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Abstract

Identifying the first chemical transformations, from which life emerged is a
central problem in the theories of life’s origins. These reactions would likely
have been self-sustaining and self-reproductive before the advent of com-
plex biochemical pathways found in modern organisms to synthesize lipid
membranes, enzymes, or nucleic acids. Without lipid membranes and en-
zymes, exceedingly low concentrations of the organic intermediates of early
metabolic cycles in protocells would have significantly hindered evolvability.
To address this problem, we propose a mechanism, where a positive mem-
brane potential elevates the concentration of the organic intermediates. In
this mechanism, positively charged surfaces of protocell membranes due to
accumulation of transition metals generate positive membrane potentials. We
compute steady-state ion distributions and determine their stability in a pro-
tocell model to identify the key factors constraining achievable membrane po-
tentials. We find that (i) violation of electroneutrality is necessary to induce
nonzero membrane potentials; (ii) strategies that generate larger membrane
potentials can destabilize ion distributions; and (iii) violation of electroneu-
trality enhances osmotic pressure and diminishes reaction efficiency, thereby
driving the evolution of lipid membranes, specialized ion channels, and active
transport systems.
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Significance

The building blocks of life are constantly synthesized and broken down
through concurrent cycles of chemical transformations. Tracing these reac-
tions back 4 billion years to their origins has been a long-standing goal of
evolutionary biology. The first metabolic cycles at the origin of life must
have overcome several obstacles to spontaneously start and sustain their
nonequilibrium states. Notably, maintaining the concentration of organic
intermediates at high levels needed to support their continued operation and
subsequent evolution would have been particularly challenging in primitive
cells lacking evolutionarily tuned lipid membranes and enzymes. Here, we
propose a mechanism, in which the concentration of organic intermediates
could have been elevated to drive early metabolic cycles forward in primitive
cells with ion-permeable porous membranes under prebiotic conditions and
demonstrate its feasibility in a protocell model from first principles.

Introduction

How complex life originated on a lifeless planet from nothing but a few
inorganic precursors is a mystery [1]. Darwin postulated that evolution is a
slow, stepwise process involving a gradual accumulation of small variations
over geological time scales [2]. From this viewpoint, the structure of extant
biology could still hold relics of the first life forms on the primitive Earth
[3]. A striking feature of extant life is particularly relevant in this regard:
All anabolic and catabolic processes in modern organisms proceed through
five universal intermediates, all involved in the oxidative and reductive tri-
carboxylic acid cycle [4]. Therefore, it is plausible to assume that all of
biochemistry, as we know it, emerged from a set of most ancient chemical
transformations involving the five universal intermediates that could have
operated and evolved under prebiotic conditions. This is, in fact, one of the
main paradigms in the origins-of-life literature, known as the metabolism-
first hypothesis [5, 6, 7, 8]. It assumes that life originated from primitive
metabolic reactions that could have spontaneously started and functioned
without relying on molecular apparatuses, such as organic cofactors, lipid
bilayers, enzymes, or genetic replication that are characteristics of modern
cells.

As with other origins-of-life theories, metabolism-first theories must ad-
dress a key challenge to explain abiogenesis: provide a plausible explanation
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for how prebiotic chemistry transitioned into biochemistry without sophisti-
cated molecular machinery that all living systems depend on today. Notably,
organic molecules could not have been contained in compartments without
lipid membranes. Electroneutrality, metal-ion homeostasis, and pH home-
ostasis could not have been achieved without specialized ion channels. A
continuous supply of energy could not have been provided to fuel metabolism
without membrane proteins, and metabolic reactions could not have pro-
ceeded fast enough to synthesize necessary precursors for the evolution of
complex reaction networks without enzymes or genetic replication.

In this article, we focus on one of the main obstacles that first metabolic
cycles must have overcome to evolve within a metabolism-first view of life’s
origins: to elevate the concentration of organic intermediates in primitive
cells lacking lipid membranes and enzymes beyond a minimum level required
to drive the metabolic cycles forward. The concentration of these interme-
diates would have been set by a balance between two counteracting mass
fluxes, namely membrane transport and reaction rate. The transport rate of
organic molecules through porous membranes of primitive cells would have
been significantly higher than through lipid bilayers in modern cells, while
the rates of nonenzymatic reactions would have been much lower than en-
zymatic counterparts. Therefore, maintaining the concentration of organic
molecules in primitive cells at levels comparable to modern organisms would
have been difficult, if not impossible.

We examine the foregoing problem more closely by developing a protocell
model of life’s origins to understand how the membrane potential and elec-
troneutrality could have influenced the emergence of the earliest metabolic
cycles. Specifically, we seek to answer (i) whether a positive membrane po-
tential could have developed across protocell membranes under steady state
conditions, large enough to concentrate negatively charged organic inter-
mediates of early metabolic networks inside primitive cells, and (ii) if the
steady-state solutions could have been stable.

Results

Model Description

To examine possible mechanisms that could have helped concentrate the
organic intermediates of first metabolic cycles inside primitive cells, we con-
sider a spherical cell of radius Rc with an ion-permeable porous membrane of
thickness d, residing in the primitive ocean (Fig. 1A). The ocean is assumed
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electroneutral, only comprising monovalent salts. For simplicity, we only
consider two salts with concentrations Csalt

1 and Csalt
2 . Hereafter, we refer to

these salts as salt-I and salt-II. Dissociation of each salt in water yields equal
amounts of its constituent cation and anion. Thus, the total concentration
of the resulting ions in the ocean is C∞ = 2Csalt with Csalt := Csalt

1 + Csalt
2

the total salt concentration (see “SI: Protocell Model” for details). Ions can
transfer between the cell and ocean due to a concentration gradient or nonuni-
form electric-potential field induced by an uneven distribution of cations and
anions in the space.

Note that, our goal here is not to computationally exhaust all possible
scenarios and physico-chemical systems that could have brought about life
on the primitive Earth. Rather, we aim to study a tractable and plausible
model that possesses the most essential features of primitive cells to gain
qualitative insights into the restrictiveness of the constraints on primordial
metabolic evolution through concrete and quantitative analyses.

The protocell model described above is a simplified version of how prim-
itive cells might have operated in the early ocean. A key simplification con-
cerns the composition of the primitive ocean with regards to the number and
valence of ions. As evidenced by leaching studies of oceanic crusts, early
oceans were likely more saline than modern seawater, comprising several
monovalent and polyvalent ions in high concentrations (e.g., Na+, K+, Ca2+,
SO2−

4 ) [9]. Nevertheless, by understanding the fundamental constraints that
govern electric-potential and charge distributions in our simplified model, we
may find clues to possible mechanisms, through which a positive membrane
potential could have been achieved in the general case.

In modern cells, there are two main constraints that govern the flow of ions
into and out of the cell, namely species mass balance and electroneutrality
[10, 11]. Thanks to several specialized ion channels in their ion-impermeable
lipid membranes, modern cells can generate local ion gradients in their mem-
branes and a nonzero membrane potential while maintaining electroneutral-
ity on both sides of the membrane [12]. However, in ion-permeable protocell
membranes with no specialized ion channels, was it possible to generate a
nonzero membrane potential without violating electroneutrality inside the
cell? If not, what forms of charge distribution could have furnished a nonzero
membrane potential? Was it necessary for electroneutrality to be violated
locally or globally? What mechanism could have underlain electroneutrality
violation?

To answer these questions, we replace electroneutrality with Maxwell’s
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Figure 1: Proposed protocell model to study the origin of the membrane potential and
electroneutrality. (A) Schematic representation of charge distribution and electric double
layers that could have developed inside and around protocells with ion-permeable mem-
branes at the bottom of the primitive ocean. The inner and outer surfaces of the membrane
could have been positively charged due to the presence of transition-metal minerals. (B)
Two possible mechanisms, through which a nonzero membrane potential could have de-
veloped across protocell membranes. The left diagram shows a case, where the inner and
outer surfaces of the membrane are positively charged, resulting in a positive membrane
potential. The right diagram shows the opposite case, where the inner and outer surfaces
are negatively charged, resulting in a negative membrane potential. In both cases, the
magnitude of the surface charge density on the inner surface σin is assumed to be larger
than that on the outer surface σout. (C) Possible radial profiles for the electric potential ψ
and volume charge density ξ that could lead to a positive membrane potential. Here, the
electroneutrality constraint inside the cell and membrane is globally relaxed to achieve a
positive membrane potential.

first law—a more fundamental constraint governing the interdependence of
charge and electric potential

∇2ψ = − ξ

εrε0

, (1)

where ψ is the electric potential, ξ volume charge density, εr relative permit-
tivity of the medium (water in our model), and ε0 vacuum permittivity. This
equation describes the relationship between charge and electric-potential dis-
tribution in the cell, membrane, and ocean, whether or not electroneutrality
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holds. The species mass balance equation reads

∂Ci
∂t

= −∇∇∇ · Ji + ri, i ∈ I, (2)

where I is the index set of all the species involved in the system with Ci, Ji,
and ri the concentration, flux vector, and production rate of species i. We de-
termine the steady-state solutions of Eqs. (1) and (2) in the cell, membrane,
and ocean to identify the key parameters affecting the electric potential dis-
tribution (see “SI: Governing Equations”). We then, through numerical ex-
periments, determine what parameter values lead to a positive membrane
potential, and, if so, whether electroneutrality can be maintained.

We note that Eq. (2) can be simplified by decoupling the mass bal-
ance equation for reactive (i.e., inorganic cofactors, reducing agents, energy
sources, and organic intermediates of metabolic cycles) and nonreactive (i.e.,
inorganic ions of the primitive ocean) species. The earliest metabolic reac-
tions are believed to have been catalyzed by naturally occurring minerals at
a significantly smaller rate than their enzymatic counterparts [13, 8, 14, 15].
As a result, the concentration of reactive compounds produced by these reac-
tions would have been extremely small [14, 16], especially compared to that
of inorganic ions in the primitive ocean [9]. Therefore, reactive species could
not have significantly contributed to the development of the membrane po-
tential. Accordingly, we neglect their contribution in Eqs. (1) and (2), solving
Eq. (2) only for inorganic ions. These ions are not consumed or produced
by any metabolic reactions taking place inside the protocell, so that they at-
tain their steady state much faster than reactive species. Therefore, we solve
Eq. (2) for i ∈ Inrxn, where ri = 0 with Inrxn the index set of nonreactive
species.

