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Abstract 

 

In the real world, making sequences of decisions to achieve goals often depends upon the ability 

to learn aspects of the environment that are not directly perceptible. Learning these so-called 

latent features requires seeking information about them, a process distinct from learning about 

near-term reward contingencies. Prior efforts to study latent feature learning often use single 

decisions, use few features, and fail to distinguish between reward-seeking and information-

seeking. To overcome this, we designed a task in which humans and monkeys made a series of 

choices to search for shapes hidden on a grid. Reward and information outcomes from uncovering 

parts of shapes were not perfectly correlated and their effects could be disentangled. Members 

of both species adeptly learned the shapes and preferred to select informative tiles earlier in trials 

than rewarding ones, searching a part of the grid until their outcomes dropped below the average 

information outcome–a pattern consistent with foraging behavior. In addition, how quickly humans 

learned the shapes was predicted by how well their choice sequences matched the foraging 

pattern. This adaptive search for information may underlie the ability in humans and monkeys to 

learn latent features to support goal-directed behavior in the long run. 
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Introduction 

 

All animals must learn latent features of their environments, those that can be perceived in 

different ways and that must be inferred from observations. Many contexts involve learning latent 

features on the basis of different patterns of visuospatial perceptions, ranging from the mundane, 

such as determining the ripeness of a fruit (Zaidi 2011), to the esoteric, such as how to play a 

video game (Mnih, Kavukcuoglu et al. 2015). Despite the relevance to many aspects of cognition, 

how humans and other animals learn these latent features is only recently a focus of research in 

psychology and neuroscience. Many studies in psychology and related disciplines investigate 

how animals can generally learn features. While perceptible features in the environment can be 

learned by observation and directly reinforced by the outcomes of an individual’s choices, latent 

features in environments must be inferred (Kaelbling, Littman et al. 1998; Maia 2009; Braun, 

Mehring et al. 2010; Gershman, Blei et al. 2010; Wilson and Niv 2012; Dayan and Berridge 2014; 

Wilson, Takahashi et al. 2014; Gershman, Norman et al. 2015; Tervo, Tenenbaum et al. 2016; 

Niv 2019). These latent features often capture the statistical structure of situations in the 

environment across stimuli, actions, time, space and a range of variables internal to the organism 

such as mood or cognitive state (Salzman and Fusi 2010). 

 

Latent features can be learned from the outcomes of choices. Outcome-motivated learning of 

latent features is typically studied by using rewards such as food or water to provide feedback 

that can be used to augment behavior (Sutton and Barto 1998; Dayan and Daw 2008; Lee, Seo 

et al. 2012). In the real world, however, many behaviors go momentarily unrewarded and yet 

learning still occurs (Tolman 1948). Focusing only on rewards, then, fails to fully capture learning. 

Besides reward, the outcomes of choices also provide information, here understood as changes 

in the probabilities of different features or causes appearing in the environment. This information 

can also be used for learning; specifically, the acquisition of information can help construct or 

identify a latent feature. Since knowledge of latent features can be critical for developing and 

applying efficient strategies to obtain reward and avoid aversive outcomes in the long-term, a 

quest for information can itself be a motivating force for behavior. Understanding how reward-

based and information-based motivations impact learning is consequently important for 

understanding how learning proceeds in the messy complexity of real-world environments. 

 

Learning about a latent feature involves gathering reward or information from many decisions 

across different timescales. On a short timescale, such as individual choices, reward or 
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information can reinforce actions and contingencies that have recently occurred. On a longer 

timescale, such as sequences of choices or even multiple episodes, linking together multiple 

outcomes can reinforce actions and contingencies that are statistically related. In general, recent 

attempts to study information gathering for latent feature learning have suffered from designs that 

either cannot fully distinguish between reward-driven and information-driven strategies despite 

requiring many decisions (Kolling, Behrens et al. 2012; Kaplan, King et al. 2017; Kolling, Scholl 

et al. 2018; Meder, Nelson et al. 2019), fail to investigate gathering information that can be used 

to learn latent features (Bromberg-Martin and Hikosaka 2009; Bromberg-Martin and Hikosaka 

2011; Blanchard, Hayden et al. 2015; Iigaya, Story et al. 2016; Wang and Hayden 2019; White, 

Bromberg-Martin et al. 2019), or fail to investigate the motivations behind sequences of decisions 

to gather information (Foley, Kelly et al. 2017; Horan, Daddaoua et al. 2019).  

 

To understand the role of reward and information outcomes in learning latent features over 

multiple decisions, we developed a novel behavioral paradigm based on the board game 

Battleship. On each trial, participants started with a grid of unchosen tiles, selected tiles from the 

grid to reveal whether a piece of a shape is hidden beneath the tile, and ended trials when all of 

a hidden shape’s tiles had been revealed. Revealing a filled or empty square provided information 

about both the current trial’s shape as well as about the set of possible shapes that could occur 

across trials. On the current trial, revealing a filled or empty square provides evidence for the 

hidden shape. Over many trials, participants learn which shapes out of thousands of possibilities 

could occur. In our task, information (changes in the probabilities of different shapes) is partly 

decorrelated from the near-term reward earned from turning over a tile (points for humans or 

squirts of juice for monkeys). Hence, the effect of information and reward outcomes on patterns 

of choices can be disambiguated.  

 

To investigate information-motivated learning, we had both humans and monkeys perform our 

task. Humans are hypothesized to be exquisite information gatherers (Miller 1983), but the degree 

to which this skill extends across the primate clade is unknown. Here we report on behavior 

observed in our task; a modeling study will be published separately. We observed that participants 

from both species were able to learn to reveal shapes. Analysis of choice behavior suggests that 

tiles that were expected to be informative about the hidden shape tended to be selected earlier in 

a trial, whereas tiles that had been rewarding in the past tended to be selected later. Importantly, 

over multiple choices, exploratory analysis showed that both humans and monkeys tended to 

abandon local searches in one part of the grid to jump to a new part when their most recent 
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outcome provided less information than the average for the environment, a type of foraging 

behavior previously observed for gathering rewards across species. Furthermore, the degree to 

which the patterns of choices of human participants matched a foraging pattern predicted how 

quickly shapes were learned. After learning, humans abandoned this pattern of information 

foraging in favor of gathering rewards. In contrast, monkeys continued to forage for information 

late in sessions. In sum, evidence from behavior on our task suggests both humans and monkeys 

searched for information across different timescales to learn shapes and used foraging 

computations to decide where to sample spatially on the grid to gather information. 

 

 

Results 

 

To study how animals learn latent features over multiple decisions, we designed a shape search 

task. The task contained thousands of possible latent features—the hidden shapes, sets of 

connected filled tiles at a location—and identification of these features could facilitate more rapid 

successful search. The task bears similarity to the board game ‘Battleship’. Participants viewed a 

5x5 tile grid and locations on the grid could be chosen to reveal either a filled or empty tile. On 

every trial, one of five shapes was pseudorandomly chosen. The shapes partly overlapped; for 

example, the ‘H’ shape overlapped with the backwards-‘L’ shape at the bottom row, middle tile 

(Fig. 1A, bottom). Hence, uncovering a piece of the shape did not always reveal the identity of 

the shape for that trial. 

 

Participants (humans: n = 42, who were not instructed as to the number or location of shapes 

before the task; monkeys: n = 2) uncovered the shape over multiple choices by selecting tiles 

(Fig. 1A). At trial start, participants made a movement to a target at the center of the screen 

(humans: mouse-over; monkeys: saccade) until it disappeared after a variable delay. Participants 

then had unlimited time to choose a target. After a choice, if participants uncovered a filled tile 

(‘hit’), then they received a reward (points for humans, juice for monkeys) before proceeding to 

the next choice. If participants failed to uncover a filled tile (‘miss’), then they proceeded to the 

next choice with no reward. After each choice outcome and an inter-choice interval, the fixation 

point reappeared, and the sequence repeated until the shape was fully revealed (see methods). 

Trials ended once all filled tiles that were part of the shape were uncovered. A trial, then, is the 

set of choices and outcomes from initial fixation with a fully occluded shape to the last choice that 

finished revealing the shape. 
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Figure 1. A. Shape search task. The variable time intervals reported in the figure are for the 

monkeys; the human participants had hold times of 500 ms for fixation, 500 ms after targets on, 
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and 250 ms to register selection of a target. B. Performance on the shape search task. Top panel: 

thick red line = average human performance (n = 42), thin gray lines = individual subject traces; 

middle panel: M1; bottom panel: M2. For all three panels, jagged green line at bottom is the 

average performance of a choice algorithm that randomly chooses tiles (100 iterations), and 

jagged blue line at bottom is the average performance of a choice algorithm that randomly 

chooses tiles until a hit and then performs a local area search (100 iterations). Points are mean ± 

s.e.m. 

 

To visualize performance, we plotted the proportion of choices that maximized rewards as a 

function of trial number (humans: 45 min session with as many trials performed as possible; M1 

and M2: untimed sessions concatenated across 7 days). At each choice, some of the five shapes 

remain and, since the shapes overlapped, participants that choose tiles with the most overlap 

among the remaining shapes will maximize rewards. This strategy represents the Bellman optimal 

policy for selecting squares (Sutton and Barto 1998). The proportion of choices that maximized 

reward increased over sessions for both species, with human participants faster than monkeys in 

stabilizing the proportion of choices that maximized reward per trial around 70% (Fig. 1B). The 

remainder of this paper will focus on analyses of this learning behavior. 

 

Were participants learning to reveal shapes? All participants outperformed both an algorithm that 

randomly selected tiles on every choice (Fig. 1B, green lines below data) and an algorithm that 

randomly selected tiles until a hit and searched locally thereafter (Fig. 1B, blue lines below data). 

This suggests that random choices and simple local search were not used to reveal the shapes. 

