Case 3, we sought to understand the effect of the slope

of the environmental gradient on GF Offset. Case 3 was set up identically to Case 1 except that

the optima for environment 2 were narrowed, ranging from −0.25 to 0.25. This was done to

produce a narrower phenotypic range in one environment (which should evolve weaker clines in
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allele frequency), versus another, without changing the strength of selection (Fig 3 Case 3). In

Case 4, we sought to determine whether the strength of selection affects GF Offset. Case 4 was

set up identically to Case 1 except that environment 2 had weaker stabilizing selection, 𝜎k = 4 for

ϴ2 to produce less overall local adaptation, and more additive genetic variation, for trait 2 than

produced by Case 1 (Fig 3 Case 4). Each Case was replicated ten times.

Fitness assessment in a Common Garden - CG Fitness

In order to represent the fitness effects of rapid climate change, we implemented a reciprocal

transplant fitness assessment in our single- and multi-locus simulations. The mean relative

fitness of individuals from a home location i (Dx,y) in a transplant “common garden” location j

(Dx’,y’) was calculated for each deme across all contemporary environments in the simulation,

resulting in a 100x100 matrix of pairwise fitness comparisons. For each common garden j, we

could then assess how well the GF Offset between i and j predicted the relative fitness of

individuals from i when transplanted to j (see Methods: Evaluating GF Offset). We refer to this

fitness measure as CG Fitness (common garden fitness).

Q3: Offset measures

In order to assess the performance of GF Offset in predicting CG Fitness relative to other

distance metrics, we also calculated FST values and environmental distances. Pairwise

Weir–Cockerham FST values were calculated for every combination of demes at the end of each

simulation after filtering loci for MAF: one set of such values using all alleles (FST Genome),

another set using only the QTN alleles (FST Causal ). Environmental distances were calculated using
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both n-dimensional Euclidean (ED, Cauchy 1882) and Mahalanobis (MD, Mahalanobis 1930)

distances between all pairwise demes.

We also evaluated the effect of adding non-causal environmental variables into the offset

calculations by simulating an additional 12 environmental gradients. Two of these gradients were

correlated with the two causal gradients, derived by adding random draws from a univariate

normal (μ = 0, σ = 1.3, to allow for a Pearson’s correlation between 0.4-0.5). The other ten

gradients were drawn from a multivariate normal distribution using a covariance matrix

generated by sampling the correlation among variables from a uniform distribution

(clusterGeneration package v1.3.4), which gave them a correlation structure similar to that

observed in climate data. Distances were calculated using all environmental variables (“total

environmental distance”, MD-all, ED-all, 14 variables), and using just the causa

l environments (“causal environmental distance”, MD-causal, ED-causal, 2 variables).

GF outputs an individual cumulative importance curve for each locus and a weighted

aggregate function across all loci, for each important environmental variable. GF Offset is

defined as the Euclidean distance between two locations A and B in the rescaled environmental

space (or spaces over time) obtained by applying the fitted GF model to the environmental

predictors. Note that the rescaling and calculation of GF Offset can be performed using the

individual cumulative importance curves (if the goal is to calculate the offset for a single locus,

e.g., (Keller et al. 2018)), but most applications to date have used the aggregate cumulative

importance curves and therefore calculated a multi-locus offset:

𝐺𝐹𝑂𝑓𝑓𝑠𝑒𝑡 = Σ 𝐶𝐼
𝐴𝑗

− 𝐶𝐼
𝐵𝑗( )2
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where is the multivariate cumulative importance calculated at point A for environment j, and𝐶𝐼
𝐴𝑗

is the same variable calculated at point B.𝐶𝐼
𝐵𝑗

For each common-garden site, we measured the correlation (Spearman’s rho) between

each offset prediction and the CG Fitness for that site. It became apparent that the relationship

between GF Offset and CG Fitness could depend on the common garden location, so explicit

comparisons to measures of CG Fitness were performed with two subsets of the metapopulation,

an Edge and a Core set of demes (Fig S1 - supp).

RESULTS

Thought experiments

To explore the behavior of GF, we created different relationships between allele

frequency and an environmental cline and used these to evaluate the relationships between the

rate of allele frequency turnover and total amount of CI, the shape of the CI curve, and the R2

value. GF produces the same nonlinear cumulative importance curves for linear clines, in which

the rate of turnover was highest near the middle of the cline and low elsewhere, regardless of the

slope between allele frequency and the environment (Fig 2, “steep”, “reverse”, and “shallow”

clines). Non-monotonic allele frequency patterns also produced a nonlinear cumulative

importance curve, the shape of which matched the rate of turnover in allele frequencies, namely

for values of the environment where there is rapid turnover in allele frequencies, the slope of the

curve is high and in contrast, where there is no allele frequency turnover in the non-monotonic
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case, there is also no increase in the cumulative importance (Fig 2, “non-monotonic”). Note how

in the “non-monotonic case” the allele frequency is the same at extremes of the environmental

gradient, but (given the assumption of monotonicity in the construction of cumulative

importance curves) a deme would be predicted to have a nonzero GF Offset for an environmental

shift from -1 to 1 for that locus. See supplement S2 for results from a more comprehensive set of

thought experiments, which illustrate how the number of sampled populations and random error

influence cumulative importance curves (and thus GF Offset).