Given that the ocean is electroneutral in our model, one may deduce from
Maxwell’s first law that inducing a nontrivial electric potential field in the cell
and membrane is not possible without any charge sources. We, thus, consider
a scenario, where charged mineral species cover the inner and outer surfaces of
the membrane, giving rise to surface charge densities σin and σout (Fig. 1B).
Transition-metal and clay minerals tend to have positively and negatively
charged surfaces, respectively. Here, the idea is that the difference between
σin and σout could generate a nontrivial electric potential field and a nonzero
membrane potential as a result. For example, suppose that |σin| > |σout|.
Then, positively charged mineral surfaces can generate a positive membrane
potential (Fig. 1C), and negatively charged mineral surfaces can generate a
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negative membrane potential.
Interestingly, the foregoing scenario is consistent with Wächtershäuser’s

theory of surface metabolism [5]. In this theory, positively charged mineral
surfaces, such as those of divalent transition metals, play a central role in
facilitating early metabolic reactions because of the strong ionic bonds that
form between negatively charged organic molecules and transition metals.
In our model, transition metals not only catalyze early metabolic reactions,
but also can help concentrate organic molecules inside primitive cells by
generating a positive membrane potential if deposited on the surfaces of
protocell membranes.

Positive Membrane Surface Charges Induce Positive Membrane Potential

We first studied the steady-state solutions of Eqs. (1) and (2), assuming a
spherical symmetry. From our preliminary numerical experiments, we identi-
fied three key parameters most affecting the membrane potential, namely the
total salt concentration in the ocean Csalt, membrane surface charge density
σ, and cell radius Rc. We then constructed parametric steady-state solutions
with respect to these parameters. Solutions were computed numerically us-
ing fourth-order finite-difference schemes (see “SI: Numerical Approximation
of Steady-State Solutions”). In this section, we present steady-state solu-
tions parametrized with Csalt at fixed Rc, σ, and σr, where σin = σ, and
σout = σrσ. All other parameters used to obtain the results in this and
subsequent sections are summarized in Table S1.

Steady-state solutions of the electric potential, volume charge density, and
ion concentrations in the cell, membrane, and ocean exhibit a qualitatively
similar trend for all values of Csalt (Fig. 2). Positively charged membrane
surfaces induce a positive electric potential field in the entire domain (0 ≤
r <∞) (Fig. 2A). The resulting membrane potential is also positive, scaling
inversely with Csalt. Electric double layers form around the inner and outer
surfaces of the membrane due to surfaces charges. Consequently, negative
ions concentrate inside the electric double layers (Figs. 2C,D), leading to a net
negative volume charge density throughout the entire domain (Fig. 2B). We
also performed the same analysis for smaller σ and found that the electric
potential, volume charge density, and the membrane potential all tend to
vanish as σ → 0. Overall, our results suggest that membrane surface charges
generate a nonzero membrane potential. Electroneutrality is then violated
in the cell, membrane, and ocean as a consequence.
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Figure 2: Steady-state solutions of species mass-balance and Maxwell’s first equations
at Rc = 10−7 m, σ = 0.01 C/m2, and σr = 0.2. (A) Electric potential, (B) volume
charge density, (C) concentration of cations and anions associated with salt-I, and (D)
concentration of cations and anions associated with salt-II. Here, C∞,i denotes the far-
field concentration of ion i in the ocean, arising from dissociation of the respect salt in
water. Shaded areas indicate the position of the membrane along the r-axis. The scale on
the r-axis, where the ocean lies, is stretched by a factor 20 to better show radial profiles.
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Figure 3: Steady-state solutions of the membrane potential ∆ψ parametrically represented
with respect to the surface charge density σ at C∞ = 0.2 M and σr = 0.02 with (A)
Rc = 10−6 m and (B) Rc = 10−8 m. Inset figures show radial profile of the electric
potential ψ at selected points along the steady-state solution branches. Shaded areas
indicate the position of the membrane along the r-axis. Stability analysis was performed
for ϑ = 0.1. The tortuosity coefficient ϑ only affects stability without altering steady-state
solutions.

Trade-off Between Stability and Sensitivity to Surface Charge Could Have
Driven Early Evolution of Membrane Potential

The steady-state results presented in the last section indicated that large
positive membrane potentials are achievable if mineral surfaces can attain
large surface charge densities. Of course, how large a surface charge density
a mineral can attain is dictated by the laws of thermodynamics and depends
on several factors, such as the temperature, pressure, and ionic composition
of the solution it is exposed to [17]. To better understand if other con-
straints could have restricted the range of achievable membrane potentials,
we systematically studied the steady-state solutions of Eqs. (1) and (2) as a
function of surface charge density σ. We constructed parametric steady state
solutions with respect to σ at fixed Rc, C

salt, and σr using branch continu-
ation methods [18] (see “SI: Constructing Steady-State Solution Branches”)
and determined stability along the solution branches using linear stability
analysis (see “SI: Stability of Steady-State Solutions”).

Steady-state solution branches, represented in scaled membrane potential
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Figure 4: Trade-off between stability and the sensitivity of the membrane potential ∆ψ
to surface charge density σ. Solution branches for a given tortuosity coefficient ϑ are
qualitatively plotted for several Rc at fixed Csalt (left diagram) and several Csalt at fixed
Rc (right diagram). Quantitative solution branches and their stability limits are shown in
Figs. S2 and S3, respectively. In both cases, there is a critical σ and ∆ψ, beyond which
stability is lost. At fixed Csalt (left diagram), larger membrane potentials can be achieved
for a given σ when Rc is larger, although stability is lost at a smaller σ. Similarly, at fixed
Rc (right diagram), larger membrane potentials can be realized for a given σ when Csalt

is smaller, but stability is lost at a smaller σ. Consequently, for a given σ corresponding
to the constituents of the membrane (e.g., FeS), there is an intermediate Rc at fixed Csalt

(highlighted in red in the left diagram) or an intermediate Csalt at fixed Rc (highlighted
in red in the right diagram) that furnishes the maximum achievable ∆ψ. Arrows on the
membrane point in the direction, in which ∆ψ exerts force on negative ions.
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∆ψ̂ versus scaled surface charge density σ̂ diagrams (see “SI: Nondimension-
alization of Governing Equations” for definition of scaled quantities), exhibit
a distinct trend at large (Fig. 3A) and small (Fig. 3B) cell radii. In general,
∆ψ̂ increases linearly with σ̂ at small |σ̂|, asymptotically plateauing at large
|σ̂|. Here, ∆ψ̂ increases with σ̂ at a faster rate for smaller cells. However,
when solution branches are represented with respect to dimensional quanti-
ties, the opposite trend is observed; that is, ∆ψ increases with σ at a faster
rate for larger cells. Moreover, the linear stability analysis shows that, in
general, there is a neighborhood around σ̂ = 0, in which steady state so-
lutions are stable. Increasing σ̂ beyond a critical value results in stability
loss. Therefore, unboundedly large membrane potentials cannot be achieved
by arbitrarily increasing the membrane surface charge density, even if it was
allowed by the laws of thermodynamics.

Other parameters besides σ could have controlled the development of
the membrane potential in primitive cells by altering the steady states and
their stability, such as the total salt concentration in the ocean Csalt and
the tortuosity coefficient of the membrane ϑ. These characterize the ionic
composition of the ocean and microstructural properties of the membrane,
respectively. The tortuosity coefficient is defined as the ratio of the effective
diffusivity in the membrane and bulk diffusivity for any given ion [19, 20]
and measures how much the tortuous microstructure of porous membranes
hinders diffusive transport. It only affects the stability of ion distributions
in our protocell model, but not the steady-state solutions (see “SI: Stability
of Steady-State Solutions”).

We studied how Csalt could influence steady-state solution branches in
∆ψ̂ versus σ̂ diagrams at large (Figs. S2A,C) and small (Figs. S2B,D) cell
radii by constructing solution branches at fixed values of Csalt. We then
determined stability along solution branches for ϑ = 0.05 (Figs. S2A,B) and
ϑ = 0.1 (Figs. S2C,D). In general, lowering Csalt increases the sensitivity of
∆ψ̂ to σ̂. It also reduces the range of σ̂, in which steady-state solutions are
stable. Lowering ϑ has a similar destabilizing effect by reducing the stable
range of σ̂. Interestingly, the stable regions of σ determined in all these
case studies are within the experimentally measured ranges of surface charge
densities at mineral-water interfaces (see “SI: Surface Charge of Minerals”).

Overall, we observe a trade-off between stability and the sensitivity of ∆ψ
to σ, manifesting itself in two distinct ways (Fig. 4). The first is connected
with the size of the cell. Here, ∆ψ is more sensitive to σ at larger cell
radii. However, the range of σ, in which stable ion distributions can be
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achieved becomes more restricted in return. Restrictions on σ, in turn, place
a constraint on the maximum achievable ∆ψ. The second is related to the
composition of the ocean. In this case, a lower Csalt provides ∆ψ that is
more sensitive to σ at the expense of destabilization of ion distributions.

