








bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461264; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 4: Trade-off between stability and the sensitivity of the membrane potential A
to surface charge density o. Solution branches for a given tortuosity coefficient 9 are
qualitatively plotted for several R, at fixed C%2!* (left diagram) and several C** at fixed
R, (right diagram). Quantitative solution branches and their stability limits are shown in
Figs. S2 and S3, respectively. In both cases, there is a critical o and A, beyond which
stability is lost. At fixed C%2!* (left diagram), larger membrane potentials can be achieved
for a given ¢ when R, is larger, although stability is lost at a smaller o. Similarly, at fixed
R, (right diagram), larger membrane potentials can be realized for a given o when Cs!t
is smaller, but stability is lost at a smaller o. Consequently, for a given o corresponding
to the constituents of the membrane (e.g., FeS), there is an intermediate R, at fixed O
(highlighted in red in the left diagram) or an intermediate C**!* at fixed R, (highlighted
in red in the right diagram) that furnishes the maximum achievable Aty. Arrows on the
membrane point in the direction, in which A exerts force on negative ions.
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A@@ versus scaled surface charge density ¢ diagrams (see “SI: Nondimension-
alization of Governing Equations” for definition of scaled quantities), exhibit
a distinct trend at large (Fig. 3A) and small (Fig. 3B) cell radii. In general,
At increases linearly with & at small |§], asymptotically plateauing at large
6]. Here, At increases with & at a faster rate for smaller cells. However,
when solution branches are represented with respect to dimensional quanti-
ties, the opposite trend is observed; that is, Ay increases with o at a faster
rate for larger cells. Moreover, the linear stability analysis shows that, in
general, there is a neighborhood around ¢ = 0, in which steady state so-
lutions are stable. Increasing ¢ beyond a critical value results in stability
loss. Therefore, unboundedly large membrane potentials cannot be achieved
by arbitrarily increasing the membrane surface charge density, even if it was
allowed by the laws of thermodynamics.

Other parameters besides ¢ could have controlled the development of
the membrane potential in primitive cells by altering the steady states and
their stability, such as the total salt concentration in the ocean C*' and
the tortuosity coefficient of the membrane 9. These characterize the ionic
composition of the ocean and microstructural properties of the membrane,
respectively. The tortuosity coefficient is defined as the ratio of the effective
diffusivity in the membrane and bulk diffusivity for any given ion [19, 20]
and measures how much the tortuous microstructure of porous membranes
hinders diffusive transport. It only affects the stability of ion distributions
in our protocell model, but not the steady-state solutions (see “SI: Stability
of Steady-State Solutions”).

We studied how C**!* could influence steady-state solution branches in
At versus ¢ diagrams at large (Figs. S2A,C) and small (Figs. $2B,D) cell
radii by constructing solution branches at fixed values of C*¥*. We then
determined stability along solution branches for ¢ = 0.05 (Figs. S2A,B) and
¥ = 0.1 (Figs. S2C,D). In general, lowering C*#* increases the sensitivity of
A@@ to . It also reduces the range of &, in which steady-state solutions are
stable. Lowering 9 has a similar destabilizing effect by reducing the stable
range of &. Interestingly, the stable regions of o determined in all these
case studies are within the experimentally measured ranges of surface charge
densities at mineral-water interfaces (see “Sl: Surface Charge of Minerals”).

Overall, we observe a trade-off between stability and the sensitivity of Ay
to o, manifesting itself in two distinct ways (Fig. 4). The first is connected
with the size of the cell. Here, At is more sensitive to o at larger cell
radii. However, the range of o, in which stable ion distributions can be
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achieved becomes more restricted in return. Restrictions on o, in turn, place
a constraint on the maximum achievable Avy. The second is related to the
composition of the ocean. In this case, a lower C*!* provides Ay that is
more sensitive to o at the expense of destabilization of ion distributions.

Electroneutrality Provides Selective Advantage by Minimizing Osmotic Pres-
sure and Concentration Heterogeneity

So far, we focused our discussion on the role that the membrane poten-
tial could have played as a barrier, preventing organic molecules, synthesized
by earliest metabolic reactions, from dissipating into the ocean. In mod-
ern cells, this role has been taken over by lipid bilayer membranes, while
the membrane potential together with membrane proteins are involved in
membrane bioenergetics [21], pH and metal-ion homeostasis [11], controlling
material flow into and out of the cell [22, 12], and stress regulation [23, 10].
As previously stated, a nonzero membrane potential in protocells with ion-
permeable membranes would have necessitated the violation of electroneu-
trality. By contrast, electroneutrality is always maintained in modern cells by
controlling ion transfer across the membrane using sophisticated regulatory
networks [24, 25]. It may be plausible to surmise that lipid membranes were
assimilated by primitive cells from early stages [26] once terpenoid synthesis
pathways were incorporated into primordial reaction networks [5]. However,
what selective pressures could have driven the evolution of charge distribu-
tions towards electroneutrality by selecting for ion-impermeable boundary
structures? In the following, we highlight two reasons for why electroneu-
trality could have been selected for at early stages of evolution, namely (i)
the osmotic crisis and (ii) concentration heterogeneity.

The osmotic crisis refers to membrane breakup as a result of ion accu-
mulation inside the cell [22]. This universal phenomenon, which applies to
primitive and modern cells, occurs due to the uptake of charged cofactors,
reducing agents, carbon sources, and energy sources. The elevated ion con-
centrations in the cell lower the water activity compared to the surrounding
water [27]. Consequently, water is driven through the membrane into the
cell, causing the membrane to break. To better understand how electroneu-
trality could have contributed to this process, we considered a simplified
case, involving an electrolyte solution with an anion and a cation (see “SI:
Electroneutrality and Mechanical Stability of Protocells”). We used Pitzer’s
model [28] to estimate the osmotic coefficient of the solution. Given that
the osmotic coefficient is mainly a function of the ionic strength [29], we
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Figure 5: Selective advantages provided by electroneutrality. Selective pressures are ex-
amined in a protocell model (Fig. 1), in which primordial reactions occur. Large posi-
tive membrane potentials At increase the transport rate of negatively charged reducing
agents and energy sources, while attenuating the dissipation of the organic intermediates
of metabolic reactions. They also induce a nonuniform positive electric potential field,
elevating the concentration of anions in the cell. The resulting negative charge-density
distribution (§(r) < 0) leads to heterogeneous concentration distributions for charged re-
active species, which, in turn, diminish reaction efficiencies. Small membrane potentials
do not affect the reaction efficiencies significantly. However, they can not alleviate the
dissipation of the organic intermediates as effective either. Therefore, parameter values
furnishing an intermediate range of positive membrane potentials would have been opti-
mal for the operation of early metabolic cycles. Moreover, if the total salt concentration
Cs2!* and ionic strength I, in the cell are held constant, then violation of electroneutrality
(|Qc| > 0 with Q. the total charge in the cell) increases the osmotic pressure differential AIT
across the membrane. Hence, electroneutrality could have minimized catastrophic events
in primitive cells due to osmotic crisis, promoting the evolution of complex metabolic
networks by providing structural stability.
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sought to determine how the osmotic coefficient varies with the net charge
of the solution if the ionic strength is maintained constant. We found that,
at fixed ionic strength, of all possible ionic compositions, the one yielding an
electroneutral solution minimizes the osmotic coefficient. This implies that,
primordial reaction networks could have progressed for longer times under
electroneutral conditions by taking up all the necessary ingredients from the
surroundings without undergoing any catastrophic event. As a result, the
likelihood of early metabolism incorporating additional steps to synthesize
biomolecules of higher complexity could have improved (Fig. 5).