To confirm that participants learned to reveal shapes, we examined the learning curves for 

different shapes on the task (Fig. 2). A sample learning curve for one shape for M1 is shown in 

Figure 2A, which illustrates how the total number of choices to finish revealing a shape decreased 

over the duration of the task (OLS, p < 1x10-10, β = -0.0141 ± 0.0019), approaching optimal (thick 

blue line; see methods for how we computed the optimal number of choices). This pattern was 

evident across shapes (Fig. 2B, top; OLS, all β’s < 0, all p’s < 0.05, βmean = -0.0129 ± 0.0023, 

Student’s t-test: t(df=4) = -5.5145, p < 0.01) and in four of five shapes in M2 (Fig. 2B, bottom; 

OLS, 4 β’s < 0, 1 β > 0, all p’s < 1x10-6; βmean = -0.0071 ± 0.0044, t(df=4) = -1.6173, p > 0.1). We 

view this variability in monkey behavior as a boon for future investigation of the neural circuits 

underlying this learning. Humans showed quicker convergence to optimal numbers of choices by 
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at least an order of magnitude (Fig. 2C; mean across shapes and subjects: β = -0.2673 ± 0.0722, 

Student’s t-test: t(df=4) = -3.7025, p < 0.05). 

 

 
Figure 2. A. Sample learning curve for the ‘H’ shape for M1. Early in learning, M1 required a 

larger number of choices to finish revealing the shape than later in learning; by the end of learning, 

M1 was at or near optimal (thick blue line) for the shape. B. Learning curves for M1 (top) and M2 

(bottom) for all shapes. C. Learning curves for all humans (n = 42; light gray lines: individual 

participants; thick black line: average) for all shapes. All plots: thick horizontal lines: optimal 

number of choices for that shape. 
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Did rewards or information drive choices of individual tiles? Outcomes from each choice deliver 

both near-term rewards and near-term information about the hidden shape. To disentangle the 

relative contribution of reward and information on choice, we computed the expected reward 

outcome and expected information outcome for each tile, updated after each choice made by 

participants. For each tile, the expected reward is defined by the number of hits in the past from 

the choice of that tile divided by the number of times the tile was previously chosen. This definition 

was intended to capture the impact of short-sighted reward maximization on selecting tiles to learn 

to reveal shapes. By contrast, expected information is computed from the expected change from 

a hit or miss in the entropy of the probability distribution over the possible shapes (see methods). 

Informally, one can think of these distributions as a set of probabilities, one for each shape. This 

distribution is updated during trials based on getting hits or misses and updated after the end of 

the trial based on which shape was observed. Unlike near-term reward maximization, maximizing 

information is far-sighted because it rules in or out shapes altogether and so includes tiles that 

are rarely or never selected. Expected reward and expected information across choices were 

weakly uncorrelated (humans: ρ = -0.15; both monkeys: ρ = -0.09). A multinomial logistic 

regression was performed to regress choice number in trial against trial number in session, the 

expected information for the chosen tile, and expected reward for the chosen tile (Fig. 3). A 

positive regression coefficient implies that the effect of the variable was to select a tile earlier in a 

trial, whereas a negative coefficient implies the effect was to select a tile later in a trial. For human 

participants, the mean coefficient for expected information was positive and significantly different 

from the negative mean coefficient for expected reward (t(df=14) = 6.18, p < 1x10-4; mean βinfo = 

1.37 ± 0.41; mean βreward = -0.19 ± 0.14). In humans, then, greater expected information correlated 

with higher probability of earlier choices of tiles whereas greater expected reward correlated with 

higher probability of later choices of tiles. Paired t-tests of expected information and expected 

reward coefficients for each choice number revealed that information influenced choice 

significantly more than reward (t(df=14) = 6.21, p < 5x10-5).  

 

The same outcomes correlated with the choices of monkeys. As in humans, expected information 

more positively influenced choice than expected reward in both monkeys; that is, in monkeys, 

higher expected information predicted earlier selection of a tile in a trial whereas higher expected 

reward predicted later selection. M2 was only marginally more driven by information (t(df=7) = -

2.03, p = 0.0822) but significantly more driven by reward than M1 (t(df=7) = -2.96, p < 0.05). The 

influence of information on choice was greater than reward in M1 (t(df=7) = 3.66, p < 0.01) and 

M2 (t(df=7) = 3.46, p < 0.05). 
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Figure 3. The influence of expected information and expected reward on choice number in trial 

for humans, M1, and M2. Each column is the average beta (left pair of bars, across human 

participants and choice numbers, mean by subject ± 1 s.e.m.; middle and right pairs of bars, M1 

and M2 respectively, across choice numbers, mean by choice number ± 1 s.e.m.). Error bars for 

M2 Reward occluded by data point. 

 

After considering whether expected outcomes drove participants' choices, we explored how 

participants made sequences of choices. We wondered if participants explored the grid to learn 

the hidden shapes by choosing neighboring tiles. Humans and to a lesser extent monkeys 

increased their probability of choosing a neighboring tile after a hit over time (Fig. 4A, left column; 

OLS; humans, first row: β = 0.0037 ± 0.0002 fraction of choices of neighboring tile after hit / trial, 

p < 1x10-33; M1, second row: β = 0.00013 ± 0.000018, p < 1x10-10; M2, third row: β = 0.000055 ± 
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0.000013, p < 1x10-4). In contrast, the probability of choosing a neighboring tile after a miss 

decreased over time for humans and for monkeys, albeit more weakly (Fig. 4A, right column; 

OLS; humans, first row: β = -0.0014 ± 0.0002, p < 1x10-14; M1, second row: β = -0.000024 ± 

0.000013, p = 0.0695; M2, third row: -0.000091 ± 0.0000093, p < 1x10-20). In addition, following 

hits, humans showed a greater increase in their tendency to select neighboring tiles that were 

also hits than monkeys (Fig. 4B; OLS; Humans: β = 0.0046 ± 0.00024 fraction chose neighboring 

hit after hit / trial, p < 1x10-26; M1: β = 0.00018 ± 0.000020 fraction of choices neighboring hit after 

hit / trial, p < 1x10-16; M2: β = 0.00014 ± 0.000015 fraction chose neighboring hit after hit / trial, p 

< 1x10-9). In sum, while members of both species tended to more frequently choose hits following 

hits over time, humans increased their probability of doing so more quickly than monkeys. 

 
Figure 4. A. Probability of choosing a neighboring tile after a hit (left column) or a miss (right 

column). First row: humans; second: M1; third: M2. B. Probability of choosing a neighboring hit 

after a hit. Left: humans; middle: M1; right: M2. All plots: thick red lines are average probability of 

choice; gray lines are individual human participant performance. 

 

What variables influenced these choices? We ran a mixed-effects binomial regression on human 

participants’ choices with dependent variable of choice of neighboring tile (= 1) or not (= 0) and 

independent fixed-effect variables trial number in session, choice number in trial, information 

outcome from the previous choice, expected information for the current choice, reward outcome 

from the previous choice, and expected reward for the current choice and independent random-
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effect variable of subject identity. All main effects were significant (p < 0.05, Bonferroni corrected). 

The effect of information and reward outcome was positive (βinfo = 1.75 ± 0.069; βreward = 1.34 ± 

0.056), indicating that larger information or reward outcomes predicted choice of a neighboring 

tile. Larger information or reward outcomes tend to result from hits; since shapes were connected 

filled tiles, after a hit, some number of the neighboring tiles will typically also be parts of shapes. 

The effect of expected information and expected reward were negative (βexp_info = -0.87 ± 0.091; 

βexp_reward = -0.51 ± 0.061), indicating that larger expected information or reward predicted choice 

of a non-neighboring tile. Larger expected information or reward tend to result from misses; if a 

choice is a miss, then the probability that a shape is nearby is low, and so the next choice should 

be in a different part of the grid. The same regression was run on monkeys, which revealed 

significant main effects of trial number, expected information, and information and reward 

outcomes but not choice number or expected reward (p < 0.05, Bonferroni corrected). The sign 

of the significant main effects matched the human participants (βinfo = 0.86 ± 0.0403; βreward = 1.41 

± 0.048; βexp_info = -0.33 ± 0.045), consistent with similar motivations for choosing a neighboring 

tile or not. Participants were driven to search neighboring tiles by good outcomes and to search 

further away by bad ones. 

 

We were primarily interested in how subjects explored the grid to learn the shapes, which we 

operationalized as the increase in their performance (Fig. 1B). To understand this, we need to 

define the learning period. Learning starts with the first trial. We reasoned that two main effects 

should be evident to mark the end of learning. First, the mean number of choices to finish 

revealing a shape should diminish during learning. Second, the variance in the number of choices 

should also diminish as participants learned the shapes (cf. Osu, Morishige et al. 2015). To detect 

changes in these values, a changepoint detection test was run on the mean and variance of 

participants’ choices across all shapes and trials (see methods) (Inclan and Tiao 1994; Gallistel, 

Mark et al. 2001). The end of learning was set to the last changepoint (whether due to changes 

in mean or variance) across all shapes.  

 

Looking at participants’ sequence of choices when they did not choose neighboring tiles can 

reveal patterns of outcomes that aid in learning. Participants may search in a restricted area (Todd 

and Hills 2020), hunting for shapes in a part of the grid. We operationalized such an area restricted 

search as the choice of at least three neighboring tiles in sequence. We considered choices when 

participants made a decision to ‘jump’, a choice of a tile more than one tile away from the previous 

choice (i.e., the choice of a non-neighboring tile), after such area restricted search. A significant 
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number of trials contain these sequences (humans: 0.28 ± 0.012 fraction of trials; M1: 0.27; M2: 

0.29). These jumps are the result of decisions to sample a new area of the grid. 

 

Both human and monkey participants tended to jump after these sequences of choices (three 

neighboring tiles) when the information intake dropped below the average information intake 

during learning (Fig. 5A). This drop is the result of learning less about the current hidden shape, 

for example by getting misses that rule out fewer shapes. In humans, this pattern was not 

observed when these choices were plotted using reward outcomes (Fig. 5B, left panel). Monkeys’ 

jumps were equally well-predicted by recent outcomes falling below the average information (Fig. 