Electroneutrality Provides Selective Advantage by Minimizing Osmotic Pres-
sure and Concentration Heterogeneity

So far, we focused our discussion on the role that the membrane poten-
tial could have played as a barrier, preventing organic molecules, synthesized
by earliest metabolic reactions, from dissipating into the ocean. In mod-
ern cells, this role has been taken over by lipid bilayer membranes, while
the membrane potential together with membrane proteins are involved in
membrane bioenergetics [21], pH and metal-ion homeostasis [11], controlling
material flow into and out of the cell [22, 12], and stress regulation [23, 10].
As previously stated, a nonzero membrane potential in protocells with ion-
permeable membranes would have necessitated the violation of electroneu-
trality. By contrast, electroneutrality is always maintained in modern cells by
controlling ion transfer across the membrane using sophisticated regulatory
networks [24, 25]. It may be plausible to surmise that lipid membranes were
assimilated by primitive cells from early stages [26] once terpenoid synthesis
pathways were incorporated into primordial reaction networks [5]. However,
what selective pressures could have driven the evolution of charge distribu-
tions towards electroneutrality by selecting for ion-impermeable boundary
structures? In the following, we highlight two reasons for why electroneu-
trality could have been selected for at early stages of evolution, namely (i)
the osmotic crisis and (ii) concentration heterogeneity.

The osmotic crisis refers to membrane breakup as a result of ion accu-
mulation inside the cell [22]. This universal phenomenon, which applies to
primitive and modern cells, occurs due to the uptake of charged cofactors,
reducing agents, carbon sources, and energy sources. The elevated ion con-
centrations in the cell lower the water activity compared to the surrounding
water [27]. Consequently, water is driven through the membrane into the
cell, causing the membrane to break. To better understand how electroneu-
trality could have contributed to this process, we considered a simplified
case, involving an electrolyte solution with an anion and a cation (see “SI:
Electroneutrality and Mechanical Stability of Protocells”). We used Pitzer’s
model [28] to estimate the osmotic coefficient of the solution. Given that
the osmotic coefficient is mainly a function of the ionic strength [29], we
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Figure 5: Selective advantages provided by electroneutrality. Selective pressures are ex-
amined in a protocell model (Fig. 1), in which primordial reactions occur. Large posi-
tive membrane potentials ∆ψ increase the transport rate of negatively charged reducing
agents and energy sources, while attenuating the dissipation of the organic intermediates
of metabolic reactions. They also induce a nonuniform positive electric potential field,
elevating the concentration of anions in the cell. The resulting negative charge-density
distribution (ξ(r) < 0) leads to heterogeneous concentration distributions for charged re-
active species, which, in turn, diminish reaction efficiencies. Small membrane potentials
do not affect the reaction efficiencies significantly. However, they can not alleviate the
dissipation of the organic intermediates as effective either. Therefore, parameter values
furnishing an intermediate range of positive membrane potentials would have been opti-
mal for the operation of early metabolic cycles. Moreover, if the total salt concentration
Csalt

c and ionic strength Ic in the cell are held constant, then violation of electroneutrality
(|Qc| > 0 withQc the total charge in the cell) increases the osmotic pressure differential ∆Π
across the membrane. Hence, electroneutrality could have minimized catastrophic events
in primitive cells due to osmotic crisis, promoting the evolution of complex metabolic
networks by providing structural stability.
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sought to determine how the osmotic coefficient varies with the net charge
of the solution if the ionic strength is maintained constant. We found that,
at fixed ionic strength, of all possible ionic compositions, the one yielding an
electroneutral solution minimizes the osmotic coefficient. This implies that,
primordial reaction networks could have progressed for longer times under
electroneutral conditions by taking up all the necessary ingredients from the
surroundings without undergoing any catastrophic event. As a result, the
likelihood of early metabolism incorporating additional steps to synthesize
biomolecules of higher complexity could have improved (Fig. 5).

Electroneutrality could also have enhanced the efficiency of early metabolic
reactions by creating homogeneous concentration distributions inside primi-
tive cells. To clarify this point, consider a scenario, where positively charged
membrane surfaces have generated a positive membrane potential in a primi-
tive cell. The positive membrane potential drives negative inorganic ions into
the cell, creating a negatively charged shell (i.e., electric double layer) next to
the inner surface of the membrane. Next, suppose that a negatively charged
organic molecule is consumed by some of the metabolic reactions occurring in
the cell. To efficiently utilize this molecule, the cell must maximize its concen-
tration by minimizing its rate of transport into the ocean. This minimization
is accomplished by the positive membrane potential. However, the concen-
tration of the molecule is only increased at the inner surface of the membrane
since it cannot readily diffuse past the charged shell to mix and react with
other molecules. Therefore, organic molecules are nonuniformly distributed
inside the cell, diminishing mixing and reaction efficiencies (Fig. 5).

To quantify the extent to which nonuniform concentration distributions—
referred to as concentration heterogeneity—can reduce apparent reaction
rates, we solved the species mass-balance equation Eq. (2) for a reactive
species B consumed according to the first-order rate law rB = −kCB in
a protocell with a prescribed volume-charge-density distribution (see “SI:
Concentration Heterogeneity and Reaction Efficiency”) to ascertain the ra-
dial concentration distribution CB(r) and its volume average 〈CB〉. We then
used the integral form of Eq. (2) to relate the total uptake flux of B and
apparent reaction rate 〈rB〉 :=

∫
V
rBdV/V = −k〈CB〉. Given the linear

proportionality between 〈rB〉 and 〈CB〉 in this case, 〈CB〉/C in
B may be re-

garded as a measure of how much concentration heterogeneity can diminish
or enhance apparent reaction rates (C in

B denotes the concentration of B at
the inner surface of the membrane). Lastly, we examined how 〈CB〉/C in

B is
affected by the rate constant and surface charge density (Fig. S4).
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Our analysis revealed two distinct ways, in which concentration hetero-
geneity can affect apparent reaction rates. The first is due to the local con-
sumption of B, always reducing the apparent reaction rate of B, irrespective
of the background charge distribution arising from the inorganic ions. The
second is related to the charged shell discussed above. If the shell and B have
opposite charges, the apparent reaction rate is enhanced (Fig. S4, dashed
lines), and if they have like charges, the apparent reaction rate is reduced
(Fig. S4, solid lines). As it relates to the origin of metabolism, positive mem-
brane potentials could have favored the evolution of early metabolism by
minimizing the dissipation of organic intermediates into the ocean. However,
they could also have degraded mixing and reaction efficiencies, thereby driv-
ing the evolution of ion-impermeable membranes, specialized ion channels,
and active transport systems to maintain an electroneural intracellular en-
vironment and minimize the interaction of membrane transport and electric
double layers.

Discussion

The plausibility of life originating from prebiotic metabolic cycles pro-
moted by naturally occurring catalysts on the primitive Earth (i.e., the
metabolism-first hypothesis) has been subject to much scrutiny [30, 31, 15].
Perhaps one of the main criticisms of this hypothesis is the supposed im-
probability of metabolic cycles, comprising several distinct steps, that could
have been sustained stably by prebiotic catalysts [30, 31]. From this stand-
point, it is deemed unlikely that any assortment of minerals on the primitive
Earth could have been efficient and specific enough to catalyze diverse sets
of metabolic reactions to synthesize the essential building blocks of life [31].
These are organic molecules that must have been produced in high enough
concentrations to support the subsequent evolution of early metabolic cycles
towards networks of higher complexity—a challenging task to accomplish
without enzymes, given the comparatively poor efficiency of inorganic cata-
lysts [8].

We addressed the foregoing criticism by proposing a mechanism, through
which the concentration of organic intermediates of early metabolic cycles
could have been enhanced without sophisticated macromolecular structures
or polymerization machinery, which are believed to have been later products
of evolution [32]. In this mechanism, membrane surfaces in primitive cells are
assumed to have been positively charged due to the accumulation of tran-
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sition metals. Then, these charged surfaces could have induced a positive
membrane potential, which, in turn, would have concentrated the organic in-
termediates of early metabolic cycles inside primitive cells. We demonstrated
the feasibility of this mechanism by developing a protocell model and quan-
titatively estimating achievable membrane potentials from first principles by
solving Maxwell’s first law and mass-balance equations. We showed that
positive membrane potentials comparable in magnitude to those observed
in modern bacteria could have been generated in primitive cells for typical
charge densities arising from transition-metal surfaces.

To better understand how a positive membrane potential could have de-
veloped, we constructed the steady-state solutions of Maxwell’s first law and
mass-balance equations. We found that positive membrane surface charges
could induce a nontrivial electric potential field and a positive membrane
potential. The resulting membrane potential is proportional to the surface
charge density and inversely proportional to the total concentration of nonre-
active ions in the primitive ocean. Furthermore, our numerical experiments
indicated that violation of electroneutrality inside the cell and membrane is
essential to generate a nonzero membrane potential. However, the steady-
state results alone did not place any upper limit on the maximum achievable
membrane potential.

Thus, we examined the stability of the steady-state solutions using linear
stability analysis to identify possible constraints that could have restricted
the magnitude of the membrane potential in primitive cells. Our results sug-
gested that, for any given ionic composition of the primitive ocean, there
is a critical surface charge density and membrane potential, beyond which
concentration distributions in the cell and membrane are unstable. More-
over, we found that there is a trade-off between this stability bound and
the sensitivity of the membrane potential to surface charge density: Param-
eter values leading to higher sensitivities result in a smaller range of surface
charge densities, for which concentration distributions are stable. Beside
destabilization, large surface charge densities could also have induced het-
erogeneous concentration distributions for organic molecules, cofactors, and
energy sources inside primitive cells, adversely affecting the reaction efficien-
cies of early metabolic cycles. This is yet another reason for why arbitrarily
large membrane potentials could not have been achieved.

Lastly, our quantitative analysis revealed that the conditions on the prim-
itive Earth could have been primed for the emergence of first metabolic cy-
cles, perhaps more than previously thought. The feasibility of these cycles
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in our model relies on the existence of a positive membrane potential. In
fact, the concordance between the interconnection of metabolic reactions and
the membrane potential in primitive and modern cells is an important fea-
ture of our protocell model. It implies that, the operation of the membrane
potential and metabolism were deeply intertwined from the outset and con-
tinued to persist throughout the evolutionary history of life. Furthermore,
our results suggested that, sufficiently large membrane potentials could have
been realized for intermediate ranges of surface charge density, cell size, and
ion concentrations in the ocean to support the evolution of stable and self-
sustaining metabolic cycles. These ranges may be regarded as constraints
exerting selective pressure on the evolution of early metabolism. They would
likely have been more restrictive at the beginning and were relaxed once lipid
membranes and specialized ion channels had emerged, which, in turn, would
have rendered primitive cells more robust to environmental uncertainties.

