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Abstract:  13 

Bounding box algorithms are useful in localization of image patterns. Recently, utilization 14 
of convolutional neural networks on X-ray images has proven a promising disease prediction 15 
technique. However, pattern localization over prediction has always been a challenging task with 16 
inconsistent coordinates, sizes, resolution and capture positions of an image. Several model 17 
architectures like Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), You only 18 
look once (YOLO), Region-based Convolutional Neural Networks (R-CNN), Region-based Fully 19 
Convolutional Networks (R-FCN), Single Shot Detector (SSD), etc. are used for object detection 20 
and localization in modern-day computer vision applications. SSD and region-based detectors like 21 
Fast R-CNN or Faster R-CNN are very similar in design and implementation, but SSD have shown 22 
to work efficiently with larger frames per second (FPS) and lower resolution images. In this article, 23 
we present a unique approach of SSD with a VGG-16 network as a backbone for feature detection 24 
of bounding box algorithm to predict the location of an anomaly within chest X-ray image.  25 
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Introduction:  31 

Object localization is a subfield of computer vision that is used to detect the location of 32 
object in an image. Several model architectures like Fast R-CNN [1], Faster R-CNN [2], Histogram 33 
of Oriented Gradients (HOG) [3], You only look once (YOLO) [4], Region-based Convolutional 34 
Neural Networks (R-CNN) [5], Region-based Fully Convolutional Networks (R-FCN) [6], Single 35 
Shot Detector (SSD) [7] and Spatial Pyramid Pooling (SSP-net) [8] are been used for object 36 
detection and localization in modern-day computer vision applications. The SSD and region-based 37 
detectors like Fast R-CNN or Faster R-CNN are very similar in design and implementation, but 38 
SSD have shown to work efficiently with larger frames per second (FPS) and lower resolution 39 
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images [7]. Although Region-based detectors like Faster R-CNN have a little greater accuracy as 40 
compared to SSD, SSD’s are faster and better for real-time image processing [9]. Thus, we present 41 
a unique approach of SSD with a VGG-16 network as a backbone for feature detection of bounding 42 
box algorithm to predict the location of an anomaly within chest X-ray image. 43 

 44 

Method: 45 
 46 

1) Data collection:  47 

The image dataset for developing bounding box algorithms has been retrieved from 48 
National Institutes of Health (NIH) kaggle portal. The dataset consists of 112,120 chest X-ray 49 
images, each image with a 1024*1024-pixel resolution. The images are divided into 15 classes 50 
('No Finding', 'Atelectasis', 'Cardiomegaly', 'Consolidation', 'Effusion'; 'Emphysema', 'Edema', 51 
'Fibrosis', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax', 'Pleural Thickening' and 52 
'Hernia'). Further, each X-ray image consists of information on 4 bounding box attributes which 53 
bound the exact location of the detected disease. The first coordinate (x_min) marks the x 54 
coordinate of the top left corner of the bounding box which can be considered as the origin with 55 
pixels measured from this corner of the image. Similarly, the second attribute (y_min) marks the 56 
y coordinate of the top left corner of the bounding box. The remaining two attributes are the width 57 
and height of the bounding box in unit pixels length. Figure 1 is the X-ray image of a patient 58 
suffering from cardiomegaly. The red bounding box shows the location of the infection in the 59 
image. The image is downscaled to 512*512 from 1024*1024, 1024*1024 being the original 60 
resolution of X-ray image. The top left corner of the image (0,0) is taken as the origin with x_min 61 
and y_min as the x and y coordinates of bounding boxes. 62 

 63 

Figure 1: Depicts the location of cardiomegaly with bounding boxes.  64 

 65 

2) Exploratory data analysis and preprocessing:  66 

For training, the width and height attributes were converted to x_max and y_max by adding 67 
the width attribute of the bounding box to the corresponding x_min coordinate for obtaining x_max 68 
and by adding the height attribute to the y_min for obtaining y_max coordinate. Thus, the bounding 69 
box coordinates can now be presented with a string containing x_min, y_min, x_max, and y_max 70 
coordinates. The images with multiple labels (93) would create a situation of high bias and abide 71 
the algorithm from learning the location of the disease with precision. Therefore, the images with 72 
multiple labels have not been included in training the algorithms. In total, 787 images with single 73 
labels have only been considered for training. The plot for the top 15 labels (single + multiple) has 74 
been shown in figure 2.  75 
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 76 