5A, middle and right panels) or below the average reward (Fig. 5B, middle and right panels). To 

explore the outcomes that drove this pattern of choice in humans, we separated the eight distinct 

sequences of hits and misses for three outcomes in sequence by the last outcome in the 

sequence, either a hit or a miss, and plotted the information outcomes before jumping based only 

on last choice misses and last choice hits (Fig. 5C, left panel). Information foraging was driven 

primarily by misses: the pattern disappears if misses are left out but not if hits are left out. This 

pattern was observed in M1 but not M2 (Fig. 5C, middle and right panels respectively). 
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Figure 5. Information and reward outcomes three choices before a jump, two choices before a 

jump, and the choice before a jump. A. Left: human information foraging; Middle: M1; Right: M2. 

B. Left: human reward foraging; Middle: M1; Right: M2. Note that the reward outcome for a choice 

before a jump for humans was not below the average reward outcome across all choices. Both A 

and B include all trials during learning only. C. Information outcomes three choices before a jump 

broken out by choice outcome just prior to jump, either ‘Miss’ (bottom panels) or ‘Hit’ (top panels). 
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Humans: left pair of panels; M1: middle pair of panels; M2: right pair of panels. Points: mean, 

error bars: ± 1 s.e.m. Error bars sometimes occluded by points. 

The unexpected observation, of jumps to a different part of the grid when recent outcomes fall 

below the average, qualitatively matches foraging patterns of choices (Stephens and Krebs 1986). 

Animals can forage for a range of resources, including rewards (Stephens and Krebs 1986), 

information (Pirolli 2007), social interactions (Giraldeau and Caraco 2000) and more. When 

foraging, animals seek to maximize the rate of intake of these resources. A simple rule for 

maximizing intake rates is to compare the current resource intake rate to either the average 

(Charnov 1976) or expected (McNamara 1982; Davidson and El Hady 2019) intake. When the 

current rate drops below that value, the forager should switch from exploiting the current location 

to exploring for a new one. On our task, participants’ behavior matched this rule. 
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Figure 6. For human participants, the information forager score Fs predicts the speed of learning. 

Each point is a single subject. Red line: OLS regression (βslope = -112.54 ± 26.78 trials until 

changepoint/a.u. forager score, p < 0.0005). 

But why should humans or monkeys forage on our task? Does it help to learn the shapes? 

Answering this question required quantifying forager performance and comparing that 

performance to a measure such as how quickly the shapes were learned. To quantify forager 

performance, a forager score was computed for each subject for two periods: during and after 

learning (see methods). To compute this forager score, we calculated for each sequence of three 

neighboring choices followed by a jump whether the information outcomes from the two outcomes 

before the jump were above the mean information outcome (above: +1 point; below: 0 points), 

above the jump outcome (above: +1 point; below: 0 points), and whether the pre-jump outcome 

was above (above: +1 point; below: 0 points) the mean. Importantly, this score is independent of 

the changepoint calculation (see methods). We next took the average across these scores by 

subject and compared them to the last detected changepoint. Better information foraging scores 

for humans during learning predicted earlier final changepoints and hence faster learning (Fig. 6; 

ordinary least squares (OLS), βslope = -112.54 ± 26.78 trials until changepoint/a.u. forager score, 

p < 0.0005, ρ = -0.57). No such relationship was found for reward foraging scores (OLS, βslope = 

41.85 ± 43.99, p > 0.3, ρ = 0.1545, not plotted). During learning, human information forager scores 

(mean forager score FS= 0.67 ± 0.016) were not significantly different from M1 (one-sample t-test; 

M1 = 0.67; t(df=38) = 0.36, p > 0.7) and marginally different from M2 (one-sample t-test; M2 = 

0.70; t(df=38) = -1.90, p > 0.05). After learning, humans (mean FS = 0.56 ± 0.042) had significantly 

lower information foraging scores than both monkeys (one-sample t-tests; M1 = 0.72, t(df=37) = 

-3.82, p < 5x10-4; M2 = 0.72, t(df=37) = -3.84, p < 5x10-4). Further, humans foraged for information 

significantly more during learning compared to after shapes had been learned (paired t-test, 

t(df=75) = 2.63, p < 0.05) whereas monkeys marginally increased (M1: 0.67 during learning, 0.72 

after; M2: 0.70 during, 0.72 after). In sum, better information foraging in humans predicted faster 

learning (as judged by their last changepoint) and humans ceased information foraging after 

learning. 
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Discussion 
 

Learning environments with many latent features is a difficult challenge for any organism. To 

investigate how humans and monkeys learn these environments, we implemented a search task 

with many hidden shapes. We discovered that 1) for single choices, informative tiles were 

preferred earlier in trials than rewarding ones; 2) for pairs of choices, information outcomes 

predicted decisions to choose a neighboring tile; 3) for sequences of choices, decreases in 

information outcomes below the average of the environment predicted decisions to sample new 

areas of the grid, a signature of information foraging; and 4) the degree to which humans’ choice 

sequences matched foraging patterns predicted learning. 

 

Adaptive decision making in the real world requires learning latent features of the environment. 

Learning such features requires participants to make multiple decisions over extended periods of 

time in constantly changing environments and to keep track of outcomes across different 

timescales. At shorter timescales, outcomes from individual choices provide momentary evidence 

about the current environment, such as revealing a hit or a miss. Series of outcomes from 

sequences of choices are at longer timescales and can fully reveal environmental features, such 

as a shape. At even longer timescales, multiple latent environmental features might be learned, 

such as many different shapes. Despite the importance of this critical cognitive skill, scant studies 

have investigated this type of learning at multiple timescales. Here, we probed for the first time in 

both humans and monkeys how latent features are learned in a temporally extended serial 

decision-making task where the environment constantly changes and outcomes must be tracked 

both during trials and across trials. 

 

The drive to learn environments over many decisions can be motivated by the search for reward 

or for information. We uncovered general preferences for information over near-term reward 

across species at different timescales. On individual trials, tiles that were expected to be more 

informative tended to be selected sooner than rewarding ones for both humans and monkeys. 

Classic (Rescorla and Wagner 1972) and computational (Sutton and Barto 1998) reinforcement 

learning theories use rewards to assign credit to features in the environment. Many improvements 

to reinforcement learning have been proposed to deal with complexity in the environment, such 

as the introduction of options that group together many actions (Sutton, Precup et al. 1999), the 

use of successor representations (Momennejad 2020), or the use of belief distributions in partially 

observable environments to infer latent features from perceptible ones (Littman 2009). However, 
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reward-driven reinforcement learning initially requires many samples over long periods of time to 

learn reward contingencies (Kaelbling, Littman et al. 1996), especially if rewards are rarely 

delivered and the environment is constantly changing. Instead of reinforcement through the use 

of rewards, information in the form of changes in the identity and frequency of environmental 

features can be used to speed up learning by reducing uncertainty—formalizable in terms of 

information theory (Shannon and Weaver 1963; Crupi, Nelson et al. 2018)—about which features 

tend to occur together.  

 

Humans are excellent information seekers (Miller 1983; Coenen, Nelson et al. 2019), efficiently 

using information to learn their environments (Gureckis and Markant 2009; Markant and Gureckis 

2012) and make inferences about the world in pursuit of their goals (Oaksford and Chater 1994; 

Oaksford and Chater 1998; Nelson 2005; Oaksford and Chater 2007; Nelson, McKenzie et al. 

2010; Nelson, Divjak et al. 2014). Information-based approaches to learning either use that 

information directly in reinforcement-like processes (Schmidhuber 1991; Thrun and Möller 1992; 

Thrun 1995; Gureckis and Markant 2009; Markant and Gureckis 2012; Settles 2012; Markant and 

Gureckis 2014) or indirectly in causal or structural inference (Griffiths and Tenenbaum 2005; 

Kemp and Tenenbaum 2009; Gershman, Norman et al. 2015; Koechlin 2016). Since animals 

including humans often do not know the most informative choices, they must rely instead on 

hypothesis testing (Wason 1966; Wason 1968; Gregory 1970; Snyder and Swann 1978; Trope 

and Bassok 1982; Klayman and Ha 1987; Siskind 1996; Trope and Liberman 1996; Poletiek 2013; 

Markant, Settles et al. 2016), information foraging (Pirolli and Card 1999; Najemnik and Geisler 

2005; Fu and Pirolli 2007; Pirolli 2007; Vergassola, Villermaux et al. 2007; Johnson, Varberg et 

al. 2012; Manohar and Husain 2013), or maximizing expected information gain (Good 1960; 

Oaksford and Chater 1994; Gureckis and Markant 2009; Myung and Pitt 2009; Markant and 

Gureckis 2010; Markant and Gureckis 2011; Markant and Gureckis 2012; Tsividis, Gershman et 

al. 2014; Rich and Gureckis 2017) when making choices. Past studies have applied information-

based approaches to a wide range of tasks, all with single choices and few latent features 

(Oaksford and Chater 1994; Nelson and Movellan 2000; Steyvers, Tenenbaum et al. 2003; 

Najemnik and Geisler 2005; Nelson 2005; Schulz, Gopnik et al. 2007; Najemnik and Geisler 2008; 

Gopnik 2009; Bonawitz, Ferranti et al. 2010; Nelson, McKenzie et al. 2010; Cook, Goodman et 

al. 2011; Markant and Gureckis 2014; Nelson, Divjak et al. 2014; Bramley, Lagnado et al. 2015; 

Ruggeri and Lombrozo 2015; McCormack, Bramley et al. 2016; Rothe, Lake et al. 2018; Meder, 

Nelson et al. 2019) (for review see Coenen, Nelson et al. 2019). Sequential information search is 

just beginning to be explored in relatively simple environments with one or two features (Meier 
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and Blair 2013; Nelson, Divjak et al. 2014; Bramley, Lagnado et al. 2015; Yang, Lengyel et al. 