Overall, this study provides a strong impetus for further rigorous and
quantitative investigations into mechanistic models of first metabolic cycles
and their early evolutionary stages, elucidating their transition into self-
sustaining and complex biochemical networks. More broadly, our results
suggest that the strong interconnections between several cellular processes
(e.g., controlled membrane potential and membrane transport, charge bal-
ance, ion homeostasis, metabolism) were as essential to primitive cells as
they are to extant life. These are fundamental processes that shape many
phenotypic characteristics of modern cells, possibly more than currently un-
derstood. Therefore, we expect that these fundamental processes will be
formalized more systematically in the future for biological systems and in-
corporated into realistic single-cell models to emerge in the coming decade.
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Supplementary Information

Protocell Model

We first describe the protocell model discussed in the main text that we
proposed to study the origin of the membrane potential and electroneutrality.
The model comprises three regions: (i) Cell, (ii) membrane, and (iii) ocean
(Fig. S1). The cell is a sphere of radius Rc enclosed by a porous membrane
of thickness d, lying at the bottom of the primitive ocean (Fig. 1A). Our goal
is to determine the conditions, under which a positive membrane potential
can develop across the membrane. However, we consider a more general
case, where positive and negative membrane potentials can be induced by
positively and negatively charged surfaces of the membrane. The inner and
outer surfaces of the membrane are assumed to have the same charge with
the respective surface charge densities σin and σout. However, the magnitude
of the surface charge density on the inner surface is assumed to be always
greater than on the inner surface (Fig. 1A). These positively and negatively
charged surfaces could have arisen from accumulation of transition-metal
and clay minerals, respectively [5]. In our model, the inner and outer surface
charge densities are specified using two parameters according to σin = σ
and σout = σrσ, where the the surface charge density σ and surface charge
density ratio σr are given parameters. Other fixed parameters of the model
that were used to generate the plots in this document and the main text are
summarized in Table S1.

The ocean in our model is assumed to be electroneutral. We further
assume that the ionic composition of the ocean arises from a complete disso-
ciation of monovalent salts. For simplicity, we only consider two monovalent
salts, we refer to as salt-I and salt-II, which yield equal amounts of the re-
spective cation and anion in the ocean upon dissociation in water. Let Csalt

1

and Csalt
2 denote the concentration of salt-I and salt-II, respectively. Then,

the total salt concentration Csalt := Csalt
1 +Csalt

2 is half the total ion concen-
tration C∞ in the ocean due to a complete salt dissociation. Therefore, when
Csalt and r12 := Csalt

1 /Csalt
2 are given, the ionic composition of the ocean is

fully specified.
C+
∞,i = C−∞,i = Csalt

i , i ∈ {1, 2},

C∞ :=
∑
i∈{1,2}

(
C+
∞,i + C−∞,i

)
= 2Csalt,
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Figure S1: Computational domains in the protocell model of life’s origins described in
Fig. 1 and the grid used to discretize the governing equations. The model comprises
three computational domains, namely the cell, membrane, and ocean. Maxwell’s first law
and species mass-balance equations are solved in the cell and membrane to ascertain the
electric potential field and concentration distributions. However, the surface potential on
the outer surface of the membrane, electric potential field, and concentration distributions
in the ocean are approximated by the Gouy-Chapman theory [33, Section 5.3].

where C+
∞,i and C−∞,i are the concentration of the cation and anion arising

from salt i. We generally denote the concentration of ions (cations or anions)
by C∞,i without referring to the index of salt, where i here is the index of
ions in the system. The composition of the ocean is then imposed as far-field
boundary conditions to solve Maxwell’s first law and species mass-balance
equations in the three computational domains shown in Fig. S1.

Governing Equations

To ascertain the membrane potential for any given set of model parame-
ters, we compute the electric potential field in the foregoing three computa-
tional domains by solving Maxwell’s first law

∇2ψ = − ξ

εrε0

(S1)

and species mass-balance equations

∂Ci
∂t

= −∇∇∇ · Ji + ri, i ∈ I, (S2)
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Table S1: Parameters used for all the case studies presented in the main text and supple-
mentary information.

Parameter Value Parameter Value
T 145◦ C D+

1 (salt-I) 2× 10−9 m2/s
ε†r 50.9672382 D−1 (salt-I) 2× 10−10 m2/s
r12 0.1 D+

2 (salt-II) 8× 10−10 m2/s
Ds 10−9 m2/s D−2 (salt-II) 10−10 m2/s
Cs 10−2 M

†Estimated using the revised Helgeson-Kirkham-Flowers equation of state
at 100 bar and in the temperature range 120–145◦ [34].

where ψ is the electric potential, ξ volume charge density, εr relative per-
mittivity of water, ε0 vacuum permittivity, I the index set of all the species
involved in the system with Ci, Ji, and ri the concentration, flux vector, and
production rate of species i. The three computational domains, in which to
solve Eqs. (S1) and (S2) are represented as

0 ≤ r < Rc, Cell,

Rc < r < Rc + d, Membrane,

Rc + d < r <∞, Ocean

(S3)

with the boundary conditions

∂ψ

∂r
= 0 at r = 0, (S4a)

∂ψ

∂r
=

σin

εrε0

at r = Rc, (S4b)

ψ|cell = ψ|membrane at r = Rc, (S4c)

ψ|membrane = ψ|ocean at r = Rc + d, (S4d)

∂ψ

∂r
= −σ

out

εrε0

at r = Rc + d, (S4e)

ψ → 0 as r →∞ (S4f)
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for the electric potential and

∂Ci
∂r

= 0 at r = 0, (S5a)

Ji|cell = Ji|membrane at r = Rc, (S5b)

Ci|cell = Ci|membrane at r = Rc, (S5c)

Ji|membrane = Ji|ocean at r = Rc + d, (S5d)

Ci|membrane = Ci|ocean at r = Rc + d, (S5e)

Ci → C∞,i as r →∞ (S5f)

for the species concentrations, where Ji := Ji · er with er the unit vector
along the r-axis in the spherical coordinate system. The boundary conditions
Eqs. (S4b) and (S4e) arise from a charge-balance constraint applied in the
electric double layer theory [33, Section 5.3]. It requires that the total charge
resulting for the accumulation of the counter ions in the domain exposed to
a charged surface counterbalances the total charge of the surface. Applying
this constraint to the electric double layers formed in the cell and ocean yields

Qc + σinAin = 0, (S6)

Qo + σoutAout = 0, (S7)

where Qc and Qo are the total charges accumulated in the cell and ocean with
Ain and Aout the areas of the inner and out membrane surfaces. The total
charges can then be related to ∂ψ

∂r
using Gauss’s law, which is the integral

form of Maxwell’s first law. For example, Eq. (S4b) can be derived from
Eq. (S6) in the following way∫

Ain

E · ndA =
Qc

εrε0

⇒
∫
Ain

−∇∇∇ψ · ndA =
Qc

εrε0

⇒ −Ain

(
∂ψ

∂r

)
r=Rc

=
Qc

εrε0

⇒
(
∂ψ

∂r

)
r=Rc

=
σin

εrε0

with E the electric field and n unit outward normal vector to Ain. Equa-
tion (S4c) can be similarly derived from Eq. (S7).

The volume charge density in Eq. (S1) is determined from the concentra-
tion of the species in the system

ξ = F
∑
i∈I

ziCi (S8)
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with F the Faraday constant and zi the valence of species i. The flux vector
consists of a diffusive and an electric-potential component, which is expressed

Ji = −Di(∇∇∇Ci +
ziF

RT
Ci∇∇∇ψ), (S9)

where R is the universal gas constant and T temperature.
Before proceeding to the steady-state solutions of Eqs. (S1) and (S2), it

is helpful to examine these equations separately for two groups of species.
Here, we classify the species involved in our model into a reactive and non-
reative group. The reactive species are those that would have participated in
early metabolic reactions occurring inside the cell, such as reducing agents,
energy sources, and organic molecules. The nonreactive species are the in-
organic ions, which would have been present in the primitive ocean. The
rates of nonenzymatic reactions in the earliest metabolic cycles would have
been much smaller than enzymatic reactions in modern metabolic networks.
Therefore, the concentrations of nonreactive species involved in primitive
reactions would have been much smaller than those of metabolites in mod-
ern organisms and especially of inorganic ions in the primitive ocean [14].
Accordingly, the volume charge density in Eq. (S1) can be approximated

ξ ≈ F
∑
Inrxn

ziCi, (S10)

where Inrxn the index set of nonreactive species. Using this approximation
along with ri = 0 for nonreactive species, one can solve Eqs. (S1) and (S2)
for nonreactive species independently of the reactive species. Once the elec-
tric potential has been ascertained in this manner, the species mass-balance
equations for reactive species can be solved without needing to couple them
to Maxwell’s first law.

We conclude this section by highlighting the main assumptions used in
the remainder of this document to simplify the governing equations and their
solutions:

� Governing equations (steady states and transient perturbations) inherit
spherical symmetry from the spherical geometry of the protocell model.

� Surface charge density can vary independently of other model parame-
ters, such as cell radius, membrane thickness, and the ionic composition
of the ocean.
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The second assumption is only relevant to parametric studies of the steady-
state solutions with respect to the surface charge density σ. As will be
discussed later (see “Constructing Steady-State Solution Branches”), we con-
struct steady-state solution branches with respect to σ at fixed Csalt. This is,
of course, a simplifying assumption because when the thermodynamic state
of the system is specified (i.e., when the temperature, pressure, and ionic
composition are given), σ is determined by the thermodynamic constraints
arising from the equilibrium of the charged surface and the electrolyte so-
lution it is subject to [17]. Therefore, in general, σ and C∞ cannot vary
independently of one another.

