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1 ABSTRACT
Rare events are of particular interest in biology because

rare biochemical events may be catastrophic to a biological

system. To estimate the probability of rare events, several

weighted stochastic simulation methods have been devel-

oped. Unfortunately, the robustness of these methods is ques-

tionable. Here, an analysis of weighted stochastic simulation

methods is presented. The methods considered here fail to

accomplish the task of rare event simulation, in general, sug-

gesting that new methods are necessary to adequately study

rare biological events.

2 INTRODUCTION
Despite occurring with low frequency, rare events can have

devastating effects on biological systems. For example, rare

biochemical events have been demonstrated to contribute

to cancerous phenotypes by inactivating tumor-suppressing

genes [1]. It is therefore important that computational meth-

ods be developed to analyze the probability of rare events.

Exact trajectories of biochemical reaction networks may

be determined with molecular dynamics, wherein, given the

initial position and momentum of each atom in the system,

the complete state of the system can be determined at any

time [4]. Unfortunately, such methods are computationally

intractable for most systems. Instead, stochastic chemical
kinetics (SCK) may be used to generate many potential tra-

jectories for a system and approximate the probability of

some event occurring [8].

Rare events can be problematic for stochastic simulation

because the number of trajectories that must be generated

to approximate the probability of a rare event may be com-

putationally prohibitive. To address this issue, a variety of

stochastic simulation algorithms have been developed that

utilize importance sampling (IS) techniques to better estimate

the probability of rare events [3, 6, 7]. In this abstract, three

such algorithms are examined to determine how well they

address the problem of rare event simulation.

The first algorithm that will be examined is the weighted
stochastic simulation algorithm (wSSA) [6], which first ap-

plied IS techniques to biochemical network simulation. The

second algorithm that will be examined is the state-dependent
biasing method for importance sampling (swSSA) [7]. The

third algorithm that will be examined is the guided weighted
stochastic simulation algorithm (guided wSSA) [3].

3 RESULTS
The efficacy of each stochastic simulation method was tested

on a six-reaction model of a biochemical futile cycle. This

network is given as follows:

S1 + S2

k1−−−→ S3, S3

k2−−−→ S1 + S2

S3

k3−−−→ S1 + S5, S4 + S5

k4−−−→ S6

S6

k5−−−→ S4 + S5, S6

k6−−−→ S4 + S2.

where

𝑘1 = 𝑘2 = 𝑘4 = 𝑘5 = 1, 𝑘3 = 𝑘6 = 0.1.

In the model, the initial state is

𝑋1 (0) = 𝑋4 (0) = 1, 𝑋2 (0) = 𝑋5 (0) = 50,

𝑋3 (0) = 𝑋6 (0) = 0.

The rare event of interest is 𝑋5 → 40 within 100 time units,

which is unlikely because the symmetry of the initial mole-

cule counts and reaction rate constants will keep the system

near the initial state with high probability. Futile cycles of

this kind exist biologically in GTPase cycles, MAPK cascades,

and glucose mobilization [2].

Rare events are difficult to simulate because the number of

traditional SSA runs necessary to see a rare event of interest

occur even once can be very high. Kuwahara and Mura solve

this issue by increasing the likelihood of certain reactions oc-

curring in simulation and decreasing the likelihood of others.

Each run is then assigned a weight specific to the sequence

of reactions that occurred such that the mean run weight is

a sample estimator for the probability of the rare event of

interest. This method requires that the user manually input

the IS biasing parameters that are applied to each reaction.

In the small six-reaction example network, reaction three

produces species five and reaction six consumes species five,

so reaction three must be biased downward and reaction six

must be biased upward. To this end, a single biasing parame-

ter 0 < 𝛿 was introduced such that the rate of reaction three

is multiplied by 𝛿 and the rate of reaction six is divided by 𝛿.

The performance of various magnitudes for 𝛿 is determined

by comparing the true probability of a rare event 𝑋5 → 40

to the wSSA estimate after 10
2
runs for 0 < 𝛿 ≤ 1.5 with

increment 0.025 (Figure 1(a)).
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As the species population changes throughout the course

of simulation, relative propensity of each reaction changes

too. The key insight presented in [7] is that forcing a fixed

IS biasing factor in wSSA will result in a narrow range of

values that factor can take to produce an accurate estimate.

That is because the fixed biasing factor must adjust relative

propensities appropriately for most of the possible values

they take throughout the simulation. Also, a fixed biasing

parameter will increase/decrease relative propensity of a re-

action at a state where it already has a high/low probability

of selection, resulting in lower accuracy. Therefore, [7] in-

troduces a biasing factor which is a function of the relative

propensity of the reaction it is adjusting at the current state.

These functions are characterized by two sets of user inputs:

(1) maximum amount of change allowed for each reaction,

𝛾 𝑗 and (2) a threshold from which encouraging/discouraging

reaction selection is stopped, 𝜌0𝑗 .