Figure 2: The plot for the top 15 labels.  77 

 78 

Dynamic training has been implemented to reduce the computational cost with weights updated 79 
by backpropagation for every 4 images. An image data generator class has been utilized for this 80 
technique.  81 

 82 

Table 1: Number of training batches, sizes, and input pixel resolution for bounding box algorithms. 83 

 84 

3) Network architecture:  85 

Several factors can impact the accuracy and training speed of algorithm, some can be 86 
feature extractors (VGG-16, InceptionNet, ResNet, MobileNet, etc.), input image resolutions, 87 
matching strategy and IOU threshold, non-max suppression IOU threshold, number of predictions, 88 
boundry box encoding, data augmentation, size of training dataset, use of multi-scale images in 89 
training and testing, training configurations including batch size, input image resize, learning rate, 90 
learning rate decay and localization loss function [9]. An SSD runs a convolutional network on 91 
input image and computes a feature map, it then runs n*n convolutional kernels on this feature 92 
map to predict the bounding boxes and categorization probability [10]. For this SSD model, a 93 
VGG-16 feature extractor has been used with pretrained ImageNet weights with an input size of 94 
512*512*3 resolution. The reason for using a feature extractor was to get the features of objects 95 
in specific order, which eventually would help the algorithm learn faster. VGG-16 feature extractor 96 
is followed by rectified linear activation layer, followed by a dropout layer to construct algorithms 97 
backbone. A dropout layer with 25% dropout nodes has been used to address the high variance 98 
problem. The output image after the dropout layer application has a dimension of 16*16*512 99 
resolution. After the dropout layer, compression layers are added to the model architecture, 100 
containing a 2D convolutional layer, a ReLU activation layer, and a batch normalization layer. The 101 
detailed structure of this compression layer is shown in figure 3. The first compression layer has a 102 
convolutional layer of kernel size 3, a stride of 1, number of filters as 256. The output shape is 103 
obtained by the following formula: 104 

 105 

Output Dimension = ((Input Dimension + 2p − f)/s) + 1  106 

 107 

Where, “p” is padding, “f” is kernel size, and “s” is the stride used in layer. For convolutional layer 108 
of the first compression layer, with p=1, f=3, and s=1 generates an output shape 16*16*256 109 
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resolution. The second compression layer with p=1, f=3, s=1 and number of filters=128, generates 110 
an output shape of 8*8*128, this is followed by the last compression layer. After 3 compression 111 
layers, the model splits into 2 branches, classification branch and a bonding box regression branch. 112 
The classification branch classifies the image into the classes from the given labels. The 2D 113 
convolutional layer is followed by an activation layer containing the sigmoid activation function, 114 
followed by a flattening layer. The final output shape of the classification breach after flattening 115 
is equal to 16. With similar approach on bounding box regression branch, the final output shape 116 
of the classification breach after flattening equals to 64. The flattened layers of the classification 117 
and bounding box regression branches are concatenated to get final output shape with 16 bounding 118 
box predictions. The non-max suppression technique is applied to generate a single confidence 119 
value. 120 

 121 

4) Custom cost function: 122 

The compression layer has been designed to increase the number of filters/channels. The 123 
2D convolutional layer is followed by a rectified linear (ReLU) activation function. The ReLU is 124 
followed by a Batch normalization layer, which helps to stabilize the learning process and 125 
dramatically reduces the number of training epochs required to train the network. A 0.25 fraction 126 
dropout regularization has been applied to the model in order to reduce the degree of overfitting, 127 
25% of the random nodes have been dropped with remaining nodes as input for the next hidden 128 
layer. The final SSD model after concatenation requires an additional custom loss function for 129 
training. 130 