2016; Nelson, Meder et al. 2018; Meder, Nelson et al. 2019). The recent focus in cognitive 

psychology on learning of latent features use tasks with environments that also often contain one 

feature and, further, fail to investigate learning over different timescales (within and across trials) 

(Badre, Kayser et al. 2010; Wu, Schulz et al. 2018; Schulz, Franklin et al. 2020), lack a decision-

making component (Schapiro, Rogers et al. 2013), utilize single choices during trials (Collins and 

Koechlin 2012; Collins and Frank 2013; Collins, Cavanagh et al. 2014; Donoso, Collins et al. 

2014; Collins 2017), or lack the choice complexity of the real world (Xia and Collins 2021), though 

humans do adaptively explore for information in the hope of maximizing long-term rewards 

(Wilson, Geana et al. 2014). In our study, we extend this information seeking competence to 

temporally extended learning of many latent features by uncovering evidence for information-

based foraging algorithms. 

 

An unexpected and novel finding of our study was a signature of information foraging behavior 

that predicted the speed of learning latent features. Many trials in both humans and monkeys 

showed sequences of choices that reflected an area restricted search (ARS), persistent searching 

through a limited spatiotemporal region that is a hallmark of foraging behavior (Stephens and 

Krebs 1986; Hills 2006; Viswanathan, Da Luz et al. 2011; Hills, Kalff et al. 2013; Todd and Hills 

2020). During learning, both humans and monkeys engaged in ARS for information. Decisions to 

search a different part of the grid were predicted by drops in information intake below the average 

across all choice outcomes. This average threshold rule is a signature of a standard computation 

during foraging: using the average outcome from choices across the environment to guide 

decisions to continue foraging locally or to leave the local area to look for new resources (Charnov 

1976; McNamara 1982; Davidson and El Hady 2019). Importantly, humans that better matched 

the pattern of such foraging learned shapes more quickly. Finally, in humans, this local search 

strategy was abandoned in favor of a reward-driven strategy once the shapes were learned. While 

exploratory, this finding can be used to ground predictions about information foraging in our and 

similar serial decision-making tasks. 

 

Information search and foraging is important for theoretical approaches to complex cognition 

(Pirolli and Card 1999; Hills 2006; Pirolli 2007; Hills, Todd et al. 2010). The search for information 

forms the basis for understanding visual search (Najemnik and Geisler 2005; Cain, Vul et al. 2012; 

Wolfe 2013) or chemotaxis (Vergassola, Villermaux et al. 2007; Calhoun, Chalasani et al. 2014). 

Information search also plays a role in explaining behavior on numerous tasks, including past 
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studies on Battleship-like search tasks (Gureckis and Markant 2009; Markant and Gureckis 2012; 

Rothe, Lake et al. 2016). We extend these studies by reporting on the properties of sequences of 

choices to reveal evidence for a foraging information-intake threshold rule. Previous research 

(Huberman, Pirolli et al. 1998; Fu and Pirolli 2007) has revealed indirect evidence for information 

foraging for humans surfing the internet. However, unlike our work reported here, these studies 

measured information in terms of associations between linguistic concepts (Church and Hanks 

1990). In contrast, our findings are based on non-verbal search and are more generalizable to 

other effects reported in the literature. The foraging framework more generally has been extended 

to numerous cognitive processes, including task-switching (Payne, Duggan et al. 2007), internal 

word search (Wilke, Hutchinson et al. 2009), study time allocation (Metcalfe and Jacobs 2010), 

problem solving (Payne and Duggan 2011), memory search (Hills, Jones et al. 2012), semantic 

search (Hills, Todd et al. 2015), and even social interactions (Turrin, Fagan et al. 2017). The 

foraging effects in these studies address reward-driven or performance-driven shifts between 

options. Our study reveals, for the first time, direct evidence for visuospatial information foraging 

in a cognitive task to learn latent features of the environment, extending the foraging framework 

to a new class of tasks. 

 

We uncovered similar preferences for information in humans and both of our monkeys, though 

the extent to which animals other than humans search for and use information is less well 

characterized than it is for humans. Many animals including humans show a preference for 

advanced information about outcomes that cannot be used to adapt behavior (so-called 

‘observing responses’ (Wyckoff Jr 1952; Wyckoff 1959; Blanchard 1975; Dinsmoor 1983), 

including pigeons (Roper and Zentall 1999), starlings (Vasconcelos, Monteiro et al. 2015), rats 

(Prokasy Jr 1956), monkeys (Bromberg-Martin and Hikosaka 2009; Bromberg-Martin and 

Hikosaka 2011; Blanchard, Hayden et al. 2015; Wang and Hayden 2019), and humans (Kreps 

and Porteus 1978; Beierholm and Dayan 2010; Iigaya, Story et al. 2016)). However, these studies 

tend to use environments with very few features and in the absence of information that can be 

used to help make later decisions. More recently, the preference for useful information, 

information that can be used to attain future rewards, has been studied in monkeys (Foley, Kelly 

et al. 2017; Horan, Daddaoua et al. 2019; White, Bromberg-Martin et al. 2019). However, these 

studies focus on information gleaned on single trials and do not probe the cognitive capacity to 

learn multiple features over multiple timescales. Extending previous studies that show that 

monkeys can recognize and recall simple shapes (Basile and Hampton 2011), we report the 

discovery that like humans, monkeys prefer to seek out useful information in learning shapes. 
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Monkeys also ‘over-explored’ for information, persevering in information foraging even after 

shapes were learned. This difference may be due to humans’ familiarity with game playing and 

shapes formed from blocks. 

 

Our study has several limitations. First and foremost, we used a small number of shapes and 

tested a single shape set. While the shape set was selected because of the opportunity to 

compare learning in humans to monkeys, these findings remain to be generalized to other shape 

sets and other contexts, such as bigger grids. Second, our results crucially rely on various 

assumptions that can be challenged. For example, we used inferred changepoints as a measure 

of learning. Changepoints in the mean or variance of choices, however, might instead be the 

result of other processes such as attention, arousal, or boredom. We also assumed that 

participants’ choice behavior can be understood as search in a restricted area (some contiguous 

set of tiles on the grid) and decisions to choose a non-neighboring tile reflect decisions to move 

to a different restricted area. Future experiments will need to manipulate confounding factors like 

attention, arousal, or boredom and test assumptions about restricted areas. Third, our study 

focuses on information in light of the pursuit of reward. While our findings suggest that information 

foraging can result in faster learning and higher long-term reward rates, our study does not probe 

the search for information for information’s sake (Gottlieb and Oudeyer 2018). Such intrinsically 

motivated information search remains difficult to probe, especially in nonhuman animals that 

require special alimentary motivation. Consequently, our results may not stand in contexts where 

the search for information is its own reward. In addition, fourth, we defined expected reward and 

expected information in terms of the outcomes from just the next choice; since information is used 

to maximize long-term reward rates, these two variables are confounded on our task in the long 

run. Finally fifth, we did not model the choice algorithms underlying decisions on the task. Our 

results, however, can be used to construct such algorithms; indeed the emphasis on near-term 

reward over information in our analyses implies that model-free reinforcement algorithms (Sutton 

and Barto 1998), which myopically focus on near-term rewards, will poorly describe the behavior. 

We intend to use our findings as a guide to future modeling. 

 

While many studies have investigated how animals learn their environments, few have explored 

this learning in environments with multiple latent features using sequences of choices and across 

timescales. We discovered that, in a complex sequential decision-making task with many possible 

shapes, humans and monkeys were both driven more by information than reward. Evidence also 

showed that humans and monkeys foraged for information by sampling different areas of the grid 
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in line with predictions from foraging theory. Finally and unexpectedly, the degree to which 

sequences of choices in humans matched foraging choice sequences predicted the speed at 

which the environment was learned. If confirmed by follow-up studies, this finding suggests that 

decision making circuitry evolved for searching for nutrients and other environmental resources 

is also used to learn about the environment using more abstract resources like information. 
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Methods 

 

Our shape search task required participants to uncover shapes (composed of multiple tiles) in a 

5x5 grid by selecting tiles that hide parts of the shapes. Herein, ‘hits’ refers to choices that 

revealed part of a shape and were rewarded, and ‘misses’ refers to choices that did not reveal 

part of a shape and were not rewarded. Rewards were points for humans and squirts of juice for 

monkeys. We used five distinct shapes (Fig. 1A; 1 shape (‘H’) occupied 7 tiles, and the others 

occupied 4 tiles) in one set. A trial refers to the sequences of choices required to finish revealing 

the shape. Humans and monkeys performed as many trials as possible per session. There was 

one shape to uncover per trial, pseudorandomly drawn from the set of five. The color of shapes 

pseudorandomly varied from trial to trial. Shapes occurred at the same location across trials and 

participants, with a different location for each, and shapes overlapped at certain tiles. The shapes 

were selected on the basis of pre-existing data for the two monkeys that was collected while 

training them for a distinct electrophysiology study and were arbitrarily chosen by the 

experimenter (DLB). The set of five shapes did not change during the task, though participants 

were not instructed with regard to either the number of shapes or locations.  

 

At trial start, participants made a movement to a target at the center of the screen (humans: 

mouse-over; monkeys: saccade), maintaining position on the fixation point (humans: 500 ms; 

monkeys: 500-750 ms) after which targets appeared in the middle of each remaining tile. After a 

second delay (humans: 500 ms; monkeys: 500-750 ms), the fixation point disappeared and 

participants had unlimited time to choose a target. To select a tile, participants made a movement 

(humans: mouse-over; monkeys: saccade) to a target at the center of the tile and held their 

position (humans: 250 ms; monkeys: 250-500 ms). A hit or miss was then revealed at the chosen 

tile location. After an inter-choice interval of 1 sec, the fixation point reappeared. Participants had 

to reacquire fixation between every choice. This sequence repeated until the shape was fully 

revealed, which was followed by a 2 sec free viewing period and then a 1 sec inter-trial interval. 