Variation in N

When deme sizes across the environment were uniform, the cumulative importance increased

linearly in all replicates (Fig 1A). In contrast, when deme sizes increased or decreased along the

environmental gradient, the rate of increase in the cumulative importance was steeper at smaller

deme sizes and less steep at larger deme sizes (Fig 1). In all replicates, GF Offset was negatively

correlated with deme size (Fig 1B).

Relationship between GF Offset and fitness offset

Single locus case

When a single locus of large effect drives environmental adaptation, GF readily identified the

environment driving the clinal pattern (Fig S2 - supp). The correlation between GF Offset and

CG Fitness was negatively correlated in common gardens at the edges of the range. In the range

center there was also significant negative correlation, but the slope was almost flat, indicating

that populations had similar fitness in that garden despite a range of offset values. (Fig S3 - supp)
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Multilocus cases

All simulated cases produced high levels of local adaptation (Fig S4 - supp), with Case 3 having

the lowest (0.169 - on average an individual was 16.9% more fit in home environment) and Case

1 having the highest (0.288). In the cases with 2 linear causal environmental clines (Cases 1, 3,

& 4), GF was able to identify the causal environment driving adaptation (Fig S5 - supp).

However, when two non-linear causal environments were simulated (Case 2), they were not

ranked as most important when all alleles were considered (see Figure S5).

GF Offset had a consistent negative correlation with CG Fitness across all replicates for all four

multilocus cases, in both Core and Edge demes, with similar performance regardless of whether

all loci or only causal loci were used (orange bars, Fig 4). While GF Offset was not consistently

as well-correlated with CG Fitness as the causal environmental distance (dark green bars, Fig 4),

it consistently outperformed overall environmental distance (light green bars, Fig 4), FST Genome,

and FST Causal (light blue bars, Fig 4) as a predictor of CG Fitness.

GF Offset versus other measures of offset

Environmental distance as a predictor of fitness across multilocus Cases

When only the environments underlying local adaptation were considered, ED and MD were

consistently the most correlated with CG Fitness across all cases of our polygenic model (dark

green bars, Fig 4). However, when non-causal variables were included in the offset calculations,

GF Offset outperformed ED and MD by a wide margin. Between the two environmental distance

measures, MD performed just as well as ED in all cases except Case 3, where the internal
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standardization of each environment by its variance caused the 2nd environmental variable with

lower variance to bias MD.

Genetic distance as a predictor of fitness across multilocus Cases

Measures of FST Genome and FST Causal generally were among the poorest predictors of CG Fitness

across all cases, but did perform slightly better than overall environmental distance. Offset

predictions by both measures of FST were more impacted by deme location (core vs edge) than

any other method. While FST Causal was generally a better predictor of CG Fitness overall for the

Edge demes, FST Genome performed similarly in the Core demes. In all simulated multilocus cases,

GF was able to accurately determine the underlying causal environments, except when the causal

environments were non-linear and non-adapted alleles were included (Fig S5 - supp).

DISCUSSION

Across all simulated cases GF Offset performed well at predicting CG Fitness, regardless of

whether or not non-adapted loci and non-causal environments were included in the analysis. We

also found that neutral demography can confound GF Offset, underscoring the need to correct for

population structure before training models, and that GF Offset can be sensitive to sampling

schemes. GF Offset can be representative of changes in fitness under both the simulated

single-locus and polygenic architectures, lending support to the key assumption of a negative

relationship between GF Offset and fitness that underlies the use of GF for forecasting

maladaptation. When all environmental variables were considered (causal and non-causal), GF

Offset, which is based on weighting of environmental gradients given the strength of their
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association with adaptive variation, outperformed predictions of changes in fitness from the

unweighted distance metrics. However, when environmental drivers of adaptation were known

and only those gradients were included in the offset calculation, environmental distance

performed as well as, or better, than GF Offset.

Interpretation and comparisons: The strength of the relationship between causal

environmental distance and CG Fitness underscores the need to identify environmental drivers of

local adaptation. While one study has found a positive relationship between the strength of

genotype–environment associations and environments that predict common garden fitness

(Mahony et al. 2020), a strength of GF is its ability to identify linear selective environments from

multiple candidate environmental variables. Although this was not true in Case 2 when all alleles

were included (see Fig S5 - supp). GF Offset consistently was a better predictor of CG Fitness

than FST, regardless of whether FST was calculated using only adapted loci or not. This has

significant implications for the use of FST as a decision metric for prioritizing conservation

efforts (Xuereb et al. 2020). It should be noted that the magnitude of GF Offset can not be

compared across different studies, as there is no currently accepted approach to standardize the

measure (e.g., to account for differences in the number of variables used in the analysis, etc. But

see supplemental results in S1).