Electroneutrality could also have enhanced the efficiency of early metabolic
reactions by creating homogeneous concentration distributions inside primi-
tive cells. To clarify this point, consider a scenario, where positively charged
membrane surfaces have generated a positive membrane potential in a primi-
tive cell. The positive membrane potential drives negative inorganic ions into
the cell, creating a negatively charged shell (i.e., electric double layer) next to
the inner surface of the membrane. Next, suppose that a negatively charged
organic molecule is consumed by some of the metabolic reactions occurring in
the cell. To efficiently utilize this molecule, the cell must maximize its concen-
tration by minimizing its rate of transport into the ocean. This minimization
is accomplished by the positive membrane potential. However, the concen-
tration of the molecule is only increased at the inner surface of the membrane
since it cannot readily diffuse past the charged shell to mix and react with
other molecules. Therefore, organic molecules are nonuniformly distributed
inside the cell, diminishing mixing and reaction efficiencies (Fig. 5).

To quantify the extent to which nonuniform concentration distributions—
referred to as concentration heterogeneity—can reduce apparent reaction
rates, we solved the species mass-balance equation Eq. (2) for a reactive
species B consumed according to the first-order rate law rp = —kCp in
a protocell with a prescribed volume-charge-density distribution (see “SI:
Concentration Heterogeneity and Reaction Efficiency”) to ascertain the ra-
dial concentration distribution C'g(r) and its volume average (Cg). We then
used the integral form of Eq. (2) to relate the total uptake flux of B and
apparent reaction rate (rg) = [, rgdV/V = —k(Cp). Given the linear
proportionality between (rg) and (Cp) in this case, (Cg)/C¥ may be re-
garded as a measure of how much concentration heterogeneity can diminish
or enhance apparent reaction rates (C% denotes the concentration of B at
the inner surface of the membrane). Lastly, we examined how (Cg)/Cl is
affected by the rate constant and surface charge density (Fig. S4).
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Our analysis revealed two distinct ways, in which concentration hetero-
geneity can affect apparent reaction rates. The first is due to the local con-
sumption of B, always reducing the apparent reaction rate of B, irrespective
of the background charge distribution arising from the inorganic ions. The
second is related to the charged shell discussed above. If the shell and B have
opposite charges, the apparent reaction rate is enhanced (Fig. S4, dashed
lines), and if they have like charges, the apparent reaction rate is reduced
(Fig. 54, solid lines). As it relates to the origin of metabolism, positive mem-
brane potentials could have favored the evolution of early metabolism by
minimizing the dissipation of organic intermediates into the ocean. However,
they could also have degraded mixing and reaction efficiencies, thereby driv-
ing the evolution of ion-impermeable membranes, specialized ion channels,
and active transport systems to maintain an electroneural intracellular en-
vironment and minimize the interaction of membrane transport and electric
double layers.

Discussion

The plausibility of life originating from prebiotic metabolic cycles pro-
moted by naturally occurring catalysts on the primitive Earth (i.e., the
metabolism-first hypothesis) has been subject to much scrutiny [30, 31, 15].
Perhaps one of the main criticisms of this hypothesis is the supposed im-
probability of metabolic cycles, comprising several distinct steps, that could
have been sustained stably by prebiotic catalysts [30, 31]. From this stand-
point, it is deemed unlikely that any assortment of minerals on the primitive
Earth could have been efficient and specific enough to catalyze diverse sets
of metabolic reactions to synthesize the essential building blocks of life [31].
These are organic molecules that must have been produced in high enough
concentrations to support the subsequent evolution of early metabolic cycles
towards networks of higher complexity—a challenging task to accomplish
without enzymes, given the comparatively poor efficiency of inorganic cata-
lysts [8].

We addressed the foregoing criticism by proposing a mechanism, through
which the concentration of organic intermediates of early metabolic cycles
could have been enhanced without sophisticated macromolecular structures
or polymerization machinery, which are believed to have been later products
of evolution [32]. In this mechanism, membrane surfaces in primitive cells are
assumed to have been positively charged due to the accumulation of tran-
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sition metals. Then, these charged surfaces could have induced a positive
membrane potential, which, in turn, would have concentrated the organic in-
termediates of early metabolic cycles inside primitive cells. We demonstrated
the feasibility of this mechanism by developing a protocell model and quan-
titatively estimating achievable membrane potentials from first principles by
solving Maxwell’s first law and mass-balance equations. We showed that
positive membrane potentials comparable in magnitude to those observed
in modern bacteria could have been generated in primitive cells for typical
charge densities arising from transition-metal surfaces.

To better understand how a positive membrane potential could have de-
veloped, we constructed the steady-state solutions of Maxwell’s first law and
mass-balance equations. We found that positive membrane surface charges
could induce a nontrivial electric potential field and a positive membrane
potential. The resulting membrane potential is proportional to the surface
charge density and inversely proportional to the total concentration of nonre-
active ions in the primitive ocean. Furthermore, our numerical experiments
indicated that violation of electroneutrality inside the cell and membrane is
essential to generate a nonzero membrane potential. However, the steady-
state results alone did not place any upper limit on the maximum achievable
membrane potential.

Thus, we examined the stability of the steady-state solutions using linear
stability analysis to identify possible constraints that could have restricted
the magnitude of the membrane potential in primitive cells. Our results sug-
gested that, for any given ionic composition of the primitive ocean, there
is a critical surface charge density and membrane potential, beyond which
concentration distributions in the cell and membrane are unstable. More-
over, we found that there is a trade-off between this stability bound and
the sensitivity of the membrane potential to surface charge density: Param-
eter values leading to higher sensitivities result in a smaller range of surface
charge densities, for which concentration distributions are stable. Beside
destabilization, large surface charge densities could also have induced het-
erogeneous concentration distributions for organic molecules, cofactors, and
energy sources inside primitive cells, adversely affecting the reaction efficien-
cies of early metabolic cycles. This is yet another reason for why arbitrarily
large membrane potentials could not have been achieved.

Lastly, our quantitative analysis revealed that the conditions on the prim-
itive Earth could have been primed for the emergence of first metabolic cy-
cles, perhaps more than previously thought. The feasibility of these cycles
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in our model relies on the existence of a positive membrane potential. In
fact, the concordance between the interconnection of metabolic reactions and
the membrane potential in primitive and modern cells is an important fea-
ture of our protocell model. It implies that, the operation of the membrane
potential and metabolism were deeply intertwined from the outset and con-
tinued to persist throughout the evolutionary history of life. Furthermore,
our results suggested that, sufficiently large membrane potentials could have
been realized for intermediate ranges of surface charge density, cell size, and
ion concentrations in the ocean to support the evolution of stable and self-
sustaining metabolic cycles. These ranges may be regarded as constraints
exerting selective pressure on the evolution of early metabolism. They would
likely have been more restrictive at the beginning and were relaxed once lipid
membranes and specialized ion channels had emerged, which, in turn, would
have rendered primitive cells more robust to environmental uncertainties.
Overall, this study provides a strong impetus for further rigorous and
quantitative investigations into mechanistic models of first metabolic cycles
and their early evolutionary stages, elucidating their transition into self-
sustaining and complex biochemical networks. More broadly, our results
suggest that the strong interconnections between several cellular processes
(e.g., controlled membrane potential and membrane transport, charge bal-
ance, ion homeostasis, metabolism) were as essential to primitive cells as
they are to extant life. These are fundamental processes that shape many
phenotypic characteristics of modern cells, possibly more than currently un-
derstood. Therefore, we expect that these fundamental processes will be
formalized more systematically in the future for biological systems and in-
corporated into realistic single-cell models to emerge in the coming decade.
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Supplementary Information