 

We report all methods consistent with ARRIVE guidelines. Two monkeys (M. mulatta; male; aged 

7y and 9y) performed the task sitting in a primate chair (Crist) with their heads immobilized using 

a custom implant while eye movements were tracked (EyeLink; SR Research). There were no 

exclusion criteria used and we report the behavior from the first two monkeys trained on the task. 

All surgeries to implant head restraint devices were carried out in accordance with all rules and 

regulations and performed under strict Institutional Animal Care and Use Committee approved 
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protocols (Columbia University) in fully sterile surgical settings under isoflurane anesthesia. 

Monkeys received analgesics and antibiotics both before and after surgeries. After recovery from 

surgery, animals were first trained to look at targets on a computer screen for squirts of juice. 

They were then trained to make delayed saccades, maintaining fixation on a centrally presented 

square while a target in the periphery appears. Once the central square extinguished, animals 

could then make an eye movement to the target. Next they were trained on the shape search 

task, starting with a 3x3 grid, then a 3x4, and so on until a 5x5 grid. The data presented herein 

are from the first set of shapes both monkeys learned on a 5x5 grid. 

 

Humans (H. sapiens) performed the task using a mouse on a computer. The task was 

programmed in javascript. They received the following instructions before the first trial: 

Hello! Welcome to the battleship task! 

——————————————————— 

The goal of this task is to identify the shapes 

with the fewest number of searches. To select a shape 

please hover over the central fixation point for 0.5 seconds 

After the targets appear, remain fixed on the central point for 

another 0.5 seconds until the blue central fixation point disappears. 

Then you are free to select a target by hovering over the target in the 

desired square. Once you have found a shape, the task will start over. 

Thank you, and you will be debriefed at the end. Good luck! 

As indicated by the instructions, human participants chose tiles by mousing over the target until 

the choice registered and that tile was revealed. There were no training trials and we imposed no 

exclusion criteria on participants based on the number of trials completed. We collected data from 

42 human participants (16m, 26f, average age 22y ± 4.9), recruited from the New York City 

community around Columbia University (most were Columbia University students). All procedures 

were approved by the Columbia University IRB and performed in accordance with all relevant 

guidelines and regulations. All participants gave their informed consent for the experiment. 

 

Performance on the task was assessed by calculating the proportion of reward maximizing 

choices on each trial. A reward maximizing choice is a choice of a tile that maximized the expected 

reward given what has already been revealed on the grid. For example, suppose that no tiles 

have been chosen yet at the start of the trial. The reward maximizing choice, then, is to select 

one of the four tiles at which two shapes overlap, because given what has been revealed so far 
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(i.e., nothing), those tiles maximize the expected reward. For a second example, suppose that 

the first choice in a trial eliminates all but two of the possible shapes. Then, if the two remaining 

shapes do not overlap at any further tiles, the choice of any tile that is part of either of the two 

shapes, but no other tiles, would be reward maximizing: given what has been revealed so far, 

only those tiles have any associated reward and they all have the same associated reward. For 

each choice in each trial, the associated rewards for each remaining tile were calculated, and 

then the participants' actual responses compared to these calculations. The proportion of these 

reward maximizing choices was computed for every trial and plotted in Fig. 1B. 

 

To compare this behavior to some baseline choice strategy, we simulated two agents. The first 

agent chose randomly, selecting any one of the remaining tiles with equal probability after each 

outcome. The second agent chose semi-randomly: if a hit had not yet been made on a trial, the 

tile selection was one of the remaining tiles with equal probability after each outcome; otherwise, 

if a hit had been made, any one of the adjoining remaining tiles was selected with equal 

probability. This semi-random strategy performs a local area search after getting the first hit. 

Because of the random nature of the choice, the algorithm can sometimes result in a dead-end, 

in which case it once again selects any of the remaining tiles with equal probability. A similar 

algorithm restricted to randomly choosing a city-block neighbor also performed poorly (not 

depicted). For humans, simulations were performed for the maximum number of trials across all 

participants (that is, the participant who performed the most trials was determined, and then the 

simulation performed for that number of trials; maximum number of trials = 109) (Fig. 1B, top 

panel), and for monkeys, for the same number of trials performed by each subject (Fig. 1B, middle 

and bottom panels). For each simulated trial, a shape was randomly drawn from the set of five, 

and the simulated random chooser selected tiles until the shape was completed. The simulation 

was iterated 100 times, the proportion of expected reward maximizing choices computed for each 

trial, and then these performances were averaged and the standard error of the mean (s.e.m.) 

computed and plotted (Fig. 1B, first agent: blue points and error bars; second agent: green points 

and error bars).  

 

We assessed participants’ learning curves for each shape by plotting the total number of choices 

required to finish revealing a shape across all trials for that shape to the optimal number of choices 

for that shape. For most choices in a trial, there was more than one optimal choice, the choice 

that maximized the expected reward. To determine the optimal number of choices, we averaged 

for each shape 1000 simulated trials of an optimal chooser, which always chose one of the 
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expected reward maximizing tiles. These are plotted as the thick blue lines in Figure 2 and the 

values were: upper-left ‘L’: 5.4400; square: 5.0690; middle-right tetris: 5.4490; lower ‘L’: 5.0480; 

‘H’: 8.0400. To statistically assess changes in these learning curves, we used ordinary least 

squares to regress number of choices to finish revealing a shape against the trial number for that 

shape. 

 

To quantify how quickly participants learned, we used a changepoint detection test on the mean 

and variance of choices for each separately (Inclan and Tiao 1994; Gallistel, Mark et al. 2001). 

The changepoint detection test (cf. Gallistel 2001) takes the cumulative sum of the number of 

choices used to finish a shape and looks for changes in the rate of accumulation. During learning, 

participants would take many choices to finish revealing a shape. The cumulative sum over these 

trials would rise correspondingly quickly. Once shapes were learned, however, the cumulative 

sum would rise more slowly as fewer choices are required to finish revealing a shape. At each 

successive trial, this cumulative sum is calculated, and the log-odds of a change in slope are 

computed and tested against a changepoint detection threshold (set to 4, corresponding to p < 

0.001). The changepoint detection test was run on the set of trials for each shape separately. In 

addition to changes in the mean number of trials to finish revealing a shape, a change in the 

variance of the number of choices over some window may also signal learning; as participants 

learn, they will become less variable in the number of choices needed to finish a shape. After 

running the changepoint detection test on the cumulative sum of choices, the value of the best-fit 

line through each detected changepoint interval was subtracted from the number of choices on 

each trial. The result is a vector of residuals for the number of choices to finish revealing a shape. 

The variance over a moving window of 5 trials was then computed for these vectors, and the 

changepoint detection test performed on the cumulative sum of that variance (cf. Inclan and Tiao 

1994). Monkeys but not humans learned the shapes over multiple days. This variance was not 

calculated for those sets of 5 trials that spanned days. However, changes in biological and 

psychological processes irrelevant to learning, such as arousal, wakefulness, and so forth, can 

spuriously contribute to the calculated variances. A day-to-day variance correction was performed 

to control for this: the variance in the 5-trial-wide window was divided by the global variance across 

all trials and shapes for the respective day. The cumulative variance changepoint detection test 

was then performed on the variance-normalized-by-day data. The end of learning was set to the 

last detected changepoint trial across both mean and variance changepoint detection tests (mean 

last changepoint trial for human: trial 45.72 ± 3.56; M1: trial 909; M2: trial 1191). This test failed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

to detect a changepoint for 3 of 42 human participants, who were removed from the learning 

analyses as a result. 

 

A distribution of probabilities for each revealed shape, that is, the possible pattern that the grid 

could take once fully revealed, was used to compute information outcomes. These grids were 

formed by possible combinations of connected, filled tiles on a 3x3 grid that were then placed on 

the 5x5 grid. The shapes had to be at least 3 tiles large, no bigger than 8 tiles, and connections 

had to be in the vertical or horizontal directions (i.e., no diagonal-only connections permitted). To 

simplify information calculations, the set of states (nstate = 3904) was assumed to be known to the 

participants. While both monkeys had been trained on smaller grids using these possible states, 

the humans were naïve to the task and to the distribution of states. Consequently, this assumption 

is strictly speaking false for humans, but we adopt it for numerical reasons. 

 

A Dirichlet distribution, which possesses a conjugate prior when using a multinomial likelihood, 

modeled the probabilities of the states across trials. The Dirichlet distribution sits on the K-1-

simplex such that it can be conceptualized as a distribution of K-dimensional distributions. The 

dimensionality K in the shape search task refers to the number of states. 

 

The distribution of the probabilities of the states during trials, which we label ‘𝔅’, was updated as 

follows. At the start of the trial, 𝔅 was set to the values in the Dirichlet distribution. After each 

choice in the trial, 𝔅 was updated using a vector of 1’s and 0’s for the likelihoods of each state 

given the outcome of that choice. If a given state was consistent with the outcome, then the 

likelihood was unity; otherwise the likelihood was zero. The prior probability was multiplied by the 

likelihood of the outcome to yield a posterior for each state. The resulting probabilities were then 

re-normalized to attain the new 𝔅, the prior for the next choice in the trial. Information was defined 

as the difference in the Shannon entropy H of 𝔅 before and after a choice outcome: 

H𝔅 = −∑ 𝑝(𝑥!) ∗ 𝑙𝑜𝑔	(𝑝(𝑥!)"#$%
!&'  

for probability of state p(xi). This assessment of information intake intuitively reflects how much a 

hit or a miss from a choice changes the participant's uncertainty about the current trial's state. At 

the end of the trial, the Dirichlet distribution was updated by adding one count to the bin 

corresponding to that trial’s state, and the maximum a posteriori estimate of the distribution 

recalculated. 
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To ensure numerical stability and proper updating using the maximum a posteriori estimate of the 

Dirichlet distribution, some initial number of samples for each state is required. The Dirichlet 

distribution is characterized in part using so-called inertial priors described by a series of 

parameters αi, …, αn in a multivariate Beta distribution. These priors are akin to the assumption 

that each state has been sampled some αi number of times. Here we assume all the αi are equal. 