Conceptual concerns: Although GF Offset is increasingly used to forecast maladaptation,

we still have a poor understanding of its performance in natural systems. The underlying

assumptions in predictive applications of GF Offset, as with most other approaches to fitness

inference, are that a population already occupies its adaptive optimum when sampled and

therefore changes in allele frequency composition (regardless of direction) result in decreases in
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fitness. Furthermore, GF Offset assumes that the molecular signatures of local adaptation when

multiple demes occupy the same environment at different sites should be the same. However, this

is further predicated on the stability of both the adaptive landscape and the genomic architecture

maintaining fitness. These assumptions may be violated, with shifts in the adaptive landscape

potentially driven by fluctuations in climate and ecology (Arnold et al. 2001), and under

transient, highly redundant genomic architectures (Láruson et al. 2020). With the single locus of

large effect simulation showing the strongest negative correlation between GF Offset and CG

Fitness, and the non-linear environment simulation (Case 2) the lowest, GF Offset is clearly

impacted by both genomic architecture and the nature of the common garden considered. Also,

for linear allele frequency clines, the steepness of the cline did not influence the (non-linear)

cumulative importance curve. Although when the cline was non-monotonic, the cumulative

importance curve better matched the pattern of turnover. Therefore, at least for linear clines, the

interpretation of the slope of the cumulative importance curve as a measure of the rate of allele

frequency change may not be appropriate.

Caveats & best practices: The sensitivity of GF Offset to deme size requires special

consideration when studying populations that do not maintain a uniform distribution across their

range, especially for populations of conservation concern (Rellstab et al. 2015; Borrell et al.

2020). Empirical studies have found negative associations between GF Offset and population

size (Bay et al. 2018; Ruegg et al. 2018), but our results show that these associations can arise

due to neutral genetic drift and not signals of selection as assumed. At small (large) deme sizes

there is more (less) genetic drift, which leads to greater (less) allele frequency turnover at that

end of the environmental gradient, and therefore more (less) rapid increases in cumulative
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importance and larger (smaller) GF Offset. These results highlight that empirical observed

negative relationships between GF Offset and population size cannot be assumed to indicate a

selection-driven response, and underscores the need to account for population structure when

fitting GF. Since other metrics of genetic offset have been found to be associated with population

size (Borrell et al. 2020), the potential effect of genetic drift on various offset measures should

be more fully evaluated. To this end, recent studies have explored correcting allele frequencies

for population structure based on the population covariance matrix (Berg & Coop 2014) prior to

analysis with GF for outlier detection (Fitzpatrick et al. 2021). Empirical studies that find a

correlation between population size and offset values should not be considered examples of

validation for offset measures. Additionally, datasets where deme size and the most important

predictor environment are correlated would be most susceptible to this phenomenon, and

investigators should report these relationships.

In our simulations the degree of negative correlation between GF Offset and fitness

depends on genetic architecture, the genotype-phenotype-fitness map, and the pattern of

environmental variation on the landscape. The thought experiments showed that GF can be

sensitive to sampling schemes, and has higher performance when populations are densely

sampled along environmental gradients, raising questions about how sampling schemes might

bias environmental predictor importance values, which requires further study. Sampling

considerations are further impacted by the way GF trains itself on approximately 2/3 of the input

number of populations, so GF’s ability to adequately predict the training data can be impacted

when only a few populations are analyzed.
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Limitations of in silico experimentation: To assess the predictive potential of GF Offset,

our simulations focused on a select few “idealized” scenarios (i.e., high local adaptation, known

causal environments, fitness assessment across all common gardens at a fixed time point), with

corresponding data which is unlikely to be reflected in empirical work. All calculations using

causal alleles were not dependent on those alleles being identified as outliers – it was simply

assumed that they were known. In reality, even though many causal alleles showed relatively

elevated FST values (Fig S6 - supp) most would be unlikely to be identified through any outlier

cut-off approach. A key issue to highlight is that all fitness values simulated here have been

calculated as relative fitness, whereas most conservation-minded applications of GF will be

concerned with absolute fitness (i.e., population size may be shrinking with increasing

genotype–environment mismatches). This distinction between absolute and relative fitness is

critical when using models to inform conservation management decisions, since changes in allele

frequencies (due to genetic drift or differences in relative fitness), do not necessarily impact

demography as absolute fitness does. In fact, allele frequency changes can only ever reflect

relative fitness (Brady et al. 2019). For example, a novel genotype might be increasing in a deme

because it has higher relative fitness than another genotype, but both the demes could still be

declining in size because both genotypes have low absolute fitness. Therefore, the rationale that

allele frequency changes would be useful in making fitness predictions under climate change

need closer examination.