Nondimensionalization of Governing Equations

To alleviate computational errors associated with the scaling of the proto-
cell model that arise from the numerical solutions of the governing equations,
we introduce the dimensionless quantities

r̂ := r/Rc, d̂ := d/Rc, t̂ := t/τ, ψ̂ := Fψ/(RT ),

Ĵi := RcJi/(DsCs), r̂i := R2
cri/(DsCs), Ĉi := Ci/Cs, D̂i := Di/Ds

(S11)

to nondimensionalize these equations, where Cs and Ds are concentration
and diffusivity scales. Accordingly, after applying the spherical symmetry
assumption, the dimensionless forms of Eqs. (S1) and (S2) are obtained

1

r̂2

∂

∂r̂

(
r̂2∂ψ̂

∂r̂

)
= −ξ̂, (S12)

∂Ĉi

∂t̂
= D̂i

[
1

r̂2

∂

∂r̂

(
r̂2∂Ĉi
∂r̂

)
+ zi

∂Ĉi
∂r̂

∂ψ̂

∂r̂
+
ziĈi
r̂2

∂

∂r̂

(
r̂2∂ψ̂

∂r̂

)]
+ r̂i, i ∈ I,

(S13)

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461264


which are to be solved subject to

∂ψ̂

∂r̂
= 0 at r̂ = 0, (S14a)

∂ψ̂

∂r̂
= σ̂in at r̂ = 1, (S14b)

ψ̂
∣∣∣
cell

= ψ̂
∣∣∣
membrane

at r̂ = 1, (S14c)

ψ̂
∣∣∣
membrane

= ψ̂
∣∣∣
ocean

at r̂ = 1 + d̂, (S14d)

∂ψ̂

∂r̂
= −σ̂out at r̂ = 1 + d̂, (S14e)

ψ̂ → 0 as r̂ →∞ (S14f)

for the electric potential and

∂Ĉi
∂r̂

= 0 at r̂ = 0, (S15a)

Ĵi

∣∣∣
cell

= Ĵi

∣∣∣
membrane

at r̂ = 1, (S15b)

Ĉi

∣∣∣
cell

= Ĉi

∣∣∣
membrane

at r̂ = 1, (S15c)

Ĵi

∣∣∣
membrane

= Ĵi

∣∣∣
ocean

at r̂ = 1 + d̂, (S15d)

Ĉi

∣∣∣
membrane

= Ĉi

∣∣∣
ocean

at r̂ = 1 + d̂, (S15e)

Ĉi → Ĉ∞,i as r̂ →∞ (S15f)

for the species concentrations, where Ĵi := Ĵi · er. Several dimensionless
parameters appear in these equations, the definitions of which are

ξ̂ :=
FR2

cξ

RTεrε0

, σ̂ :=
FRcσ

RTεrε0

, η :=
F 2R2

cCs
RTεrε0

, τ :=
R2
c

Ds

. (S16)

Note that, throughout this document, the dimensionless forms of all the other
concentrations, electric potentials, and surface charge densities are denoted
as the corresponding hatted quantities and defined similarly. Using these
dimensionless parameters, Eq. (S9) is nondimensionalized as

ξ̂ = η
∑
i∈I

ziĈi ≈ η
∑

i∈Inrxn

ziĈi. (S17)
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Steady State Solutions

In this section, we present the steady state solutions of Eqs. (S12) and
(S13) for nonreactive species. We approximate the steady-state solutions in
the ocean using the Gouy-Chapman theory for simplicity [33] (see “Elec-
tric Potential Field in Ocean from Gouy-Chapman Theory”) and compute
numerically exact solutions of Maxwell’s first law and species mass-balance
equations in the cell and membrane. Because there are no sources or sinks for
nonreactive species in the cell or membrane, Ĵi → 0 for i ∈ Inrxn as the solu-
tions of Eqs. (S12) and (S13) approach their steady states. This observation
allows to simplify the construction of steady-state solutions as demonstrated
in the following

Ĵi = −D̂i

(
dĈi
dr̂

+ ziĈi
dψ̂

dr̂

)
= 0⇒ dĈi

dr̂
= −ziĈi

dψ̂

dr̂

⇒ d ln Ĉi = −zidψ̂ ⇒ Ĉi(r̂) = Ĉ0,i exp
[
−zi

(
ψ̂(r̂)− ψ̂0

)]
,

where Ĉ0,i and ψ̂0 are the concentration of species i and electric potential on
one of the boundaries of the computational domain. Note that this simplifica-
tion does not apply to reactive species, for which r̂i 6= 0, because steady-state
fluxes can generally be nonzeros.

For the cell and membrane, the boundary of interest is Ain and Aout, re-
spectively. The surface concentrations and surface potential on Aout, which
are ascertained from the Gouy-Chapman theory in the ocean provide the
boundary conditions for the membrane. The surface concentrations and sur-
face potential on Ain from the solution of the membrane, in turn, furnish the
boundary conditions for the cell. Once these boundary conditions are sub-
stituted in the general expression derived above, the following concentration
distributions in the cell and membrane are obtained

Ĉi(r̂) = Ĉ∞,i exp
[
−ziψ̂(r̂)

]
, i ∈ Inrxn, (S18)

which describe the functional dependence of Ĉi on ψ̂ both in the cell and
membrane. However, the concentration distributions Ĉi(r̂) in the cell and
membrane are not the same because the electric potential field ψ̂(r̂) in these
domain are different. Substituting Eq. (S18) in Eq. (S12) using Eq. (S17)
furnishes

1

r̂2

d

dr̂

(
r̂2 dψ̂

dr̂

)
= −η

∑
i∈Inrxn

ziĈ∞,i exp(−ziψ̂). (S19)
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This form of Maxwell’s first law needs not be coupled to the species mass-
balance equations Eq. (S13) to provide the electric potential field. We nu-
merically solve this equation using finite-difference methods (see “Numerical
Approximation of Steady-State Solutions”) subject to the boundary condi-
tions Eqs. (S14a)–(S14d) to compute ψ̂(r̂) in the cell and membrane for a
given set of model parameters. Once the electric potential field has been com-
puted, it can be back-substituted in Eq. (S18) to provide the concentration
distributions.

Electric Potential Field in Ocean from Gouy-Chapman Theory

As previously stated, we approximate the electric potential field and con-
centration distribution of ions in the ocean using the Gouy-Chapman the-
ory. This theory provides analytical solutions for ψ̂(r̂) and Ĉi(r̂) when only
monovalent ions are present in an electrolyte solution and the domain is one-
dimensional in the Cartesian coordinate system [33, Section 5.3]. In this
theory, ion concentrations are explicitly expressed as functions of the electric
potential field. The functional form of these expressions is identical to that
in Eq. (S18). The electric potential field and surface potential are given by

ψ̂(r̂) = 4 tanh−1
[
tanh

(
ψ̂out/4

)
exp

(
−(r̂ − 1− d̂)/ˆ̀

)]
, (S20)

ψ̂out = 2 sinh−1
(

ˆ̀̂σout/2
)
, (S21)

where ˆ̀ := `/Rc = 1/

√
2ηĈsalt with ` the Debye length defined as

` :=

√
RTεrε0

2CsaltF 2
. (S22)

Numerical Approximation of Steady-State Solutions

We briefly discuss the numerical techniques, with which to solve Eq. (S19).
We discretize Eq. (S19) over the grid shown in Fig. S1 and approximate
the first and second derivatives of ψ that arise from its left-hand side using
fourth-order finite-difference schemes (see Tables S2 and S3). Substituting
these approximations in Eq. (S19) yields a nonlinear system of equations

Aψ̂ψψ = b(ψ̂ψψ, σ̂), (S23)

where ψ̂ψψ := [ψ̂1; ψ̂2; · · · ; ψ̂Nc ; · · · ; ψ̂N ] ∈ RN×1 is the vector of the electric
potentials evaluated at the nodes of the grid shown in Fig. S1. Here, A ∈
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RN×N is a constant matrix comprising the coefficients of the discretization
schemes and b ∈ RN×1 is a variable vector and nonlinear in ψ̂ψψ. It results
from the right-hand side of Eq. (S19) evaluated at the grid points and the
boundary conditions Eqs. (S14a)–(S14d).

Table S2: Forth-order finite-difference schemes to approximate the first derivative of a
function f(r̂) on the grid shown in Fig. S1. Expressions in the Scheme column are deriva-
tives evaluated at r̂j , where f ′j := f ′(r̂j). Note that ∆r̂ := ∆r̂c when 1 ≤ j ≤ Nc and
∆r̂ := ∆r̂m when Nc + 1 ≤ j ≤ N (see Fig. S1).

Index Scheme

j = 1
−25fj+48fj+1−36fj+2+16fj+3−3fj+4

12∆r̂

j = 2, Nc + 1
−3fj−1−10fj+18fj+1−6fj+2+fj+3

12∆r̂{
3 ≤ j ≤ Nc − 2

Nc + 2 ≤ j ≤ N − 2

fj−2−8fj−1+8fj+1−fj+2

12∆r̂

j = Nc − 1, N − 1
−fj−3+6fj−2−18fj−1+10fj+3fj+1

12∆r̂

j = Nc, N
3fj−4−16fj−3+36fj−2−48fj−1+25fj

12∆r̂

Table S3: Forth-order finite-difference schemes to approximate the second derivative of
a function f(r̂) on the grid shown in Fig. S1. Expressions in the Scheme column are
derivatives evaluated at r̂j , where f ′′j := f ′′(r̂j). Note that ∆r̂ := ∆r̂c when 1 ≤ j ≤ Nc

and ∆r̂ := ∆r̂m when Nc + 1 ≤ j ≤ N (see Fig. S1).