Protocell Model

We first describe the protocell model discussed in the main text that we
proposed to study the origin of the membrane potential and electroneutrality.
The model comprises three regions: (i) Cell, (ii) membrane, and (iii) ocean
(Fig. S1). The cell is a sphere of radius R, enclosed by a porous membrane
of thickness d, lying at the bottom of the primitive ocean (Fig. 1A). Our goal
is to determine the conditions, under which a positive membrane potential
can develop across the membrane. However, we consider a more general
case, where positive and negative membrane potentials can be induced by
positively and negatively charged surfaces of the membrane. The inner and
outer surfaces of the membrane are assumed to have the same charge with
the respective surface charge densities o™ and 0°"*. However, the magnitude
of the surface charge density on the inner surface is assumed to be always
greater than on the inner surface (Fig. 1A). These positively and negatively
charged surfaces could have arisen from accumulation of transition-metal
and clay minerals, respectively [5]. In our model, the inner and outer surface
charge densities are specified using two parameters according to ¢ = o
and ¢°"* = g,0, where the the surface charge density ¢ and surface charge
density ratio o, are given parameters. Other fixed parameters of the model
that were used to generate the plots in this document and the main text are
summarized in Table S1.

The ocean in our model is assumed to be electroneutral. We further
assume that the ionic composition of the ocean arises from a complete disso-
ciation of monovalent salts. For simplicity, we only consider two monovalent
salts, we refer to as salt-I and salt-1I, which yield equal amounts of the re-
spective cation and anion in the ocean upon dissociation in water. Let C5a
and C5!* denote the concentration of salt-I and salt-II, respectively. Then,
the total salt concentration O := C$2lt - C52' is half the total ion concen-
tration C, in the ocean due to a complete salt dissociation. Therefore, when
Cslt and 11y == C§1/C521 are given, the ionic composition of the ocean is
fully specified.

C:o,i = Co_o,i = Cisalt» i €{1,2},

Cy = Z (C;ﬂ- + C;”) = 205a1t7

€{1,2}
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Figure S1: Computational domains in the protocell model of life’s origins described in
Fig. 1 and the grid used to discretize the governing equations. The model comprises
three computational domains, namely the cell, membrane, and ocean. Maxwell’s first law
and species mass-balance equations are solved in the cell and membrane to ascertain the
electric potential field and concentration distributions. However, the surface potential on
the outer surface of the membrane, electric potential field, and concentration distributions
in the ocean are approximated by the Gouy-Chapman theory [33, Section 5.3].

where C ; and C ; are the concentration of the cation and anion arising
from salt i. We generally denote the concentration of ions (cations or anions)
by Cw,; without referring to the index of salt, where 7 here is the index of
ions in the system. The composition of the ocean is then imposed as far-field
boundary conditions to solve Maxwell’s first law and species mass-balance

equations in the three computational domains shown in Fig. S1.

Governing Fquations

To ascertain the membrane potential for any given set of model parame-
ters, we compute the electric potential field in the foregoing three computa-
tional domains by solving Maxwell’s first law

Vi) = — £ (S1)
Er€o
and species mass-balance equations
oC; .
T -V.-Ji+r, i€l (S2)
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Table S1: Parameters used for all the case studies presented in the main text and supple-
mentary information.

Parameter Value Parameter Value

T 145° C D (salt-I) 2 x 1072 m?/s
el 50.9672382 Dy (salt-I) 2 x 1071 m?/s
12 0.1 Dy (salt-IT) 8 x 10719 m?/s
D, 1072 m?/s Dy (salt-IT) 1071 m?/s

C 102 M

"Estimated using the revised Helgeson-Kirkham-Flowers equation of state
at 100 bar and in the temperature range 120-145° [34].

where v is the electric potential, £ volume charge density, €, relative per-
mittivity of water, £y vacuum permittivity, Z the index set of all the species
involved in the system with C;, J;, and r; the concentration, flux vector, and
production rate of species 7. The three computational domains, in which to
solve Egs. (S1) and (S2) are represented as

0<r<R., Cell,
R.<r < R.+d, Membrane, (S3)
R.+d<r< oo, Ocean

with the boundary conditions

g—qf =0 at r=0, (S4a)

g—qf = 50:0 at = R, (S4b)

Uleet = Y0membrane 8t 7= Be, (S4c)
Ulmembrane = Plocean 8t 7= Re +d, (S4d)
g—zf = —Z::) at r=R.+d, (Sde)
=0 as r— oo (S4f)
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for the electric potential and

%fi =0 at r=0, (S5a)

Jileen = Jilmembrane 3t 7 = Re, (S5b)
Cileen = Cilmemprane 3t 7= Re, (S5c)
Jilmembrane = Jilocean 86 7= Re+d, (S5d)
Cilmembrane = Cilocean 8t 7= Re+d, (S5e)
Ci—Cx,i as r— 00 (Shf)

for the species concentrations, where J; := J; - e, with e, the unit vector
along the r-axis in the spherical coordinate system. The boundary conditions
Egs. (S4b) and (S4e) arise from a charge-balance constraint applied in the
electric double layer theory [33, Section 5.3]. It requires that the total charge
resulting for the accumulation of the counter ions in the domain exposed to
a charged surface counterbalances the total charge of the surface. Applying
this constraint to the electric double layers formed in the cell and ocean yields

Q.+ o mA™ =0, (S6)
Qo + goutAout — O, (S?)

where ). and @), are the total charges accumulated in the cell and ocean with

A™ and A°" the areas of the inner and out membrane surfaces. The total
charges can then be related to g—lff using Gauss’s law, which is the integral

form of Maxwell’s first law. For example, Eq. (S4b) can be derived from
Eq. (S6) in the following way

/ Eondd— -2 o [ _vponaa- &
Ain

Er€o Ain Er€o
) a . in
@),
or),_p  Erfo or)._p &0
with E the electric field and n unit outward normal vector to A™. Equa-
tion (S4c) can be similarly derived from Eq. (S7).

The volume charge density in Eq. (S1) is determined from the concentra-
tion of the species in the system

§=F) 2C (S8)

1€T
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with F' the Faraday constant and z; the valence of species i. The flux vector
consists of a diffusive and an electric-potential component, which is expressed

Ji = ~DiVC; + - CVY), (S9)

where R is the universal gas constant and 7' temperature.