Figure 2 shows the results of estimating the probability

of the rare event of interest on six reaction network. Again,

𝑅3 is set to be biased downward and 𝑅6 is set to be biased

upward. Fixing 𝜌0 to be 0.6 for 𝑅6 and 0.2 for 𝑅3, and setting

𝛾3 = 𝛾6 = 𝛾𝑚𝑎𝑥 , true probability of the rare event is compared

to swSSA estimates with 1 ≤ 𝛾𝑚𝑎𝑥 ≤ 5 with increment 0.025

after 100 runs (Figure 1(b)).

To avoid reliance on user input and a priori knowledge of
the system, Gillespie and Golightly calculate the conditioned

expectation of reaction count over the remainder of the simu-

lation for each reaction given that the rare state of interest is

attained at the end of the simulation by assuming a constant

reaction hazard and use that expectation to estimate an ideal

amount of IS biasing [3, 5]. Unfortunately, the Guided wSSA

may calculate a negative ideal biasing, and the resultant neg-

ative reaction rates cause errors in simulation. Inspection

of the R code for the three example cases in Gillespie and

Golightly reveals that a different method of dealing with

these negatives is used in each case.

The Guided wSSA was ran using each of the three nega-

tive resolution methods with 10
3
runs to compare the per-

formance of each method (Figure 1(c)).

4 DISCUSSION
The wSSA requires the user to select which reactions should

be encouraged and which reactions should be discouraged.

Although such a task might seem trivial for very simple mod-

els, deep insight into underlying dynamics of the network is

necessary for more complex models. Also, the biasing fac-

tor for those selected reactions must be specified prior to

simulation. This is a tricky task, since these parameters can

arbitrarily take any value greater than zero and it is by no

means obvious what values will result in accurate estimates

just by considering the model. Moreover, the accuracy of

the estimate is highly sensitive to these values. Selecting

non-optimal biasing factors can result in an estimate even

less accurate than one produced by running the original SSA

for the same number of simulations.

The swSSA suffers from the same issues. Reactions which

are to be encouraged/discouraged should be specified by the

user. Furthermore, for each of those reactions, the maximum

amount of change allowed as well as a threshold from which

encouragement/discouragement should be applied must be

set prior to simulation, resulting in twice as many parame-

ters as the wSSA. Like with the wSSA, the accuracy of this

method is sensitive to these parameters, although the swSSA

generally produces more accurate estimates and shows more

robustness against a wider range of these parameters.

The Guided wSSA eliminates the need for specifying a set

of reactions to bias and parameter(s) associated with each

of those reactions as in the wSSA and swSSA. Since, in the

Guided wSSA, matrices are inverted to automatically rec-

ognize a suitable biasing factor, this method is inherently

slower then the SSA, wSSA, and swSSA in simulating trajec-

tories. This additional computational effort may be justified

if the run weights have a variance which is considerably

smaller than those produced by other methods (as is the

case with experiments discussed in [3]). Estimation of the

probability of the rare event discussed in Section 3 on the six

reaction network model using guided wSSA produces a far

less accurate estimate than estimating that with wSSA while

setting 𝛿 = 0.6. Running 200 simulations, it took guided

wSSA 1.6 seconds to produce an estimate with the variance

of 0.05 where it took wSSA 0.3 seconds to produce an esti-

mate with the variance of 0.0015. The issue of complexity is

demonstrated when the total runtimes of 10
5
runs of each

algorithm are compared (Figure 1(d)).

In summary, the original wSSA may achieve rapid con-

vergence and lower variance than competing methods, but

only with a narrow set of biasing parameters that cannot

be reliably determined for an arbitrary system. The swSSA

demonstrates broader robustness to biasing variation, but

estimates with a high proportional error with few runs, less-

ening its advantage over the SSA. The guided wSSA solves

the issue of biasing parameter determination, but has poor

run-time performance and converges slower than the wSSA

with optimal biasing.
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Figure 1: (a)True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (red) compared with the wSSA estimate at values of 𝛿 varying from 0.025 to 1.5
(blue). Note that 𝛿 = 1 corresponds to the traditional SSA, and 𝛿 > 1 corresponds to reciprocal weighting (decreases likelihood
of reaching state of interest). (b)True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (red) compared with the swSSA estimate at values of 𝛾𝑚𝑎𝑥

varying from 1 to 5 (blue). (c) True value of 𝑃𝑡 ≤100 (𝑋5 → 40|𝑥0) (purple) compared with the Guided wSSA estimate using
each negative resolution method. Method A (yellow) and method C (blue) perform so similarly that method C is not visible.
Method B fails to resolve negatives in general, and does not complete any runs. (d) The time to completion of 105 runs of each
algorithm is compared. The relative computational complexity of the Guided wSSAmakes it much slower than othermethods.
ThewSSA (with an ideal biasing parameter) performs faster than the SSA despite performingmore calculations because a large
proprotion of runs reach the state of interest before the total simulation time is reached.
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