Index Scheme

j = 2, Nc + 1
10fj−1−15fj−4fj+1+14fj+2−6fj+3+fj+4

12∆r̂2{
3 ≤ j ≤ Nc − 2

Nc + 2 ≤ j ≤ N − 2

−fj−2+16fj−1−30fj+16fj+1−fj+2

12∆r̂2

j = Nc − 1, N − 1
fj−4−6fj−3+14fj−2−4fj−1−15fj+10fj+1

12∆r̂2

We solve Eq. (S23) iteratively in two steps:

� Pseudo-linear step: The procedure starts from a crude initial guess

ψ̂ψψ
0
. At iteration n, ψ̂ψψ

n
is computed by solving the linearized system

Aψ̂ψψ
n

= b(ψ̂ψψ
n−1

, σ̂), where ψ̂ψψ
n

and ψ̂ψψ
n−1

denote the vector of electric
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potentials at iterations n and n−1, respectively. This step is relatively
robust with respect to the initial guess but converges slowly to steady-
state solutions. The approximate solution from this step is then used
as an initial guess for the next step.

� Newton-Raphson step: Iterations start from the approximate solution
furnished by the previous step. At any given iteration, derivative infor-
mation is used to accelerate convergence towards steady-state solutions.
Given the quadratic convergence rate of Newton’s method, this step can
provide highly accurate solutions with much fewer iterations than the
previous step. However, this procedure can also diverge if the initial
guess obtained in the previous step does not lie in the convergence re-
gion of Newton’s method. Therefore, it is not robust with respect to
the choice of initial guess.

Constructing Steady-State Solution Branches

Constructing the solutions of Eq. (S19) using the computational proce-
dure introduced in the previous section is generally time-consuming, render-
ing parameter-sweep computations challenging to perform. Therefore, we use
Keller’s arc-length continuation method [18] to construct steady-state solu-

tion branches. The goal is to compute parametric solutions ψ̂ψψ(σ̂) of Eq. (S23)
efficiently by leveraging a predictor-corrector scheme so as to avoid the com-
putational costs associated with repeated execution of the foregoing pseudo-
linear step—the computational bottleneck of the procedure outlined in the
previous section. Here, we seek ψ̂ψψ(σ̂) as parametric solutions of the problem

G(ψ̂ψψ, σ̂) := Aψ̂ψψ − b(ψ̂ψψ, σ̂) = 0 (S24)

subject to

‖ ˙̂
ψψψ‖2

2 + ˙̂σ2 = 1, (S25)

where overdot denotes differentiation with respect to the arc-length s. The
predictor step in branch-continuation methods requires the tangent vector ẋ,
where x := [ψ̂ψψ; σ̂] [18]. The derivatives with respect to s are ascertained by
solving

GGG(
˙̂
ψψψ, ˙̂σ) :=

 ∂G

∂ψ̂ψψ

˙̂
ψψψ + ∂G

∂σ̂
˙̂σ

‖ ˙̂
ψψψ‖2

2 + ˙̂σ2 − 1

 = 0 (S26)
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using Newton’s method. Suppose that the vector of steady-state solutions
xn at the nth arc-length step along the solution branch is known with sn
the corresponding arc-length. At this step, the tangent vector ẋn can readily
be computed by solving Eq. (S26). The goal now is to compute the solution
vector at the next step xn+1 corresponding to sn+1 = sn+∆s for a prescribed
∆s. First, an auxiliary function is introduced

N (ψ̂ψψn+1, σ̂n+1) :=
˙̂
ψψψT
n (ψ̂ψψn+1 − ψ̂ψψn) + ˙̂σn(σ̂n+1 − σ̂n)− (sn+1 − sn), (S27)

which is a linearized version of Eq. (S25). Next, xn+1 is computed by solving

HHH(ψ̂ψψn+1, σ̂n+1) :=

G(ψ̂ψψn+1, σ̂n+1)

N (ψ̂ψψn+1, σ̂n+1)

 = 0 (S28)

using a predictor-corrector scheme. In the predictor step, the tangent vector
ẋn is used to construct an initial guess for xn+1 as follows

x◦n+1 = xn + ẋn∆s,

which is accurate to first order in ∆s. In the corrector step, xn+1 is com-
puted to high accuracy by solving Eq. (S28) using Newton’s method with
x◦n+1 as an initial guess. A key advantage of predictor-corrector approaches
is that, the initial guess generated in the predictor step usually lies in the
convergence region of Newton’s method even for moderately sized ∆s. More-
over, constructing the initial guess in the predictor step is computationally
much less costly than the pseudo-linear step discussed in the previous section.
Therefore, parameter-sweep computations can be performed much more effi-
ciently using branch-continuation methods than the procedure introduced in
the previous section, if it were to be executed at all points along the solution
branch.

Stability of Steady-State Solutions

We determine the stability of steady-state solutions using linear stability
analysis. Let ψ̂0(r̂) and Ĉ0

i (r̂) denote the steady-state solutions of Eqs. (S12)
and (S13). Upon perturbations, the time-varying solutions of Eqs. (S12) and
(S13) can be expressed as

ψ̂(t̂, r̂) = ψ̂0(r̂) + ψ̂′(t̂, r̂),

Ĉi(t̂, r̂) = Ĉ0
i (r̂) + Ĉ ′i(t̂, r̂),

(S29)
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where ψ̂′ and Ĉ ′i are infinitesimal perturbations induced in the protocell by
fluctuations in environmental conditions. To simplify the analysis, we assume
that these fluctuations can only destabilize the concentration distributions
in the cell and membrane without affecting the steady state of the ocean.
Accordingly, the concentration and electric-potential boundary conditions
on Aout are not influenced by these perturbations. We further assume that
instabilities are mainly caused by concentration perturbations, neglecting
the disturbances that they can induce in the electric potential field (i.e.,
ψ̂′(t̂, r̂) = 0). Thus, we consider the following perturbation ansatz

Ĉ ′i(t̂, r̂) = exp(λit̂)ρi(r̂) (S30)

with λi the eigenvalue characterizing the dynamics of species i. Substituting
Eqs. (S29) and (S30) in Eq. (S13), taking into account all the assumptions
discussed above and neglecting the second- and higher-order terms in Ĉ ′i, we
arrive at

d2ρi
dr̂2

+

(
2

r̂
+ zi

dψ̂0

dr̂

)
dρi
dr̂
−
(
ziξ̂

0 +
λi
Di

)
ρi = 0,

{
0 < r̂ < 1,

1 < r̂ < 1 + d̂
(S31)

subject to

dρi
dr̂

= 0 at r̂ = 0, (S32a)[
dρi
dr̂

+ zi
dψ̂0

dr̂
ρi

]
cell

= ϑ

[
dρi
dr̂

+ zi
dψ̂0

dr̂
ρi

]
membrane

at r̂ = 1, (S32b)

ρi|cell = ρi|membrane at r̂ = 1, (S32c)

ρi = 0 at r̂ = 1 + d̂, (S32d)

where Di is a diffusivity coefficient defined as

Di :=

{
Di, 0 ≤ r̂ < 1,

Deff
i , 1 < r̂ < 1 + d̂

(S33)

with Di the the bulk diffusivity of species i in water and Deff
i its effective diffu-

sivity in the membrane. In our protocell model, the membrane is assumed to
have a porous structure made of minerals, the effective diffusivity of which
can be expressed as Deff

i = ϑDi with ϑ the tortuosity coefficient [19, 20].
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Using these definitions, the boundary condition Eq. (S32b) is derived from
Eq. (S15b).

Equations (S31) can be recast into the following Sturm-Liouville form for
each i

d

dr̂

[
p(r̂)

dρi
dr̂

]
− q(r̂)ρi = λiw(r̂)ρi, (S34)

where

p(r̂) := µi(r̂), (S35a)

q(r̂) := ziµi(r̂)ξ̂
0(r̂), (S35b)

w(r̂) := µi(r̂)/Di (S35c)

with
µi(r̂) := r̂2 exp

[
ziψ̂

0(r̂)
]
. (S36)

The Sturm-Liouville problem Eq. (S34) is called regular if it is subject to
some variants of homogeneous Robin boundary conditions, p(r̂), w(r̂) > 0,
and p(r̂), dp(r̂)/dr̂, q(r̂), and w(r̂) are continuous on [0, 1 + d̂] [35]. The
following properties of regular Sturm-Liouville problems are of particular
relevance to linear stability analysis [36]:

� Eigenvalues are discrete and real.

� Eigenvalues are bounded from above.

� Eigenfunctions form a complete orthogonal basis for an L2 Hilbert
space.

Moreover, the solutions of a regular Sturm-Liouville problem are continu-
ously differentiable [36]. However, the Sturm-Liouville problem that arise
from Eq. (S31) is not regular. Firstly, the boundary condition at r̂ = 0 is
singular because p(0) = 0. Secondly, p(r̂), q(r̂), and w(r̂) are nonsmooth at
r̂ = 1. Nonetheless, modern treatments of the Sturm-Liouville theory allows
these functions to satisfy more relaxed conditions, such that the foregoing
three properties still hold. Accordingly, it suffices for 1/p(r̂), q(r̂), and w(r̂) to
be locally Lebesgue integrable—a condition satisfied by Eq. (S35). Although,
the solutions (i.e., eigenfunctions here) may satisfy weaker smoothness and
continuity properties. This generalization followed from the important find-
ing that Hilbert function spaces can be decomposed into mutually orthogonal
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Figure S2: Stability along steady-state solution branches of ∆ψ parametrized with respect
to the surface charge density σ at σr = 0.02 with (A) Rc = 10−6 m and ϑ = 0.05, (B)
Rc = 10−8 m and ϑ = 0.05, (C) Rc = 10−6 m and ϑ = 0.1, and (D) Rc = 10−8 m and
ϑ = 0.1. Colorbars indicate the value of Csalt = C∞/2 that corresponds to each curve in
(A)–(D). The tortuosity coefficient ϑ only affects stability without altering steady-state
solutions.