For each state, the larger these values, the larger the number of new samples needed to shift the 

probability mass of the distribution away from those states. The maximum a posteriori estimate 

subtracts one from each bin and conceptually bin counts cannot be less than 0, suggesting a 

single count for each bin. However, an initial count of 1 would yield a division by 0, so for numerical 

stability some value above 1 is needed. Since states are either seen or not seen, conceptual 

considerations suggest an integer value, and 2 was chosen as the simplest, smallest, model-free 

numerically stable initial count for each state. 

 

To investigate the influence of expected rewards and expected information outcomes on choice, 

we performed a multinomial regression (mnrfit in MATLAB). A multinomial regression 

simultaneously fits choice curves relative to a reference option in the choice set. The dependent 

variable was the choice number in the trial (first choice, second choice, etc.). The z-scored 

independent covariates included trial number in session, expected rewards for the selected tile, 

and expected information for the selected tile. Expected reward for a tile was defined as the 

number of times the tile proved rewarding divided by the number of times the tile was chosen. 

This one-step time horizon was selected to investigate the impact of near-term pursuit of reward 

on learning latent features. Expected information for a tile was defined as the mean change in 

entropy of 𝔅 if chosen and a hit was revealed or a miss was revealed. No interactions were 

included in the regression. The regression fits the following model to the data: 

log (pi < j / p!"#"$) = β0 + β1*tn + β2*EI + β3*ER 

for choice numbers i and j, trial number tn, expected information EI, and expected reward ER. 

Choice numbers refers to the choice number in a trial, where the tile selected first by a participant 

is choice number 1, the tile selected second by a participant is choice number 2, and so on. In 

addition, we truncated the data to consider only those choices before the 10th choice in a trial; 

this truncation was performed in order to exclude choices that were very late in trials due to 

inattention, fatigue, or indolent choice strategies and that occurred very infrequently, as well as to 

focus on those tile choices that were motivated by the participant instead of forced by the low 

number of options remaining on the grid. The results of this regression are plotted in Figure 3. 
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We analyzed pairs of choices by performing a mixed-effects binomial regression (fitglme in 

MATLAB). The dependent variable was choice of neighboring tile (1 = chose a neighbor, 0 = did 

not choose a neighbor). The first choice on each trial was removed for this regression (because 

there is no previous choice for comparison). The fixed-effect independent variables included trial 

number in session, choice number in trial, last choice information outcome, current choice 

expected information, last choice reward outcome, and current choice expected reward. The 

random-effect independent variable was subject identity. Fixed-effect independent variables were 

checked for correlation; pairwise R-
2 values were all at or below 0.1385 except for the correlation 

between information outcomes and reward outcomes (R-
2 = 0.5593). Significance was assessed 

against Bonferroni corrected p-values at 0.05. A similar binomial regression was run in the 

monkeys. Pairwise R-
2 values were all at or below 0.0950 except for the correlation between 

choice number and expected information (R-
2 = 0.2998) and information outcomes and reward 

outcomes (R-
2 = 0.4006). All variance inflation factors for humans and monkeys for the main effect 

covariates were less than 2.51. 

 

To plot sequences of choices, each choice on each trial was sorted according to whether the 

previous choice had been a neighboring tile. Those choices that were non-neighboring were 

labeled 'jumps’. For each jump, the three previously chosen tiles were examined to see if they 

were neighbors. If so, the sequence was included in the analysis; otherwise the sequence was 

left out. Such a ‘lookback’ of 3 choices before a jump to characterize sequences was selected 

because more than 3 resulted in very few choice sequences, less power, and many fewer 

participants, whereas fewer than 3 included many incidental two-choice sequences. Next, every 

information or reward outcome from every choice (whether part of the sequence or not) was 

computed to find the average across all choices. Reward outcomes were determined by whether 

a reward was received or not. Information outcomes were determined by taking the difference 

between Shannon entropies of the distribution before and after a choice outcome. Finally, the 

average information (Fig. 5A) or reward (Fig. 5B) for each choice in the sequences as well as the 

global average across all choices was plotted, revealing the evidence for an average intake 

threshold rule.  

 

Participants’ ability to forage was assessed using a custom ‘forager score’. Foraging refers to 

decisions made in a sequential, non-exclusive, accept-or-reject context where options occur one 

at a time, foragers can accept or reject them, and rejected options can be returned to (Calhoun 
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and Hayden 2015; Barack and Platt 2017). A classic foraging decision is ‘patch leaving’ where 

foragers must decide whether to continue foraging at a resource patch or to leave that patch to 

search for a new one. In the shape search task, we operationally defined a resource as a 

connected set of tiles, and the decision to leave a resource was defined as a jump. We considered 

three features of choice sequences that reflect foraging (inspired by Charnov 1976; Stephens and 

Krebs 1986; Fu and Pirolli 2007). First, while participants decide to stay at a resource, the 

information or reward gained from choice outcomes should be above the average for the 

environment. Second, choice outcomes prior to deciding to leave a resource should be below the 

average. Finally third (and as a consequence of the first two), outcomes preceding stay decisions 

should be above those preceding leave decisions. We constructed a forager score on the basis 

of these three features. For the kth information outcome ki, pre-jump information outcome ji, 

average information outcome I, and subject s, let the forager score Fs be 

Fs = (∑ (ki > I) + (jI < I) + ∑ (ki > ji)) / 5, 

where x > y is 1 if true and 0 if false. A score of 5 perfectly matches a foraging pattern of choices 

(two choice outcomes prior to pre-jump above average + pre-jump outcome below average + two 

choice outcomes prior to pre-jump above pre-jump outcome). The forager score was computed 

for every sequence of three choices of neighboring tiles in sequence followed by a jump and 

averaged by subject. The final changepoint, which we used to quantify the end of learning, was 

then regressed against the average Fs (Fig. 6). As a comparison for this analysis, a similar score 

was constructed for rewards that used the reward outcomes following each choice in the 

sequences of three choices and the average reward outcomes across all choices. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Acknowledgements 

The authors gratefully acknowledge the support of the National Institute for Health and National 

Institute for Drug Abuse (K99DA048748-01 to DLB) and the Presidential Scholars in Society and 

Neuroscience program at Columbia University (DLB). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