Before proceeding to the steady-state solutions of Egs. (S1) and (S2), it
is helpful to examine these equations separately for two groups of species.
Here, we classify the species involved in our model into a reactive and non-
reative group. The reactive species are those that would have participated in
early metabolic reactions occurring inside the cell, such as reducing agents,
energy sources, and organic molecules. The nonreactive species are the in-
organic ions, which would have been present in the primitive ocean. The
rates of nonenzymatic reactions in the earliest metabolic cycles would have
been much smaller than enzymatic reactions in modern metabolic networks.
Therefore, the concentrations of nonreactive species involved in primitive
reactions would have been much smaller than those of metabolites in mod-
ern organisms and especially of inorganic ions in the primitive ocean [14].
Accordingly, the volume charge density in Eq. (S1) can be approximated

EmTFY %G (S10)

Inrxn

where 7., the index set of nonreactive species. Using this approximation
along with r; = 0 for nonreactive species, one can solve Egs. (S1) and (S2)
for nonreactive species independently of the reactive species. Once the elec-
tric potential has been ascertained in this manner, the species mass-balance
equations for reactive species can be solved without needing to couple them
to Maxwell’s first law.

We conclude this section by highlighting the main assumptions used in
the remainder of this document to simplify the governing equations and their
solutions:

e Governing equations (steady states and transient perturbations) inherit
spherical symmetry from the spherical geometry of the protocell model.

e Surface charge density can vary independently of other model parame-
ters, such as cell radius, membrane thickness, and the ionic composition
of the ocean.
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The second assumption is only relevant to parametric studies of the steady-
state solutions with respect to the surface charge density o. As will be
discussed later (see “Constructing Steady-State Solution Branches”), we con-
struct steady-state solution branches with respect to o at fixed C*!*. This is,
of course, a simplifying assumption because when the thermodynamic state
of the system is specified (i.e., when the temperature, pressure, and ionic
composition are given), o is determined by the thermodynamic constraints
arising from the equilibrium of the charged surface and the electrolyte so-
lution it is subject to [17]. Therefore, in general, o and C,, cannot vary
independently of one another.

Nondimensionalization of Governing Equations

To alleviate computational errors associated with the scaling of the proto-
cell model that arise from the numerical solutions of the governing equations,
we introduce the dimensionless quantities

7 :=r1/R,, d:= d/R., t :=t/T, V= Fy/(RT),

N R R S11
Ji = RCJi/(DSOS), T’AZ = Rzri/(DSCS), CZ = Ci/Cs, Z)z = Dz/Ds ( )

to nondimensionalize these equations, where C and D, are concentration
and diffusivity scales. Accordingly, after applying the spherical symmetry
assumption, the dimensionless forms of Eqgs. (S1) and (S2) are obtained

L0 (7;2(%) = ¢, (812)

72 Or or

~ =D |5 ? i — | f A
oi [ﬁ@f(r af)” ar oF T 72 aw(r 8f> e
(S13)
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which are to be solved subject to

50
87775 =0 at r=0, (S14a)
oy
=¢" at r=1, S14b
o7 o at 7 ( )
|l =4 at =1, (S14c)
cell membrane
0 =’ at 7 =1+d, (S14d)
membrane ocean
) .
azf = -6 at 7F=1+d, (S14e)
=0 as 7 —= o0 (S14f)
for the electric potential and
aC;
5 0 at 7=0, (S15a)
Ji| = at =1, (S15b)
cell membrane
Gl =G at =1, (S15¢)
cell membrane
j = J; at 7 =1+d, (S15d)
membrane ocean
CA’i = C’l at r=1 + CZ, (SlSe)
membrane ocean
Ci— Coi as #— o0 (S15f)
for the species concentrations, where jz = j, - e,. Several dimensionless
parameters appear in these equations, the definitions of which are
- FR? FR, F2R2C, R?
. & L o — c e (S16)

T RTee’ © " RTeey” ' Rleey, | D,

Note that, throughout this document, the dimensionless forms of all the other
concentrations, electric potentials, and surface charge densities are denoted
as the corresponding hatted quantities and defined similarly. Using these
dimensionless parameters, Eq. (S9) is nondimensionalized as

= Uzziéi ) Z % (S17)

leI /L'GIDI'XD
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Steady State Solutions

In this section, we present the steady state solutions of Eqgs. (S12) and
(S13) for nonreactive species. We approximate the steady-state solutions in
the ocean using the Gouy-Chapman theory for simplicity [33] (see “Elec-
tric Potential Field in Ocean from Gouy-Chapman Theory”) and compute
numerically exact solutions of Maxwell’s first law and species mass-balance
equations in the cell and membrane. Because there are no sources or sinks for
nonreactive species in the cell or membrane, jz — 0 for ¢ € T« as the solu-
tions of Egs. (S12) and (S13) approach their steady states. This observation
allows to simplify the construction of steady-state solutions as demonstrated
in the following

Ji = —D; (dci + ZZCA'%> =0= dc; = —Ziéi%

dr “dr dr dr
= dInCy = —zdY = Ci(#) = Co, exp |:_Zz' (1@(?) - wo)] 7

where C’Oﬂ» and 1&0 are the concentration of species ¢ and electric potential on
one of the boundaries of the computational domain. Note that this simplifica-
tion does not apply to reactive species, for which 7; # 0, because steady-state
fluxes can generally be nonzeros.

For the cell and membrane, the boundary of interest is A™ and A°", re-
spectively. The surface concentrations and surface potential on A°"*, which
are ascertained from the Gouy-Chapman theory in the ocean provide the
boundary conditions for the membrane. The surface concentrations and sur-
face potential on A™ from the solution of the membrane, in turn, furnish the
boundary conditions for the cell. Once these boundary conditions are sub-
stituted in the general expression derived above, the following concentration
distributions in the cell and membrane are obtained

~

Ci(7) = Oy exp [—Zizﬁ(f)] i€ T (S18)

which describe the functional dependence of C; on zﬂ both in the cell and
membrane. However, the concentration distributions C;(#) in the cell and
membrane are not the same because the electric potential field @/A)(f’) in these
domain are different. Substituting Eq. (S18) in Eq. (S12) using Eq. (S17)
furnishes

LA () 0§ iy o0

Pdr | dr |
1€ Tnrxn
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This form of Maxwell’s first law needs not be coupled to the species mass-
balance equations Eq. (S13) to provide the electric potential field. We nu-
merically solve this equation using finite-difference methods (see “Numerical
Approximation of Steady-State Solutions”) subject to the boundary condi-
tions Bqs. (S14a)—(S14d) to compute ¥(7) in the cell and membrane for a
given set of model parameters. Once the electric potential field has been com-
puted, it can be back-substituted in Eq. (S18) to provide the concentration
distributions.

Electric Potential Field in Ocean from Gouy-Chapman Theory

As previously stated, we approximate the electric potential field and con-
centration distribution of ions in the ocean using the Gouy-Chapman the-
ory. This theory provides analytical solutions for ¢(#) and Cy(#) when only
monovalent ions are present in an electrolyte solution and the domain is one-
dimensional in the Cartesian coordinate system [33, Section 5.3]. In this
theory, ion concentrations are explicitly expressed as functions of the electric
potential field. The functional form of these expressions is identical to that
in Eq. (S18). The electric potential field and surface potential are given by

D(7) = 4 tanh ™! [tanh (wt /4) exp (—(f 14 /12)] , (S20)
JOU — 9 ginh ! (é&ont /2) , (S21)

where £ := /R, = 1/4/2nC with ¢ the Debye length defined as

| RTe,.e9
g = W. (S22>

Numerical Approximation of Steady-State Solutions

We briefly discuss the numerical techniques, with which to solve Eq. (S19).
We discretize Eq. (S19) over the grid shown in Fig. S1 and approximate
the first and second derivatives of v that arise from its left-hand side using
fourth-order finite-difference schemes (see Tables S2 and S3). Substituting
these approximations in Eq. (S19) yields a nonlinear system of equations

AY =Db(,5), (S23)

where '(/A) = [7,@1;1[)2; e §¢Nc§ e ;IZJN] € RY*! is the vector of the electric
potentials evaluated at the nodes of the grid shown in Fig. S1. Here, A €
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RN*N is a constant matrix comprising the coefficients of the discretization

schemes and b € RV¥*! is a variable vector and nonlinear in '«Zv It results
from the right-hand side of Eq. (S19) evaluated at the grid points and the
boundary conditions Egs. (S14a)—(S14d).