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461264


singular and absolutely continuous subspaces for self-adjoint operators (see
the work of Zettl [35] for more details).

Given the properties of Sturm-Liouville problems discussed above, it suf-
fices to show that the maximum eigenvalue of Eq. (S31) subject to the bound-
ary conditions Eq. (S32a)–(S32d) is negative to prove that a steady-state so-
lution is stable. We, thus, solve Eq. (S31) numerically using finite-difference
methods following a similar procedure as discussed before (see “Numerical
Approximation of Steady-State Solutions”). Discretization of Eq. (S31) sub-
ject to Eq. (S32a)–(S32d) results in the following systems of equations

Ri(ψ̂
0, λi) = 0, i ∈ Inrxn, (S37)

which have a nontrivial solution if and only if Ri(ψ̂
0, λi) are singular. The

determinant can be used as a measure of how far a matrix is from being
singular, the application of which leads to the following condition

det Ri(ψ̂
0, λi) = 0, i ∈ Inrxn. (S38)

Determining matrix singularity is computationally expensive. Therefore, we
consider an alternative condition for Ri(ψ̂

0, λi) to be singular by requiring
its minimum singular value to vanish

σmin Ri(ψ̂
0, λi) = 0, i ∈ Inrxn, (S39)

where σmin is an operator returning the minimum singular value of Ri (not to
be confused with the surface charge densities introduced in previous sections).
Solving Eq. (S39) is computationally less expensive than solving Eq. (S38)
since the singular values of Ri can be efficiently computed by leveraging its
sparsity structure. Once Eq. (S39) has been solved, the stability of steady-
state solutions can be determined by the sign of λmax

i for all i ∈ Inrxn, where
λmax
i is the maximum eigenvalue of Ri(ψ̂

0, λi) (see Figs. S2 and S3).

Concentration Heterogeneity and Reaction Efficiency

So far, we restricted our analysis to electric potential fields that could
have been indued by nonuniform distributions of inorganic ions of the prim-
itive ocean (i.e., nonreactive species). These nontrivial potential fields could
have affected the operation and evolution of early metabolic cycles. Many
of the organic molecules, reducing agents, and energy sources participating
in these metabolic reactions would have been negatively charged, the trans-
port of which would have been altered by the background electric potential
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Figure S3: Stability limits along steady-state solution branches of Fig. S2 in the positive
orthant. (A) Surface charge density, at which stability is lost. (B) Membrane potential,
at which stability is lost.

field arising from the inorganic ions. Therefore, the resulting concentration
distribution of these reactive species would have been heterogeneous, which,
in turn, would have adversely affected the efficiency of early metabolic reac-
tions. In this section, we study this phenomenon by solving diffusion-reaction
mass-balance equations for reactive species that are subject to a prescribed
background electric potential field in the cell.

Unlike nonreactive species, the steady-state fluxes of reactive species are
generally nonzero. Hence, the solution strategy that we previously discussed
(see “Steayd-State Solutions”) for nonreactive species is not applicable here.
The concentration distribution of reactive species is also not described by
Eq. (S18). Therefore, we approximate the steady-state solutions of Eqs. (S12)
and (S13) for reactive species using perturbation techniques. The goal is to
quantify the extent to which reaction efficiencies are affected by the back-
ground electric potential field in the cell. In the following, we first describe
a quantitative measure of reaction efficiencies.

Suppose that B is a negatively charged reactive species and a substrate
consumed by metabolic reactions taking place in the cell, which is to be im-
ported from the ocean into the cell (e.g., reducing agents or energy sources).
To maximize the rate of metabolic reactions, the concentration of B in the
cell must be maintained at the highest possible level. A positive membrane
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potential can enhance the transport rate of B from the ocean to the cell,
increasing its concentration at the inner surface of the membrane C in

B , which
could potentially enhance the rates of metabolic reactions. However, the
overall consumption rate of B in the entire volume of the cell depends on its
concentration distribution. A uniform distribution CB(r) = C in

B would ensure
that B is maximally utilized by the metabolic reactions in the cell. However,
uniform concentration distributions are generally not achievable due to local
consumption of B and the background electric potential field. To quantify
how concentration distributions can affect the overall consumption rate of
B, we study a macroscopic description of its reaction-diffusion mass balance
by examining the integral form of Eq. (S13). Integrating Eq. (S13) over the
volume of the cell for B and applying the divergence theorem result in

d〈ĈB〉
dt̂

= 3ĴB + 〈r̂B〉, (S40)

where

〈ĈB〉 :=
1

V̂

∫
V̂

ĈBdV̂ , (S41a)

〈r̂B〉 :=
1

V̂

∫
V̂

r̂BdV̂ (S41b)

with V̂ := V/R3
c = 4π/3. We refer to 〈r̂B〉 as the apparent production rate of

B, which is a negative number here because it is consumed by metabolic re-
actions. The rate, at which the products of the reactions that B participates
in are generated is proportional to −〈r̂B〉. Clearly, concentration distribu-
tions that maximize −〈r̂B〉 favor the progress of these metabolic reactions.
To quantify the extent to which concentration distributions can enhance the
overall rates of these metabolic reactions, we compare 〈r̂B〉 for a given con-
centration distribution to what it would be if B was uniformly distributed in
the cell—the ideal distribution that maximizes its utilization. Accordingly,
we define the following reaction efficiency for the consumption of B

φB :=
〈r̂B〉ĈB(r̂)

〈r̂B〉Ĉin
B

. (S42)

The relationship between 〈rB〉 and 〈CB〉 for nonlinear rate laws is not straight-
forward. Hence, we assume that B is consumed in the cell according to the
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first-order rate law rB = −kCB to simplify the analysis. The apparent re-
action rate from this rate law is also linear with respect to the average con-
centration, that is 〈rB〉 = −k〈CB〉. Accordingly, the reaction efficiency with
respect to this rate law is

φB =
〈CB〉
C in
B

, (S43)

which we use as a measure of how much concentration heterogeneity can
diminish or enhance the rates of metabolic reactions consuming B. Note
that 0 < φB ≤ 1 only when B is negatively charged. However, when B is
positively charged, φB can be greater than one.

Next, we compute the steady-state solutions of Eq. (S13) for B us-
ing finite-difference techniques along the solution branches shown in Fig. 3.
These solution branches represent the steady states of the electric potential
field induced by the inorganic ions of the ocean parametrized with the surface
charge density. We express the dimensionless reaction rate r̂B with respect
to the Thiele modulus ΛB and construct the concentration distribution of B
in the cell that arise from the first-order rate law rB = −kCB by solving

1

r̂2

d

dr̂

(
r̂2 dĈB

dr̂

)
+ zB

dĈB
dr̂

dψ̂

dr̂
+

[
zB
r̂2

d

dr̂

(
r̂2 dψ̂

dr̂

)
− Λ2

B

]
ĈB = 0 (S44)

subject to

dĈB
dr̂

= 0 at r̂ = 0, (S45a)

ĈB = Ĉ in
B at r̂ = 1, (S45b)

where

ΛB :=

√
R2
ck

DB

(S46)

is the Thiele modulus [37].
Once the concentration distribution of B has been determined, we com-

pute the reaction efficiency from Eq. (S43). As expected, the reaction effi-
ciency for positively charged species is higher than for negatively charged ones
because these ions must diffuse through a negatively charged medium to par-
ticipate in metabolic reactions that occur in the cell (Fig. S4). Higher surface
charge densities cause more negative ions to accumulate in the cell, amplify-
ing this effect. The reaction efficiency is always less than one for negatively
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Figure S4: Average concentration of the cation (dashed lines) and anion (solid lines)
arising from the dissociation of a monovalent salt inside the cell at Csalt = 0.1 M, Λ2

B =
0, 10, 20, 30, 40, 50, and (A) Rc = 10−6 m and (B) Rc = 10−8 m. Each Thiele modulus ΛB

corresponds to a solid-dashed curve pair, increasing along the direction indicated by the
arrows. Red lines represent the nonreactive limit, where ΛB → 0.

charged species. However, it can exceed one for positively charged species if
the surface charge density is large enough. Note that, the background charge
induced by the inorganic ions of the ocean is not the only parameter affecting
the reaction efficiency. The local consumption of reactants can also result
in heterogeneous concentration distributions, irrespective of the background
charge. This effect is more conspicuous in the limit σ → 0. Even though the
entire volume of the cell is electroneutral in this limit, the reaction efficiency
can be less than one (Fig. S4). Note also that, diminished reaction efficiencies
as a result of local mass sinks is more pronounced at larger Thiele moduli.

Electroneutrality and Structural Stability of Protocells

Electroneutrality is often treated as a fundamental law governing the state
of electrolyte systems [29]. It is also regarded as a fundamental constraint
that biological systems are subject to [25, 11]. As such, it is believed to un-
derlie regulatory responses to several stress conditions [24, 11]. However, as
discussed in the main text, violation of electroneutrality is essential for the
mechanism that we proposed to promote the evolution of early metabolic
cycles in primitive cells that lack lipid membranes and enzymes. To cor-
roborate this mechanism, we examine the possibility that electroneutrality
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was not a fundamental constraint at the earliest stages of evolution. The
goal is to understand whether electroneutrality could have resulted from the
evolution of lipid membranes, specialized ion channels, and active transport
systems selected for to minimize catastrophic events due to osmotic crisis.
From this perspective, electroneutrality is an emergent property of evolv-
ing systems, self-optimizing towards a state of maximal structural stability
through natural selection.