References 

Badre, D., A. S. Kayser and M. D'Esposito (2010). "Frontal cortex and the discovery of abstract 
action rules." Neuron 66(2): 315-326. 
Barack, D. L. and M. L. Platt (2017). Engaging and Exploring: Cortical Circuits for Adaptive Foraging 
Decisions. Impulsivity, Springer: 163-199. 
Basile, B. M. and R. R. Hampton (2011). "Monkeys recall and reproduce simple shapes from 
memory." Current Biology 21(9): 774-778. 
Beierholm, U. R. and P. Dayan (2010). "Pavlovian-instrumental interaction in ‘observing 
behavior’." PLoS computational biology 6(9): e1000903. 
Blanchard, R. (1975). "The effect of S− on observing behavior." Learning and Motivation 6(1): 1-
10. 
Blanchard, T. C., B. Y. Hayden and E. S. Bromberg-Martin (2015). "Orbitofrontal cortex uses 
distinct codes for different choice attributes in decisions motivated by curiosity." Neuron 85(3): 
602-614. 
Bonawitz, E. B., D. Ferranti, R. Saxe, A. Gopnik, A. N. Meltzoff, J. Woodward and L. E. Schulz (2010). 
"Just do it? Investigating the gap between prediction and action in toddlers’ causal inferences." 
Cognition 115(1): 104-117. 
Bramley, N. R., D. A. Lagnado and M. Speekenbrink (2015). "Conservative forgetful scholars: How 
people learn causal structure through sequences of interventions." Journal of Experimental 
Psychology: Learning, Memory, and Cognition 41(3): 708. 
Braun, D. A., C. Mehring and D. M. Wolpert (2010). "Structure learning in action." Behavioural 
brain research 206(2): 157-165. 
Bromberg-Martin, E. S. and O. Hikosaka (2009). "Midbrain dopamine neurons signal preference 
for advance information about upcoming rewards." Neuron 63(1): 119-126. 
Bromberg-Martin, E. S. and O. Hikosaka (2011). "Lateral habenula neurons signal errors in the 
prediction of reward information." Nature neuroscience 14(9): 1209-1216. 
Cain, M. S., E. Vul, K. Clark and S. R. Mitroff (2012). "A Bayesian optimal foraging model of human 
visual search." Psychological Science: 0956797612440460. 
Calhoun, A. J., S. H. Chalasani and T. O. Sharpee (2014). "Maximally informative foraging by 
Caenorhabditis elegans." Elife 3: e04220. 
Calhoun, A. J. and B. Y. Hayden (2015). "The foraging brain." Current Opinion in Behavioral 
Sciences 5: 24-31. 
Charnov, E. L. (1976). "Optimal foraging, the marginal value theorem." Theor Popul Biol 9(2): 129-
136. 
Church, K. and P. Hanks (1990). "Word association norms, mutual information, and lexicography." 
Computational linguistics 16(1): 22-29. 
Coenen, A., J. D. Nelson and T. M. Gureckis (2019). "Asking the right questions about the 
psychology of human inquiry: Nine open challenges." Psychonomic Bulletin & Review 26(5): 
1548-1587. 
Collins, A. and E. Koechlin (2012). "Reasoning, learning, and creativity: frontal lobe function and 
human decision-making." PLoS Biol 10(3): e1001293. 
Collins, A. G. (2017). "The cost of structure learning." Journal of cognitive neuroscience 29(10): 
1646-1655. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Collins, A. G., J. F. Cavanagh and M. J. Frank (2014). "Human EEG uncovers latent generalizable 
rule structure during learning." Journal of Neuroscience 34(13): 4677-4685. 
Collins, A. G. and M. J. Frank (2013). "Cognitive control over learning: Creating, clustering, and 
generalizing task-set structure." Psychological review 120(1): 190. 
Cook, C., N. D. Goodman and L. E. Schulz (2011). "Where science starts: Spontaneous experiments 
in preschoolers’ exploratory play." Cognition 120(3): 341-349. 
Crupi, V., J. D. Nelson, B. Meder, G. Cevolani and K. Tentori (2018). "Generalized information 
theory meets human cognition: Introducing a unified framework to model uncertainty and 
information search." Cognitive Science 42(5): 1410-1456. 
Davidson, J. D. and A. El Hady (2019). "Foraging as an evidence accumulation process." PLoS 
computational biology 15(7): e1007060. 
Dayan, P. and K. C. Berridge (2014). "Model-based and model-free Pavlovian reward learning: 
revaluation, revision, and revelation." Cognitive, Affective, & Behavioral Neuroscience 14(2): 473-
492. 
Dayan, P. and N. D. Daw (2008). "Decision theory, reinforcement learning, and the brain." 
Cognitive, Affective, & Behavioral Neuroscience 8(4): 429-453. 
Dinsmoor, J. A. (1983). "Observing and conditioned reinforcement." Behavioral and Brain 
Sciences 6(4): 693-704. 
Donoso, M., A. G. Collins and E. Koechlin (2014). "Foundations of human reasoning in the 
prefrontal cortex." Science 344(6191): 1481-1486. 
Foley, N. C., S. P. Kelly, H. Mhatre, M. Lopes and J. Gottlieb (2017). "Parietal neurons encode 
expected gains in instrumental information." Proceedings of the National Academy of Sciences 
114(16): E3315-E3323. 
Fu, W.-T. and P. Pirolli (2007). "SNIF-ACT: A cognitive model of user navigation on the World Wide 
Web." Human–Computer Interaction 22(4): 355-412. 
Gallistel, C. R., T. A. Mark, A. P. King and P. E. Latham (2001). "The rat approximates an ideal 
detector of changes in rates of reward: implications for the law of effect." Journal of Experimental 
Psychology: Animal Behavior Processes 27(4): 354. 
Gershman, S. J., D. M. Blei and Y. Niv (2010). "Context, learning, and extinction." Psychol Rev 
117(1): 197-209. 
Gershman, S. J., K. A. Norman and Y. Niv (2015). "Discovering latent causes in reinforcement 
learning." Current Opinion in Behavioral Sciences 5: 43-50. 
Giraldeau, L.-A. and T. Caraco (2000). Social foraging theory. Social Foraging Theory, Princeton 
University Press. 
Good, I. J. (1960). "Weight of evidence, corroboration, explanatory power, information and the 
utility of experiments." Journal of the Royal Statistical Society: Series B (Methodological) 22(2): 
319-331. 
Gopnik, A. (2009). The philosophical baby: What children's minds tell us about truth, love & the 
meaning of life, Random House. 
Gottlieb, J. and P.-Y. Oudeyer (2018). "Towards a neuroscience of active sampling and curiosity." 
Nature Reviews Neuroscience 19(12): 758-770. 
Gregory, R. (1970). "On how little information controls so much behaviour." Ergonomics 13(1): 
25-35. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Griffiths, T. L. and J. B. Tenenbaum (2005). "Structure and strength in causal induction." Cognitive 
psychology 51(4): 334-384. 
Gureckis, T. and D. Markant (2009). Active learning strategies in a spatial concept learning game. 
Proceedings of the Annual Meeting of the Cognitive Science Society. 
Hills, T. T. (2006). "Animal Foraging and the Evolution of Goal-Directed Cognition." Cognitive 
Science 30(1): 3-41. 
Hills, T. T., M. N. Jones and P. M. Todd (2012). "Optimal foraging in semantic memory." 
Psychological review 119(2): 431. 
Hills, T. T., C. Kalff and J. M. Wiener (2013). "Adaptive Lévy Processes and Area-Restricted Search 
in Human Foraging." PLOS ONE 8(4): e60488. 
Hills, T. T., P. M. Todd and R. L. Goldstone (2010). "The central executive as a search process: 
priming exploration and exploitation across domains." Journal of Experimental Psychology: 
General 139(4): 590. 
Hills, T. T., P. M. Todd and M. N. Jones (2015). "Foraging in semantic fields: How we search 
through memory." Topics in cognitive science 7(3): 513-534. 
Horan, M., N. Daddaoua and J. Gottlieb (2019). "Parietal neurons encode information sampling 
based on decision uncertainty." Nature neuroscience 22(8): 1327-1335. 
Huberman, B. A., P. L. T. Pirolli, J. E. Pitkow and R. M. Lukose (1998). "Strong regularities in world 
wide web surfing." Science 280(5360): 95-97. 
Iigaya, K., G. W. Story, Z. Kurth-Nelson, R. J. Dolan and P. Dayan (2016). "The modulation of 
savouring by prediction error and its effects on choice." Elife 5: e13747. 
Inclan, C. and G. C. Tiao (1994). "Use of cumulative sums of squares for retrospective detection 
of changes of variance." Journal of the American Statistical Association 89(427): 913-923. 
Johnson, A., Z. Varberg, J. Benhardus, A. Maahs and P. Schrater (2012). "The hippocampus and 
exploration: dynamically evolving behavior and neural representations." Frontiers in human 
neuroscience 6. 
Kaelbling, L. P., M. L. Littman and A. R. Cassandra (1998). "Planning and acting in partially 
observable stochastic domains." Artificial intelligence 101(1): 99-134. 
Kaelbling, L. P., M. L. Littman and A. W. Moore (1996). "Reinforcement Learning: A Survey." 
Journal of Artificial Intelligence Research 4: 237-285. 
Kaplan, R., J. King, R. Koster, W. D. Penny, N. Burgess and K. J. Friston (2017). "The neural 
representation of prospective choice during spatial planning and decisions." PLoS biology 15(1): 
e1002588. 
Kemp, C. and J. B. Tenenbaum (2009). "Structured statistical models of inductive reasoning." 
Psychological review 116(1): 20. 
Klayman, J. and Y.-W. Ha (1987). "Confirmation, disconfirmation, and information in hypothesis 
testing." Psychological review 94(2): 211. 
Koechlin, E. (2016). "Prefrontal executive function and adaptive behavior in complex 
environments." Current opinion in neurobiology 37: 1-6. 
Kolling, N., T. E. J. Behrens, R. B. Mars and M. F. S. Rushworth (2012). "Neural mechanisms of 
foraging." Science 336(6077): 95-98. 
Kolling, N., J. Scholl, A. Chekroud, H. A. Trier and M. F. Rushworth (2018). "Prospection, 
perseverance, and insight in sequential behavior." Neuron 99(5): 1069-1082. e1067. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Kreps, D. M. and E. L. Porteus (1978). "Temporal resolution of uncertainty and dynamic choice 
theory." Econometrica: journal of the Econometric Society: 185-200. 
Lee, D., H. Seo and M. W. Jung (2012). "Neural Basis of Reinforcement Learning and Decision 
Making." Annual Review of Neuroscience 35(1): 287-308. 
Littman, M. L. (2009). "A tutorial on partially observable Markov decision processes." Journal of 
Mathematical Psychology 53(3): 119-125. 
Maia, T. V. (2009). "Reinforcement learning, conditioning, and the brain: Successes and 
challenges." Cognitive, Affective, & Behavioral Neuroscience 9(4): 343-364. 
Manohar, S. G. and M. Husain (2013). "Attention as foraging for information and value." Frontiers 
in human neuroscience 7: 711. 
Markant, D. and T. Gureckis (2010). Category learning through active sampling. Proceedings of 
the Annual Meeting of the Cognitive Science Society. 
Markant, D. and T. Gureckis (2011). Modeling information sampling over the course of learning. 
Proceedings of the Annual Meeting of the Cognitive Science Society. 
Markant, D. and T. Gureckis (2012). Does the utility of information influence sampling behavior? 
Proceedings of the Annual Meeting of the Cognitive Science Society. 
Markant, D. B. and T. M. Gureckis (2014). "Is it better to select or to receive? Learning via active 
and passive hypothesis testing." Journal of Experimental Psychology: General 143(1): 94. 
Markant, D. B., B. Settles and T. M. Gureckis (2016). "Self-directed learning favors local, rather 
than global, uncertainty." Cognitive science 40(1): 100-120. 
McCormack, T., N. Bramley, C. Frosch, F. Patrick and D. Lagnado (2016). "Children’s use of 
interventions to learn causal structure." Journal of experimental child psychology 141: 1-22. 
McNamara, J. (1982). "Optimal patch use in a stochastic environment." Theoretical Population 
Biology 21(2): 269-288. 
Meder, B., J. D. Nelson, M. Jones and A. Ruggeri (2019). "Stepwise versus globally optimal search 
in children and adults." Cognition 191: 103965. 
Meier, K. M. and M. R. Blair (2013). "Waiting and weighting: Information sampling is a balance 
between efficiency and error-reduction." Cognition 126(2): 319-325. 
Metcalfe, J. and W. J. Jacobs (2010). "People's study time allocation and its relation to animal 
foraging." Behavioural processes 83(2): 213-221. 
Miller, G. (1983). Informavores. The study of information: Interdisciplinary messages. F. Machlup 
and U. Mansfield, Wiley-Interscience: 111-113. 
Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. 
Riedmiller, A. K. Fidjeland and G. Ostrovski (2015). "Human-level control through deep 
reinforcement learning." Nature 518(7540): 529-533. 
Momennejad, I. (2020). "Learning Structures: Predictive Representations, Replay, and 
Generalization." Current Opinion in Behavioral Sciences 32: 155-166. 
Myung, J. I. and M. A. Pitt (2009). "Optimal experimental design for model discrimination." 
Psychological review 116(3): 499. 
Najemnik, J. and W. S. Geisler (2005). "Optimal eye movement strategies in visual search." Nature 
434(7031): 387-391. 
Najemnik, J. and W. S. Geisler (2008). "Eye movement statistics in humans are consistent with an 
optimal search strategy." Journal of Vision 8(3): 4. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Nelson, J. and J. Movellan (2000). "Active inference in concept learning." Advances in neural 
information processing systems 13. 
Nelson, J. D. (2005). "Finding useful questions: on Bayesian diagnosticity, probability, impact, and 
information gain." Psychological review 112(4): 979. 
Nelson, J. D., B. Divjak, G. Gudmundsdottir, L. F. Martignon and B. Meder (2014). "Children’s 
sequential information search is sensitive to environmental probabilities." Cognition 130(1): 74-
80. 
Nelson, J. D., C. R. McKenzie, G. W. Cottrell and T. J. Sejnowski (2010). "Experience matters: 
Information acquisition optimizes probability gain." Psychological science 21(7): 960-969. 
Nelson, J. D., B. Meder and M. Jones (2018). "Towards a theory of heuristic and optimal planning 
for sequential information search." 
Niv, Y. (2019). "Learning task-state representations." Nature neuroscience 22(10): 1544-1553. 
Oaksford, M. and N. Chater (1994). "A rational analysis of the selection task as optimal data 
selection." Psychological Review 101(4): 608. 
Oaksford, M. and N. Chater (1998). Rationality in an uncertain world: Essays on the cognitive 
science of human reasoning, Psychology Press/Erlbaum (UK) Taylor & Francis. 
Oaksford, M. and N. Chater (2007). Bayesian rationality: The probabilistic approach to human 
reasoning, Oxford University Press. 
Osu, R., K.-i. Morishige, J. Nakanishi, H. Miyamoto and M. Kawato (2015). "Practice reduces task 
relevant variance modulation and forms nominal trajectory." Scientific reports 5(1): 1-17. 
Payne, S. and G. Duggan (2011). "Giving up problem solving." Memory & Cognition 39(5): 902-
913. 
Payne, S. J., G. B. Duggan and H. Neth (2007). "Discretionary task interleaving: heuristics for time 
allocation in cognitive foraging." Journal of Experimental Psychology: General 136(3): 370. 
Pirolli, P. and S. Card (1999). "Information foraging." Psychological review 106(4): 643. 
Pirolli, P. L. T. (2007). Information foraging theory: Adaptive interaction with information, Oxford 
University Press. 
Poletiek, F. H. (2013). Hypothesis-testing behaviour, Psychology Press. 
Prokasy Jr, W. F. (1956). "The acquisition of observing responses in the absence of differential 
external reinforcement." Journal of comparative and physiological psychology 49(2): 131. 
Rescorla, R. A. and A. R. Wagner (1972). A theory of Pavlovian conditioning: Variations in the 
effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research 
and Theory. A. H. Black and W. F. Prokasy. New York, Appleton-Century-Crofts. 
Rich, A. S. and T. M. Gureckis (2017). "Exploratory Choice Reflects the Future Value of 
Information." Decision. 
Roper, K. L. and T. R. Zentall (1999). "Observing behavior in pigeons: The effect of reinforcement 
probability and response cost using a symmetrical choice procedure." Learning and Motivation 
30(3): 201-220. 
Rothe, A., B. M. Lake and T. M. Gureckis (2016). Asking and evaluating natural language 
questions. CogSci. 
Rothe, A., B. M. Lake and T. M. Gureckis (2018). "Do people ask good questions?" Computational 
Brain & Behavior 1(1): 69-89. 
Ruggeri, A. and T. Lombrozo (2015). "Children adapt their questions to achieve efficient search." 
Cognition 143: 203-216. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Salzman, C. D. and S. Fusi (2010). "Emotion, cognition, and mental state representation in 
amygdala and prefrontal cortex." Annu Rev Neurosci 33: 173-202. 
Schapiro, A. C., T. T. Rogers, N. I. Cordova, N. B. Turk-Browne and M. M. Botvinick (2013). "Neural 
representations of events arise from temporal community structure." Nat Neurosci 16(4): 486-
492. 
Schmidhuber, J. (1991). Curious model-building control systems. 1991 IEEE International Joint 
Conference on Neural Networks., IEEE. 
Schulz, E., N. T. Franklin and S. J. Gershman (2020). "Finding structure in multi-armed bandits." 
Cognitive psychology 119: 101261. 
Schulz, L. E., A. Gopnik and C. Glymour (2007). "Preschool children learn about causal structure 
from conditional interventions." Developmental science 10(3): 322-332. 
Settles, B. (2012). "Active learning." Synthesis Lectures on Artificial Intelligence and Machine 
Learning 6(1): 1-114. 
Shannon, C. E. and W. Weaver (1963). The Mathematical Theory of Communication. Urbana and 
Chicago, University of Illinois Press. 
Siskind, J. M. (1996). "A computational study of cross-situational techniques for learning word-
to-meaning mappings." Cognition 61(1-2): 39-91. 
Snyder, M. and W. B. Swann (1978). "Hypothesis-testing processes in social interaction." Journal 
of Personality and Social Psychology 36(11): 1202. 
Stephens, D. W. and J. R. Krebs (1986). Foraging Theory. Princeton, NJ, Princeton University Press. 
Steyvers, M., J. B. Tenenbaum, E. J. Wagenmakers and B. Blum (2003). "Inferring causal networks 
from observations and interventions." Cognitive science 27(3): 453-489. 
Sutton, R. S. and A. G. Barto (1998). Reinforcement learning : an introduction. Cambridge, Mass., 
MIT Press. 
Sutton, R. S., D. Precup and S. Singh (1999). "Between MDPs and semi-MDPs: A framework for 
temporal abstraction in reinforcement learning." Artificial intelligence 112(1-2): 181-211. 
Tervo, D. G. R., J. B. Tenenbaum and S. J. Gershman (2016). "Toward the neural implementation 
of structure learning." Current opinion in neurobiology 37: 99-105. 
Thrun, S. (1995). "Exploration in active learning." Handbook of Brain Science and Neural 
Networks: 381-384. 
Thrun, S. and K. Möller (1992). Active exploration in dynamic environments. Advances in neural 
information processing systems. 
Todd, P. M. and T. T. Hills (2020). "Foraging in mind." Current Directions in Psychological Science 
29(3): 309-315. 
Tolman, E. C. (1948). "Cognitive maps in rats and men." Psychological review 55(4): 189. 
Trope, Y. and M. Bassok (1982). "Confirmatory and diagnosing strategies in social information 
gathering." Journal of personality and social psychology 43(1): 22. 
Trope, Y. and A. Liberman (1996). "Social hypothesis testing: Cognitive and motivational 
mechanisms." 
Tsividis, P., S. Gershman, J. Tenenbaum and L. Schulz (2014). Information selection in noisy 
environments with large action spaces. Proceedings of the Annual Meeting of the Cognitive 
Science Society. 
Turrin, C., N. A. Fagan, O. D. Monte and S. W. C. Chang (2017). "Social resource foraging is guided 
by the principles of the Marginal Value Theorem." Scientific Reports 7(1): 11274. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