Table S2: Forth-order finite-difference schemes to approximate the first derivative of a
function f(#) on the grid shown in Fig. S1. Expressions in the Scheme column are deriva-
tives evaluated at 7;, where f; := f'(7;). Note that A7 := A7, when 1 < j < N, and
A# = Af,, when N.+1 < j < N (see Fig. S1).

Index Scheme

1 —25f;+48fj4+1—36fj42+16f;13—3fj14

- 12A7
. —3fj—1—10f;+18fj+1—6fj12+fj+3
J=2, Net1 . BT E—
3< J < N.—2 fj—2_8fj—l+8fj+l_fj+2
Ne+2<j<N-2 1287
. —fj—3+6fi—2—18fj—1+10f;+3fj11
J = Nc - 17 N -1 : : 12A]F : :
. 3 a—16f;_3+36fi_o—48F;_14+25f;
j=Ne N : DA ’ !

Table S3: Forth-order finite-difference schemes to approximate the second derivative of
a function f(#) on the grid shown in Fig. S1. Expressions in the Scheme column are
derivatives evaluated at 7;, where f]'/ = f"(#;). Note that A7 := Af; when 1 < j < N,
and A7 := A, when N, +1 < j < N (see Fig. S1).

Index Scheme
j=2 N.+1 10fj71_15fj_4fjJ£;Z;§fj+2_6fj+3+fj+4
3<j<Ne—2 —fj=2416/5-1 =30/ +16 11— fj+2
Ne+2<j<N-2 1247
. i_4—6fi_3+14f; _o—4f;_1—15f;+10f;
j= NC _ 17 N _ 1 fJ 4 f] 3 le;Afgj 1 fJ f.7+1

We solve Eq. (S23) iteratively in two steps:

e Pseudo-linear step: The procedure starts from a crude initial guess

~0 ~
1 . At iteration n, 1/)n is computed by solving the linearized system
e

A'(/Ajn = b(y 1,67), where 12)n and 12111_1 denote the vector of electric
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potentials at iterations n and n — 1, respectively. This step is relatively
robust with respect to the initial guess but converges slowly to steady-
state solutions. The approximate solution from this step is then used
as an initial guess for the next step.

e Newton-Raphson step: Iterations start from the approximate solution
furnished by the previous step. At any given iteration, derivative infor-
mation is used to accelerate convergence towards steady-state solutions.
Given the quadratic convergence rate of Newton’s method, this step can
provide highly accurate solutions with much fewer iterations than the
previous step. However, this procedure can also diverge if the initial
guess obtained in the previous step does not lie in the convergence re-
gion of Newton’s method. Therefore, it is not robust with respect to
the choice of initial guess.

Constructing Steady-State Solution Branches

Constructing the solutions of Eq. (S19) using the computational proce-
dure introduced in the previous section is generally time-consuming, render-
ing parameter-sweep computations challenging to perform. Therefore, we use
Keller’s arc-length continuation method [18] to construct steady-state solu-
tion branches. The goal is to compute parametric solutions $(¢) of Eq. (S23)
efficiently by leveraging a predictor-corrector scheme so as to avoid the com-
putational costs associated with repeated execution of the foregoing pseudo-
linear step—the computational bottleneck of the procedure outlined in the
previous section. Here, we seek 9(5) as parametric solutions of the problem

G(¥,6) := A —b(1h,6) =0 (S24)

subject to '
113+ 6% =1, (525)

where overdot denotes differentiation with respect to the arc-length s. The
predictor step in branch-continuation methods requires the tangent vector x,
where x := [¢; 5] [18]. The derivatives with respect to s are ascertained by
solving
) G ,1 | 9G
by | w7 o (s26)
13 + 0% — 1
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using Newton’s method. Suppose that the vector of steady-state solutions
x, at the nth arc-length step along the solution branch is known with s,
the corresponding arc-length. At this step, the tangent vector x,, can readily
be computed by solving Eq. (S26). The goal now is to compute the solution
vector at the next step x,,.1 corresponding to s,.11 = s, + As for a prescribed
As. First, an auxiliary function is introduced

N(‘»Abn—&-h a'n+1) = 12)3(/‘2)714-1 - Ilz)n) + &n(6n+1 - 671) - (Sn+1 - Sn)a (S27>

which is a linearized version of Eq. (525). Next, x,41 is computed by solving

0 ~ G {bn 75—n
H(wn—&-l? 0n+1> = (A ! R +1)
N(¢n+17 UnJrl)

using a predictor-corrector scheme. In the predictor step, the tangent vector
X, is used to construct an initial guess for x,,; as follows

—0 (S28)

o .
X, = Xy + X, As,

which is accurate to first order in As. In the corrector step, x,.; is com-
puted to high accuracy by solving Eq. (S28) using Newton’s method with
X, as an initial guess. A key advantage of predictor-corrector approaches
is that, the initial guess generated in the predictor step usually lies in the
convergence region of Newton’s method even for moderately sized As. More-
over, constructing the initial guess in the predictor step is computationally
much less costly than the pseudo-linear step discussed in the previous section.
Therefore, parameter-sweep computations can be performed much more effi-
ciently using branch-continuation methods than the procedure introduced in
the previous section, if it were to be executed at all points along the solution
branch.

Stability of Steady-State Solutions

We determine the stability of steady-state solutions using linear stability
analysis. Let ¢°(7) and C?(#) denote the steady-state solutions of Eqs. (S12)
and (S13). Upon perturbations, the time-varying solutions of Eqgs. (S12) and
(S13) can be expressed as

W)
>

(Z,7),
i(&,7),

ﬁ>
>

Pt 7) = 9O(7) +
(i, 7) = C(F) +

29
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where @/AJ’ and C’; are infinitesimal perturbations induced in the protocell by
fluctuations in environmental conditions. To simplify the analysis, we assume
that these fluctuations can only destabilize the concentration distributions
in the cell and membrane without affecting the steady state of the ocean.
Accordingly, the concentration and electric-potential boundary conditions
on A°" are not influenced by these perturbations. We further assume that
instabilities are mainly caused by concentration perturbations, neglecting
the disturbances that they can induce in the electric potential field (i.e.,
g (t,7) = 0). Thus, we consider the following perturbation ansatz