Here, we quantitatively examine the relationship between osmitic crisis
and electroneutrality through a simplified case study. We consider an elec-
trolyte, comprising a cation M+ and an anion X−. Our objective is to
determine how the osmotic pressure arising from this system varies with the
charge density of the solution and assess if the minimum osmotic pressure is
attained when the solution is electroneutral. There are two main variables
that determine the osmotic coefficient of an electrolyte, namely the (molal)
ionic strength Im and the total (molal) concentration m of the solution [29].
The idea is to focus solely on the role of electroneutrality and identify the
(molal) charge density ξm that minimizes the osmotic coefficient ϕ at fixed
Im and m.

The state of single electrolyte systems MX at fixed temperature and
pressure is specified by two variables, namely the molal concentrations mM

and mX . Hence, specifying ξm, Im, and m for a general single electrolyte
system overdetermines its state. However, for a monovalent electrolyte, such
as the one we considered here, Im = m/2. Thus, the charge density can
freely vary without causing an inconsistent degree of freedom. We begin by
stating the virial expansion of the excess Gibbs energy of mixing

Gex

nwRT
= f(Im) +

∑
ij

ωijmimj +
∑
ijk

ωijkmimjmk + · · · , (S47)

which is the basis of Pitzer’s model, where nw is the mass of water in kg [29].
The first term in Eq. (S47) captures long-range electrostatic forces and the
rest capture medium- and short-range interactions among ions. To simplify
the analysis, we omit the terms corresponding to interactions among three or
more ions as they are negligible in most cases [38]. Differentiating the excess
Gibbs energy with respect to nw yields the osmotic coefficient

ϕ− 1 =
Imdf/dIm − f

m
+

1

m

∑
ij

uijmimj +O
(
m3
i

m

)
, (S48)
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where

ξm := zMmM + zXmX ,

Im := (z2
MmM + z2

XmX)/2,

uij := ωij + Imdωij/dIm.

To make the analysis more concrete, we consider a case, where the electrolyte
MX is contained in a protocell lying at the bottom of the primitive ocean,
such as that shown in Fig. 1. The osmotic pressure differential across the
cell membrane is derived from Eq. (S48)

∆Π

ρ̂wRT
= m+ Imdf/dIm − f +

∑
ij

uijmimj −
Πout

ρ̂wRT
, (S49)

where ∆Π := Πin − Πout is the osmotic pressure differential, Πin pressure in
the cell, Πout pressure in the ocean, and ρ̂w reduced water density (see the
work of Akbari et al. [11] for definition and detailed discussion). We assume
that the thermodynamic state of the ocean is specified, so that the last term
in Eq. (S49) is a constant. In this equation, only the term corresponding
to the second virial coefficient of Eq. (S47) on the right-hand side depends
on ξm. Therefore, it is the only variable term, with respect to which ∆Π is
minimized. Accordingly, we seek ξm that minimizes

θ :=
∑
ij

uijmimj. (S50)

For the monovalent electrolyte MX, the concentration of ions can be ex-
pressed with respect to m and ξm as

mM =
m+ ξm

2
,

mX =
m− ξm

2
.

(S51)

Substituting Eq. (S51) in Eq. (S50) and nondimensionalizing the resulting
terms yields

θ̄ = a2ξ̄
2
m + a1ξ̄m + a0 (S52)

where

a0 := ūMM + 2ūMX + ūXX , (S53a)

a1 := 2(ūMM − ūXX), (S53b)

a2 := ūMM − 2ūMX + ūXX (S53c)
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with θ̄ := 4θ/m, ūij := uijm, and ξ̄ := ξ/m.
Next, we leverage the properties of the coefficients ai in Eq. (S53) that can

be deduced from experimental observations. First, thermodynamic mixing
properties are not significantly affected by the diagonal second virial coef-
ficients for most electrolyte systems, so that ωMM = 0 and ωXX = 0 [39,
Section 2.5], which, in turn, results in ūMM = 0, ūXX = 0, and a1 = 0.
Second, a0 < 0 for a wide range of dilute electrolytes (Im . 0.25 mol/kg-w)
[29, Eq. (50) and Table 1], from which it follows that a2 > 0. One can deduce
from these empirical properties and the functional form of θ̄ in Eq. (S52) that
θ̄ has a minimum, and it is attained at ξ̄m = 0.

Finally, we emphasize that the results presented in this section for a
single monovalent electrolyte cannot be regarded as a rigorous proof. Never-
theless, they support the hypothesis that electroneutral systems are subject
to minimal osmotic stress. More analyses are required to generalize these
results to mixed electrolytes with polyvalent ions. Given the role of elec-
trostatic forces in short- and medium-range ion-ion interactions, it may be
plausible to assume that the nonlinear proportional relationship between the
osmotic pressure differential ∆Π and absolute charge |ξm| is generalizable to
more complex electrolyte systems. However, whether the minimum osmotic
pressure is always attained exactly at ξ̄m = 0, regardless of the molecular
characteristics of the ions involved, warrants further investigations.

Surface Charge of Minerals

The mechanism we introduced in this paper to generate positive mem-
brane potentials hinges on porous membranes with positively charged sur-
faces. In this mechanism, the membrane potential is larger if the surface
charge density on the inner surface is larger than on the outer surface of the
membrane. From our case studies, we found that ∆ψ ∼ 100 mV can be
achieved in small protocells with radius Rc ∼ 10−8 m for ∆σ ∼ 0.1 C/m2

(see Fig. S3), where ∆σ := σin−σout is the surface-charge-density differential
across the membrane. In this section, we describe a specific scenario based
on experimental measurements of the surface charge density for how such
positive surface charges could have been realized in primitive cells.

Solid surfaces, such as those of minerals, can adsorb or desorb ions (usu-
ally H+, OH−, or other ions that may be present in the system) from or
to water when exposed to an aqueous phase. As a result, these surfaces
may acquire a surface charge. When the temperature, pressure, and ionic
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Figure S5: Typical surface charge density of minerals measured as a function of pH us-
ing potentiometric-conductometric titration experiments [40, Chapter 1]. A pH gradient
across the membrane of the protocell model shown in Fig. 1 is assumed to cause a surface-
charge-density differential between the inner and outer surfaces of the membrane. The
protocell resides near a hydrothermal vent at an interface between two fluids with pH ≈ 9
and pH ≈ 5. The fluids flow into the cell from the alkaline vent and acidic ocean. The
acidic and alkaline fluids neutralize into water, such that pH ≈ 7 in the cell. Mineral-I
and Mineral-II are two hypothetical minerals that exhibit different functional forms for
σ(pH). For the given pH gradient between the hydrothermal vent and ocean, the surface
charge densities formed on the inner and outer surfaces of a membrane made of Mineral-I
are almost identical. However, a large surface-charge-density differential can be generated
across a membrane made of Mineral-II, such that σin and σout are both positive, similarly
to the scenario described in the left diagram of Fig. 1B.

composition of the electrolyte that mineral surfaces are subject to are spec-
ified, the surface charge density is a function of pH. At fixed temperature
and pressure, the functional form of σ(pH) for each mineral depends on its
constituents and the composition of the electrolyte, which can typically be
represented by a monotonically decreasing function, such as those shown in
Fig. S5 [40, Chapter 1]. However, non-monotonic σ(pH) have also been ob-
served (for example, see Fig. 6 in the work of Nyamekye and Laskowski [41]).
Nevertheless, we only focus on minerals that exhibit a monotonic σ(pH) in
this section.

The monotonicity of σ(pH) implies that |σ| attains its maximum in the
alkaline and acidic limits. Accordingly, surface charge densities for most
minerals are observed in the range σ(pH = 1) < σ < σ(pH = 14). For
example, surfaces charge densities in the range −0.4 < σ < 0.4 C/m2 for
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synthetic and natural ferrous minerals, which are relevant to the conditions
on the primitive Earth [5, 42], have been reported [43, 44] with a similar
σ(pH) to those shown in Fig. S5. This range generally agrees in order of
magnitude with the stable ranges of σ that we ascertained in our case studies
(see Figs. S2 and S3).

Alkaline hydrothermal vents are considered to be one of the likely en-
vironments, in which life could have originated [8, 1]. In these environ-
ments, CO2-rich acidic ocean water (pH ≈ 5) could have interfaced with
alkaline hydrothermal fluids (pH ≈ 9), providing suitable conditions for the
first metabolic reactions to emerge [42]. Recently, experimental evidence has
been found, suggesting that such pH gradients could have provided sufficient
energy to drive the thermodynamically unfavorable carbon-fixation steps of
early metabolism under prebiotic conditions [45]. Here, we suggest that the
pH gradient between hydrothermal fluids and the primitive ocean could also
have generated sufficiently large surface-charge-density differentials across
protocell membranes (∆σ ∼ 0.1 C/m2).

To clarify the point raised above, consider a protocell, residing at an
interface between a hydrothermal vent and ocean (Figs. S5). Suppose that
acidic and alkaline fluids flow into the cell, neutralizing each other, such
that pH ≈ 7 in the cell. The neutral pH in primitive cells would have been
optimal for the emergence of surface metabolism at the origin of life [5].
The difference between σin at pH = 7 and σout at pH = 9 may be large or
small, depending on the constituent minerals of the membrane. Mineral-I and
Mineral-II in Fig. S5 represent two hypothetical minerals that could generate
small and large ∆σ, respectively. A key difference between the functional
form of σ(pH) for these minerals is in the point of zero charge (PZC) [40,
Chapter 1]. The PCZ occurs at pH ≈ 7.5 for Mineral-I. Thus, σin and
σout are both small, so that ∆σ ≈ 0 C/m2. However, for Mineral-II, the PCZ
occurs at pH ≈ 9.3. As a result, σin and σout are both positive with ∆σ ≈ 0.1
C/m2. Therefore, the scenario we described in Fig. 1B for generating positive
membrane potentials could have been realized for protocell membranes made
of Mineral-II. Interestingly, experimental measurements of the surface charge
density of mineral-water interfaces indicate that the functional from of σ(pH)
for several transition-metal sulfides (e.g., Ni3S2 and ZnS) is similar to that
of Mineral-II in Fig. S5 with the PZC in the alkaline range [41, 46].
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