 131 

Figure 3: The SSD model architecture. 132 

 133 

Figure 4: Compression layer architecture used in SSD model. 134 

 135 

A custom cost function has been used to minimize the loss while training SSD algorithm. The cost 136 
function has two parts. One-part deals with classification loss while the other part deals with 137 
bounding box loss. This bounding box loss part of the custom cost function is based on intersection 138 
over union policy. In figure 5, the predicted bounding box of a patient suffering from cardiomegaly 139 
is shown in blue color. The original bounding box presenting the ground truth is shown in red 140 
color. The region of intersection of the two bounding boxes is shown in green color. The union of 141 
the two bounding boxes is simply the total area occupied by both the bounding boxes. The 142 
intersection over union is defined as area of region of intersection divided by the area of the region 143 
of union. The more is the intersection over union for the image, the lesser is the training loss. This 144 
custom cost function works to decrease the loss by increasing the area of overlap for two bounding 145 
boxes.  146 
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 147 

Figure 5: Image of a patient suffering from cardiomegaly showing intersection over union policy 148 
for the custom cost function. 149 

 150 

Figure 6: Comparison of ground truth with bounding box predicted with SSD Model. 151 

 152 

Results and Discussion:  153 

The predicted bounding box is found to provide an accurate position of the disease 154 
(cardiomegaly). The region of prediction is observed to be larger than that of the actual bounding 155 
box (figures 5 & 6). Although the region of bounding box was bigger than the actual ground truth 156 
bounding box, it seemed a reasonable offset. Further, training with additional images is likely to 157 
improve the box prediction score. 158 

 159 

Table 2: Number of training epochs and losses for all algorithms. 160 

 161 

This seems a promising strategy of utilizing SSD with a VGG-16 network as a backbone for feature 162 
detection of bounding box algorithm to predict the location on X-ray images. Its applications 163 
should be tested on other medical image datasets like computerized tomography, magnetic 164 
resonance image or even immunohistochemistry staining images. Bounding boxes are one of the 165 
most popular image annotation techniques in deep learning, and with improvements in prediction 166 
accuracies, this method can reduce costs and increase annotation efficiency compared to other 167 
image processing methods. 168 

 169 

Supplementary data:  170 

1) National Institute of Health chest X-ray dataset: https://www.kaggle.com/nih-chest-xrays/data 171 

2) Bounding box coordinates of the testing images: https://www.kaggle.com/nih-chest-172 
xrays/data?select=BBox_List_2017.csv 173 

3) Analysis code can be retrieved from here:  174 
https://bitbucket.org/chestai/chestai_rushikes_code/src/master/ 175 
 176 
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Figures: 184 
Figure 1: Depicts the location of cardiomegaly with bounding boxes.    185 

 186 
Figure 2: The plot for the top 15 labels.    187 
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 188 
Figure 3: The SSD model architecture.   189 

 190 
Figure 4: Compression layer architecture used in SSD model.   191 
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 192 
Figure 5: Image of a patient suffering from cardiomegaly showing intersection over union policy 193 
for the custom cost function.   194 

 195 
Figure 6: Comparison of ground truth bounding box with the bounding box predicted with SSD 196 
Model. 197 
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 198 
Tables: 199 
Table 1: Number of training batches, sizes and input pixel resolution for bounding box 200 
algorithms. 201 

Label No. of Training 
Examples 

Batch Size Total No. of 
Batches 

Input pixel 
resolution 

Atelectasis 149 4 38 512*512 

Cardiomegaly 135 4 34 512*512 

Effusion 102 4 26 512*512 

Infiltration 79 4 20 512*512 

Mass 63 4 16 512*512 

Nodule 76 4 19 512*512 

Pneumonia 97 4 25 512*512 

Pneumothorax 86 4 22 512*512 

Secondary Labels 93 - - - 

  Total: 880      

 202 
Table 2: Number of training epochs and losses for all algorithms. 203 
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Bounding Box 
Algorithm 

Optimizer 
Used 

Learning 
Rate 

No. of 
Training 
Epochs 

Initial Loss Final Loss 

Atelectasis Adam 1e-4 50 11.91 1.23 

Cardiomegaly Adam 1e-2 38 2.95 1.05 

Effusion Adam 1e-3 50 7.85 1.09 

Infiltration Adam 1e-3 50 9.43 0.97 

Mass Adam 1e-3 50 10.64 1.19 

Nodule Adam 1e-3 50 8.24 1.50 

Pneumonia Adam 1e-3 50 7.45 0.89 

Pneumothorax Adam 1e-3 50 8.44 1.00 

 204 
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