Ci(,7) = exp(Nit)pi(7) (S30)

with )\; the eigenvalue characterizing the dynamics of species i. Substituting
Eqgs. (529) and (S30) in Eq. (S13), taking into account all the assumptions
discussed above and neglecting the second- and higher-order terms in C!, we

arrive at
2p; (2 Y dp o N\ 0<r<l1
- i ~ i - i = O, ’ ~ S?)l
dff2+(f+z @ )\ T )r lcicted O
subject to
dp;
d’; =0 at 7=0, (S32a)
dpi | 4y dpi _dy° .
1 + Zia P ) =19 i + i P b at =1, (S32b)
p’i|ce11 = pi|membrane at 7= 17 (S32C>
pi=0 at 7=1+d, (S32d)
where D; is a diffusivity coefficient defined as
D;, 0<r<1,
D=4 " " . (S33)
D¢t l<r<1l4d

with D; the the bulk diffusivity of species 7 in water and DT its effective diffu-
sivity in the membrane. In our protocell model, the membrane is assumed to
have a porous structure made of minerals, the effective diffusivity of which
can be expressed as DT = 9D, with o the tortuosity coefficient [19, 20].
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Using these definitions, the boundary condition Eq. (S32b) is derived from

Eq. (S15b).
Equations (S31) can be recast into the following Sturm-Liouville form for
each ¢ 4 q
r pl o J— . v .
3 O] = = Ao (584
where
p(7) = pi(7), (S35a)
q(7) = zipa(P)E°(7), (S35b)
w(r) := ui(7) /Dy (S35¢)
with )
() = 2 exp {zﬂpom} . (S36)

The Sturm-Liouville problem Eq. (S34) is called regular if it is subject to
some variants of homogeneous Robin boundary conditions, p(#),w(#) > 0,
and p(7), dp(#)/d7, (), and w(7) are continuous on [0,1 + d] [35]. The
following properties of regular Sturm-Liouville problems are of particular
relevance to linear stability analysis [36]:

e Eigenvalues are discrete and real.
e Eigenvalues are bounded from above.

e Eigenfunctions form a complete orthogonal basis for an L, Hilbert
space.

Moreover, the solutions of a regular Sturm-Liouville problem are continu-
ously differentiable [36]. However, the Sturm-Liouville problem that arise
from Eq. (S31) is not regular. Firstly, the boundary condition at # = 0 is
singular because p(0) = 0. Secondly, p(7), ¢(7), and w(#) are nonsmooth at
7 = 1. Nonetheless, modern treatments of the Sturm-Liouville theory allows
these functions to satisfy more relaxed conditions, such that the foregoing
three properties still hold. Accordingly, it suffices for 1/p(7), q(7), and w(7) to
be locally Lebesgue integrable—a condition satisfied by Eq. (S35). Although,
the solutions (i.e., eigenfunctions here) may satisfy weaker smoothness and
continuity properties. This generalization followed from the important find-
ing that Hilbert function spaces can be decomposed into mutually orthogonal
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Figure S2: Stability along steady-state solution branches of At parametrized with respect
to the surface charge density o at o, = 0.02 with (A) R. = 107 m and 9 = 0.05, (B)
R.=10"%m and 9 = 0.05, (C) R. = 107% m and ¢ = 0.1, and (D) R. = 1078 m and
¥ = 0.1. Colorbars indicate the value of C*** = C,/2 that corresponds to each curve in
(A)—(D). The tortuosity coefficient ¥ only affects stability without altering steady-state
solutions.
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singular and absolutely continuous subspaces for self-adjoint operators (see
the work of Zettl [35] for more details).

Given the properties of Sturm-Liouville problems discussed above, it suf-
fices to show that the maximum eigenvalue of Eq. (S31) subject to the bound-
ary conditions Eq. (S32a)—(S32d) is negative to prove that a steady-state so-
lution is stable. We, thus, solve Eq. (S31) numerically using finite-difference
methods following a similar procedure as discussed before (see “Numerical
Approximation of Steady-State Solutions”). Discretization of Eq. (S31) sub-
ject to Eq. (S32a)—(S32d) results in the following systems of equations

Ri(0°\) =0, i€ Lo, (S37)

which have a nontrivial solution if and only if Ri(gﬂo, A;) are singular. The
determinant can be used as a measure of how far a matrix is from being
singular, the application of which leads to the following condition

det R;(¢°, \) =0, i € Ty (S38)

Determining matrix singularity is computationally expensive. Therefore, we
consider an alternative condition for R;(¢°, \;) to be singular by requiring
its minimum singular value to vanish

O min Ri(lﬁoa )\Z) = 07 Z € Inrxm <839>

where 0y, 1S an operator returning the minimum singular value of R; (not to
be confused with the surface charge densities introduced in previous sections).
Solving Eq. (S39) is computationally less expensive than solving Eq. (S38)
since the singular values of R; can be efficiently computed by leveraging its
sparsity structure. Once Eq. (S39) has been solved, the stability of steady-
state solutions can be determined by the sign of \*** for all ¢ € Z,,;x,, where

~

An2 is the maximum eigenvalue of R; (1%, );) (see Figs. S2 and S3).

Concentration Heterogeneity and Reaction Efficiency

So far, we restricted our analysis to electric potential fields that could
have been indued by nonuniform distributions of inorganic ions of the prim-
itive ocean (i.e., nonreactive species). These nontrivial potential fields could
have affected the operation and evolution of early metabolic cycles. Many
of the organic molecules, reducing agents, and energy sources participating
in these metabolic reactions would have been negatively charged, the trans-
port of which would have been altered by the background electric potential
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Figure S3: Stability limits along steady-state solution branches of Fig. S2 in the positive
orthant. (A) Surface charge density, at which stability is lost. (B) Membrane potential,
at which stability is lost.

field arising from the inorganic ions. Therefore, the resulting concentration
distribution of these reactive species would have been heterogeneous, which,
in turn, would have adversely affected the efficiency of early metabolic reac-
tions. In this section, we study this phenomenon by solving diffusion-reaction
mass-balance equations for reactive species that are subject to a prescribed
background electric potential field in the cell.

Unlike nonreactive species, the steady-state fluxes of reactive species are
generally nonzero. Hence, the solution strategy that we previously discussed
(see “Steayd-State Solutions”) for nonreactive species is not applicable here.
The concentration distribution of reactive species is also not described by
Eq. (S18). Therefore, we approximate the steady-state solutions of Egs. (S12)
and (S13) for reactive species using perturbation techniques. The goal is to
quantify the extent to which reaction efficiencies are affected by the back-
ground electric potential field in the cell. In the following, we first describe
a quantitative measure of reaction efficiencies.

Suppose that B is a negatively charged reactive species and a substrate
consumed by metabolic reactions taking place in the cell, which is to be im-
ported from the ocean into the cell (e.g., reducing agents or energy sources).
To maximize the rate of metabolic reactions, the concentration of B in the
cell must be maintained at the highest possible level. A positive membrane
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potential can enhance the transport rate of B from the ocean to the cell,
increasing its concentration at the inner surface of the membrane C%, which
could potentially enhance the rates of metabolic reactions. However, the
overall consumption rate of B in the entire volume of the cell depends on its
concentration distribution. A uniform distribution Cg(r) = C® would ensure
that B is maximally utilized by the metabolic reactions in the cell. However,
uniform concentration distributions are generally not achievable due to local
consumption of B and the background electric potential field. To quantify
how concentration distributions can affect the overall consumption rate of
B, we study a macroscopic description of its reaction-diffusion mass balance
by examining the integral form of Eq. (S13). Integrating Eq. (S13) over the
volume of the cell for B and applying the divergence theorem result in

d(C .