Vasconcelos, M., T. Monteiro and A. Kacelnik (2015). "Irrational choice and the value of 
information." Scientific reports 5(1): 1-12. 
Vergassola, M., E. Villermaux and B. I. Shraiman (2007). "‘Infotaxis’ as a strategy for searching 
without gradients." Nature 445(7126): 406. 
Viswanathan, G. M., M. G. Da Luz, E. P. Raposo and H. E. Stanley (2011). The physics of foraging: 
an introduction to random searches and biological encounters, Cambridge University Press. 
Wang, M. Z. and B. Y. Hayden (2019). "Monkeys are curious about counterfactual outcomes." 
Cognition 189: 1-10. 
Wason, P. C. (1966). Reasoning. New Horizons in Psychology. B. Foss: 135-151. 
Wason, P. C. (1968). "Reasoning about a rule." Quarterly journal of experimental psychology 
20(3): 273-281. 
White, J. K., E. S. Bromberg-Martin, S. R. Heilbronner, K. Zhang, J. Pai, S. N. Haber and I. E. 
Monosov (2019). "A neural network for information seeking." Nature communications 10(1): 1-
19. 
Wilke, A., J. Hutchinson, P. M. Todd and U. Czienskowski (2009). "Fishing for the right words: 
Decision rules for human foraging behavior in internal search tasks." Cognitive Science 33(3): 497-
529. 
Wilson, R. C., A. Geana, J. M. White, E. A. Ludvig and J. D. Cohen (2014). "Humans use directed 
and random exploration to solve the explore–exploit dilemma." Journal of Experimental 
Psychology: General 143(6): 2074. 
Wilson, R. C. and Y. Niv (2012). "Inferring relevance in a changing world." Frontiers in human 
neuroscience 5: 189. 
Wilson, R. C., Y. K. Takahashi, G. Schoenbaum and Y. Niv (2014). "Orbitofrontal cortex as a 
cognitive map of task space." Neuron 81(2): 267-279. 
Wolfe, J. M. (2013). "When is it time to move to the next raspberry bush? Foraging rules in human 
visual search." Journal of vision 13(3): 1-17. 
Wu, C. M., E. Schulz, M. Speekenbrink, J. D. Nelson and B. Meder (2018). "Generalization guides 
human exploration in vast decision spaces." Nature Human Behaviour 2(12): 915-924. 
Wyckoff Jr, L. B. (1952). "The role of observing responses in discrimination learning. Part I." 
Psychological review 59(6): 431. 
Wyckoff, L. (1959). "Toward a quantitative theory of secondary reinforcement." Psychological 
Review 66(1): 68. 
Xia, L. and A. G. Collins (2021). "Temporal and state abstractions for efficient learning, transfer, 
and composition in humans." Psychological review. 
Yang, S. C.-H., M. Lengyel and D. M. Wolpert (2016). "Active sensing in the categorization of visual 
patterns." Elife 5: e12215. 
Zaidi, Q. (2011). "Visual inferences of material changes: color as clue and distraction." Wiley 
Interdisciplinary Reviews: Cognitive Science 2(6): 686-700. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2021.09.22.461356doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461356
http://creativecommons.org/licenses/by-nc-nd/4.0/