Conclusions: While most emergent complexities involved in applying GF Offset to

realistic scenarios are still poorly understood, there is still promise in the application of this

method to identifying key environmental drivers of local adaptation and for estimating fitness
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declines in response to rapid environmental change. Key considerations of demography, genomic

architecture, and the nature of environmental gradients have been highlighted here, as in earlier

work (Capblancq et al. 2020; Fitzpatrick et al. 2021; Gougherty et al. 2021), as factors that can

have significant effects on measures of GF Offset. All future inferences drawn from the potential

negative relationship between GF Offset and fitness must take care to address these features of

the study system explicitly, and acknowledge the limitations of all inferences if any of these

factors are not well understood.
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Figures

Figure 1. Results of neutral simulations, where no selective pressure is imposed by the
underlying environmental clines. A. The relationship between GF Offset and Environment across
increasing, decreasing, and equal deme sizes across the environmental gradient. GF Offset
increased comparatively more when deme sizes were small. B. A strong negative linear
Pearson’s correlation between the GF Offset and deme size in ten replicates, regardless of the
direction of the population gradient. Numbers 1 through 10 in the legend represent the columns
in the metapopulation matrix (see Figure MetaPop figure).
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Figure 2. Different allele frequency gradients (steep, shallow, reversed, and non-monotonic) with
respect to an environmental gradient, and their corresponding cumulative importance curve
produced by Gradient Forest.
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Figure 3. Visualization  of the four multilocus case studies. Rows summarize the four key
features of each case: the clines of the two phenotypic optima shown as color gradients, with the
strength of stabilizing selection listed below each gradient (left column); the correlation of each
evolved phenotype to its respective environment over time (middle column); and the mean value
of each evolved phenotype at the end of the simulation plotted against its home environment
(right column).
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Figure 4. Spearman’s correlation between Common Garden (CG) Fitness and different measures
of offset (GF Offset = browns, Environmental distances = greens, FST = blues), for common
gardens at the edge of the landscape (left column) and common gardens in the center (core) of
the landscape (right column). Each row represents an individual case of the multilocus
simulation: first row shows Case 1, where both causal environments were linear orthogonals;
second row Case 2, where both causal environments were non-linear orthogonal “mountain
peaks”; third row Case 3, where the optimal phenotypic range for trait two was narrower than for
trait one; fourth row Case 4, where the strength of selection on trait two was weaker than on trait
one.
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Table 1. Terminology

Terms Description

Causal Environment Environmental variable that determines the
optimal phenotype

CG Fitnessm,n Common Garden (CG) Fitness averaged
across all individuals from an m source
location in an n transplant (common garden)
location

Cumulative Importance The cumulative sum of “split values” from the
fitted GF model.

Fitness offset The difference in fitness experienced by
moving an organism from its home
environment to a foreign one.

FST causal Genetic differentiation between the source
population and transplant (common garden)
population at loci with alleles that have causal
effects on the phenotype

FST genome Genetic differentiation between the source
population and transplant (common garden)
population across the genome

GF Offset The euclidean distance between the
cumulative importance output by Gradient
Forests at one multivariate environment and
another multivariate environment

Local Adaptation The difference between the fitness of
populations in sympatry and allopatry

Machine Learning Algorithm An algorithm that builds a model based on a
subsample of the data, in order to make
predictions for an expanded dataset
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Relative Fitness in common garden The relative probability that an individual
with a given genotype would be a parent to
offspring in the next generation in the
common garden environment, given the
causal alleles it possesses and the functions
relating alleles to phenotype and phenotype to
fitness

Turnover A change in allele frequency across an
environmental gradient

Vulnerability The extent to which an organism is
susceptible to or unable to cope with climate
change and includes the magnitude and rate of
exposure to climate change, sensitivity to that
exposure, and the ability to cope with
climate-related changes through adaptive
capacity. See Foden et al. 2019.
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Table 2. Model Parameters

Parameter Value Description

N 10,000 Total population size of the
meta-population

n 100 Individual population size

m 0.05/0.2 Per-generation migration rate
(single locus/multi locus)

µ 1x10-7 Neutral mutation rate

r 1x10-5 Recombination rate

d 0.45 Fitness slope parameter
(single locus model)

QTNµ 2.5x10-6 QTN mutation rate (multi
locus models)

𝛔QTN
0.1 Variation in QTN effect sizes

(multi locus models)

𝛔S
4.0 Strength of stabilizing

selection for first 1000
generations (multi locus
models)

𝛔K
1.25/4.0 Strength of stabilizing

selection after 2000
generations (multi locus cases
1,2,3/multi locus case 4 for
second trait)
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