(Cp) _ 3Js + (P5), (S40)

df

where

() =~ / CpdV, (S41a)
VJy
1 ~

(F5) = — / Fpdl (S41b)
Vv

with V := V/R3 = 47 /3. We refer to (75) as the apparent production rate of
B, which is a negative number here because it is consumed by metabolic re-
actions. The rate, at which the products of the reactions that B participates
in are generated is proportional to —(rg). Clearly, concentration distribu-
tions that maximize —(7g) favor the progress of these metabolic reactions.
To quantify the extent to which concentration distributions can enhance the
overall rates of these metabolic reactions, we compare (7g) for a given con-
centration distribution to what it would be if B was uniformly distributed in
the cell—the ideal distribution that maximizes its utilization. Accordingly,
we define the following reaction efficiency for the consumption of B

<f’B>éB(f)

(FBey

¢B = (S42)

The relationship between (rp) and (Cg) for nonlinear rate laws is not straight-
forward. Hence, we assume that B is consumed in the cell according to the
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first-order rate law rp = —kC'p to simplify the analysis. The apparent re-
action rate from this rate law is also linear with respect to the average con-
centration, that is (rg) = —k(Cp). Accordingly, the reaction efficiency with
respect to this rate law is

(CB)
Ch’
which we use as a measure of how much concentration heterogeneity can
diminish or enhance the rates of metabolic reactions consuming B. Note
that 0 < ¢p < 1 only when B is negatively charged. However, when B is
positively charged, ¢p can be greater than one.

Next, we compute the steady-state solutions of Eq. (S13) for B us-
ing finite-difference techniques along the solution branches shown in Fig. 3.
These solution branches represent the steady states of the electric potential
field induced by the inorganic ions of the ocean parametrized with the surface
charge density. We express the dimensionless reaction rate 7z with respect
to the Thiele modulus Ap and construct the concentration distribution of B

¢ = (S43)

in the cell that arise from the first-order rate law rg = —kC'g by solving
1d [ ,dCs ACsddp  |zp d [ ,d¢ o | -
—— —-— — | = A5 Cg=0 S44
r“2df<r df)”B & @ | Ea @ BB (544)
subject to
v
zB =0 at 7=0, (S45a)
Cp=CF at 7#=1, (S45b)
where
R2k
Ap = - 4
B D, (546)

is the Thiele modulus [37].

Once the concentration distribution of B has been determined, we com-
pute the reaction efficiency from Eq. (S43). As expected, the reaction effi-
ciency for positively charged species is higher than for negatively charged ones
because these ions must diffuse through a negatively charged medium to par-
ticipate in metabolic reactions that occur in the cell (Fig. S4). Higher surface
charge densities cause more negative ions to accumulate in the cell, amplify-
ing this effect. The reaction efficiency is always less than one for negatively
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Figure S4: Average concentration of the cation (dashed lines) and anion (solid lines)
arising from the dissociation of a monovalent salt inside the cell at C51* = 0.1 M, A% =
0,10, 20,30, 40,50, and (A) R, = 107 m and (B) R. = 1078 m. Each Thiele modulus Ap
corresponds to a solid-dashed curve pair, increasing along the direction indicated by the
arrows. Red lines represent the nonreactive limit, where Ag — 0.

charged species. However, it can exceed one for positively charged species if
the surface charge density is large enough. Note that, the background charge
induced by the inorganic ions of the ocean is not the only parameter affecting
the reaction efficiency. The local consumption of reactants can also result
in heterogeneous concentration distributions, irrespective of the background
charge. This effect is more conspicuous in the limit ¢ — 0. Even though the
entire volume of the cell is electroneutral in this limit, the reaction efficiency
can be less than one (Fig. S4). Note also that, diminished reaction efficiencies
as a result of local mass sinks is more pronounced at larger Thiele moduli.

Electroneutrality and Structural Stability of Protocells

Electroneutrality is often treated as a fundamental law governing the state
of electrolyte systems [29]. It is also regarded as a fundamental constraint
that biological systems are subject to [25, 11]. As such, it is believed to un-
derlie regulatory responses to several stress conditions [24, 11]. However, as
discussed in the main text, violation of electroneutrality is essential for the
mechanism that we proposed to promote the evolution of early metabolic
cycles in primitive cells that lack lipid membranes and enzymes. To cor-
roborate this mechanism, we examine the possibility that electroneutrality
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was not a fundamental constraint at the earliest stages of evolution. The
goal is to understand whether electroneutrality could have resulted from the
evolution of lipid membranes, specialized ion channels, and active transport
systems selected for to minimize catastrophic events due to osmotic crisis.
From this perspective, electroneutrality is an emergent property of evolv-
ing systems, self-optimizing towards a state of maximal structural stability
through natural selection.

Here, we quantitatively examine the relationship between osmitic crisis
and electroneutrality through a simplified case study. We consider an elec-
trolyte, comprising a cation M+ and an anion X~. Our objective is to
determine how the osmotic pressure arising from this system varies with the
charge density of the solution and assess if the minimum osmotic pressure is
attained when the solution is electroneutral. There are two main variables
that determine the osmotic coefficient of an electrolyte, namely the (molal)
ionic strength I, and the total (molal) concentration m of the solution [29].
The idea is to focus solely on the role of electroneutrality and identify the
(molal) charge density &, that minimizes the osmotic coefficient ¢ at fixed
I, and m.

The state of single electrolyte systems M X at fixed temperature and
pressure is specified by two variables, namely the molal concentrations m
and my. Hence, specifying &,,, I,,, and m for a general single electrolyte
system overdetermines its state. However, for a monovalent electrolyte, such
as the one we considered here, I, = m/2. Thus, the charge density can
freely vary without causing an inconsistent degree of freedom. We begin by
stating the virial expansion of the excess Gibbs energy of mixing

Gex B
nyRT

f(]m) + Z wijmimj + Z wijkmimjmk —+ .. y (847)

ij ijk

which is the basis of Pitzer’s model, where n,, is the mass of water in kg [29].
The first term in Eq. (S47) captures long-range electrostatic forces and the
rest capture medium- and short-range interactions among ions. To simplify
the analysis, we omit the terms corresponding to interactions among three or
more ions as they are negligible in most cases [38]. Differentiating the excess
Gibbs energy with respect to n,, yields the osmotic coefficient

Lydf/dl, —f 1 m?
- +mizjujmmj+ (m (S48)
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where

Em 1= zmmay + z2xmx,

(2 2

Ly = (z3ymum + 2xmx) /2,

Uiy 1= Wij + Imdww/d[m
To make the analysis more concrete, we consider a case, where the electrolyte
M X is contained in a protocell lying at the bottom of the primitive ocean,
such as that shown in Fig. 1. The osmotic pressure differential across the
cell membrane is derived from Eq. (S48)

ATl
PuwRT

Hout

— 4
S RT (549)

ij

where AII := IT'" — II°% is the osmotic pressure differential, II'™ pressure in
the cell, TI°™ pressure in the ocean, and p, reduced water density (see the
work of Akbari et al. [11] for definition and detailed discussion). We assume
that the thermodynamic state of the ocean is specified, so that the last term
in Eq. (S49) is a constant. In this equation, only the term corresponding
to the second virial coefficient of Eq. (S47) on the right-hand side depends
on &,,. Therefore, it is the only variable term, with respect to which AII is
minimized. Accordingly, we seek &, that minimizes

i

For the monovalent electrolyte M X, the concentration of ions can be ex-
pressed with respect to m and &, as

m+&n
my = 9 5
- _m—Em (Sh1)
XT

Substituting Eq. (S51) in Eq. (S50) and nondimensionalizing the resulting
terms yields

é = agffn + alfm + ag (S52)
where
ap = Uy + 2Upx + Uxx, (S53a)
a; = 2(ﬂMM — I_LX)(), (S53b)
Qo = Uy — 2Upmx +Uxx <S53C)
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with 6 := 40/m, i;; == u;ym, and & := &/m.

Next, we leverage the properties of the coefficients a; in Eq. (S53) that can
be deduced from experimental observations. First, thermodynamic mixing
properties are not significantly affected by the diagonal second virial coef-
ficients for most electrolyte systems, so that wyy = 0 and wxy = 0 [39,
Section 2.5], which, in turn, results in uyp = 0, uxxy = 0, and a; = 0.
Second, ag < 0 for a wide range of dilute electrolytes (7, < 0.25 mol/kg-w)
29, Eq. (50) and Table 1], from which it follows that as > 0. One can deduce
from these empirical properties and the functional form of @ in Eq. (S52) that
6 has a minimum, and it is attained at &,, = 0.

Finally, we emphasize that the results presented in this section for a
single monovalent electrolyte cannot be regarded as a rigorous proof. Never-
theless, they support the hypothesis that electroneutral systems are subject
to minimal osmotic stress. More analyses are required to generalize these
results to mixed electrolytes with polyvalent ions. Given the role of elec-
trostatic forces in short- and medium-range ion-ion interactions, it may be
plausible to assume that the nonlinear proportional relationship between the
osmotic pressure differential AIl and absolute charge |¢,,| is generalizable to
more complex electrolyte systems. However, whether the minimum osmotic
pressure is always attained exactly at &, = 0, regardless of the molecular
characteristics of the ions involved, warrants further investigations.

Surface Charge of Minerals

The mechanism we introduced in this paper to generate positive mem-
brane potentials hinges on porous membranes with positively charged sur-
faces. In this mechanism, the membrane potential is larger if the surface
charge density on the inner surface is larger than on the outer surface of the
membrane. From our case studies, we found that Ay ~ 100 mV can be
achieved in small protocells with radius R, ~ 107% m for Ao ~ 0.1 C/m?
(see Fig. S3), where Ao := o™ — g°" is the surface-charge-density differential
across the membrane. In this section, we describe a specific scenario based
on experimental measurements of the surface charge density for how such
positive surface charges could have been realized in primitive cells.

Solid surfaces, such as those of minerals, can adsorb or desorb ions (usu-
ally Hf, OH~, or other ions that may be present in the system) from or
to water when exposed to an aqueous phase. As a result, these surfaces
may acquire a surface charge. When the temperature, pressure, and ionic

40


https://doi.org/10.1101/2021.09.21.461264

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461264; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

0.4
Mineral-II Membrane
Mineral-I Hydrothermal fluid
gout N\ ¥
L
E o —
O /
\; o_in
Interface plE =10
. pH=5
Point of zero charge OER
-0.4
1 7 9 14
pH

Figure S5: Typical surface charge density of minerals measured as a function of pH us-
ing potentiometric-conductometric titration experiments [40, Chapter 1]. A pH gradient
across the membrane of the protocell model shown in Fig. 1 is assumed to cause a surface-
charge-density differential between the inner and outer surfaces of the membrane. The
protocell resides near a hydrothermal vent at an interface between two fluids with pH ~ 9
and pH =~ 5. The fluids flow into the cell from the alkaline vent and acidic ocean. The
acidic and alkaline fluids neutralize into water, such that pH & 7 in the cell. Mineral-I
and Mineral-II are two hypothetical minerals that exhibit different functional forms for
o(pH). For the given pH gradient between the hydrothermal vent and ocean, the surface
charge densities formed on the inner and outer surfaces of a membrane made of Mineral-I
are almost identical. However, a large surface-charge-density differential can be generated
across a membrane made of Mineral-II, such that ¢ and 6°" are both positive, similarly
to the scenario described in the left diagram of Fig. 1B.

composition of the electrolyte that mineral surfaces are subject to are spec-
ified, the surface charge density is a function of pH. At fixed temperature
and pressure, the functional form of o(pH) for each mineral depends on its
constituents and the composition of the electrolyte, which can typically be
represented by a monotonically decreasing function, such as those shown in
Fig. S5 [40, Chapter 1]. However, non-monotonic o(pH) have also been ob-
served (for example, see Fig. 6 in the work of Nyamekye and Laskowski [41]).
Nevertheless, we only focus on minerals that exhibit a monotonic o(pH) in
this section.

The monotonicity of o(pH) implies that |o| attains its maximum in the
alkaline and acidic limits. Accordingly, surface charge densities for most
minerals are observed in the range o(pH = 1) < ¢ < o(pH = 14). For
example, surfaces charge densities in the range —0.4 < o < 0.4 C/m? for
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synthetic and natural ferrous minerals, which are relevant to the conditions
on the primitive Earth [5, 42], have been reported [43, 44] with a similar
o(pH) to those shown in Fig. S5. This range generally agrees in order of
magnitude with the stable ranges of ¢ that we ascertained in our case studies
(see Figs. S2 and S3).

Alkaline hydrothermal vents are considered to be one of the likely en-
vironments, in which life could have originated [8, 1]. In these environ-
ments, COq-rich acidic ocean water (pH =~ 5) could have interfaced with
alkaline hydrothermal fluids (pH ~ 9), providing suitable conditions for the
first metabolic reactions to emerge [42]. Recently, experimental evidence has
been found, suggesting that such pH gradients could have provided sufficient
energy to drive the thermodynamically unfavorable carbon-fixation steps of
early metabolism under prebiotic conditions [45]. Here, we suggest that the
pH gradient between hydrothermal fluids and the primitive ocean could also
have generated sufficiently large surface-charge-density differentials across
protocell membranes (Ao ~ 0.1 C/m?).

To clarify the point raised above, consider a protocell, residing at an
interface between a hydrothermal vent and ocean (Figs. S5). Suppose that
acidic and alkaline fluids flow into the cell, neutralizing each other, such
that pH =~ 7 in the cell. The neutral pH in primitive cells would have been
optimal for the emergence of surface metabolism at the origin of life [5].
The difference between o™ at pH = 7 and ¢°** at pH = 9 may be large or
small, depending on the constituent minerals of the membrane. Mineral-I and
Mineral-IT in Fig. S5 represent two hypothetical minerals that could generate
small and large Ao, respectively. A key difference between the functional
form of o(pH) for these minerals is in the point of zero charge (PZC) [40,
Chapter 1]. The PCZ occurs at pH =~ 7.5 for Mineral-I. Thus, o™ and
o°" are both small, so that Ao ~ 0 C/m?. However, for Mineral-II, the PCZ
occurs at pH ~ 9.3. As a result, o™ and ¢°% are both positive with Ao ~ 0.1
C/m?. Therefore, the scenario we described in Fig. 1B for generating positive
membrane potentials could have been realized for protocell membranes made
of Mineral-II. Interestingly, experimental measurements of the surface charge
density of mineral-water interfaces indicate that the functional from of o(pH)
for several transition-metal sulfides (e.g., NigSy and ZnS) is similar to that
of Mineral-II in Fig. S5 with the PZC in the alkaline range [41, 46].
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