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ABSTRACT

There has been considerable recent progress in measuring conscious level using neural complexity measures. For instance,
such measures can reliably distinguish healthy awake from asleep subjects and vegetative state patients. However, this
line of research has never explored the dynamics of conscious level during normal wakefulness. Being able to capture
meaningful differences in conscious level during wakefulness may provide a vital new insight into the nature of consciousness,
by demonstrating what biological, behavioural and cognitive factors relate to such differences. Here we take advantage of a
large MEG and fMRI dataset of healthy adults, to examine within-subject conscious level fluctuations during resting state and
tasks, by using a range of complexity measures. We first establish the validity of this approach in both neuroimaging domains by
relating neural complexity measures to pre-existing techniques for capturing transitions of consciousness from full wakefulness
into drowsiness and the earliest stages of sleep, finding decreased complexity as participants become increasingly drowsy. We
further demonstrate that neural complexity measures in both MEG and fMRI change both within and between tasks, and relate
to performance on an executive task, with higher complexity associated with better performance and faster reaction times. This
approach provides a powerful new route to further explore the cognitive and neural underpinnings of consciousness.

Introduction1

Gaining a better understanding of consciousness would have profound and widespread implications for the nature of human2

experience, for many neurological conditions where awareness is impacted, and for a host of ethical issues. One of the3

greatest successes in consciousness science has been the quantification of conscious level by means of neural complexity4

measures.1–4 For instance, in a landmark paper, Casali and colleagues used transcranial magnetic stimulation (TMS) to5

perturb cortical activity, and then quantified the complexity in the brain’s response with electroencephalogram (EEG) via the6

standard measure of Lempel-Ziv complexity (LZ).1 This method, dubbed perturbational complexity index (PCI), was then7

used to distinguish between various disorders of consciousness in patients, and between healthy controls when awake versus8

non-rapid-eye-movement (NREM) sleep, or under general anaesthesia – with conscious states consistently associated with9

higher neural complexity than unconscious ones. Since this result, others have shown that the complexity of spontaneous neural10

activity, as measured by LZ, can distinguish between sleep states,2 and increases above the level of normal resting state (RS)11

during an altered state of consciousness due to psychoactive drugs, such as LSD.4–6
12

These results have provided a striking impetus for the continued development of consciousness science, since they are13
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robust and highly reproducible. However, despite these successes, progress in the science of conscious level has been limited in14

recent years for a number of reasons. First, all the comparisons listed above concern pronounced differences between conscious15

states, which limits their impact in providing an explanation for the nature and possible components of consciousness during16

normal wakefulness. Furthermore, there is no satisfactory all-encompassing theory that explains, from first principles, the17

relationship between brain dynamics and conscious level. One of the main contenders, Integrated Information Theory (IIT)7
18

makes ambitious claims about the nature of consciousness, but has been criticised on conceptual8 and formal9 grounds.19

An alternative approach, common in the consciousness science literature, is to search for the neural correlates of con-20

sciousness (NCC),10 for instance by presenting awake participants with consciously and unconsciously perceived stimuli,21

and investigating which regions increase in activity when stimuli are consciously detected.11 Although this too has yielded22

interesting clues as to the biological substrate of consciousness (such as the common association between increases in prefrontal23

parietal network activity during switches in conscious percept12, 13), this approach also has general limitations that mean moving24

from the NCC to genuine mechanistic explanations for consciousness is challenging.25

A new approach to the science of consciousness is therefore warranted. Here we suggest one powerful novel route that26

takes advantage of the recent trend towards big data to explore subtle fluctuations in conscious level during normal wakefulness,27

modulated by alertness, task and performance.14–17 In this way we are effectively combining the above two consciousness28

science paradigms, bridging between level- and content-centred approaches to consciousness, in a way that may yield important29

novel insights into the components of consciousness.14
30

We here focus on the Cambridge Centre for Ageing and Neuroscience (CamCAN) database,18 a large multimodal31

dataset which includes RS and task-based functional magnetic resonance imaging (fMRI), magnetoencelography (MEG) and32

behavioural data on a large cohort of healthy subjects across the adult lifespan.33

First we demonstrate that neural complexity measures meaningfully reflect fluctuations in wakeful conscious level, via34

independent methods for assessing alertness in MEG and fMRI. Next we establish that there are clear modulations of neural35

complexity measures by task and performance, thus suggesting connections between consciousness and other cognitive36

processes. This proof of principle is the first stage in an entirely new approach to study consciousness.37

Results38

LZ fluctuates with alertness39

First, we set out to investigate the relation between complexity and levels of alertness during wakefulness. As our main40

complexity measure we focus on Lempel-Ziv complexity (LZ), a widespread and simple yet effective complexity measure.1–4 In41

MEG, we estimate LZ as the average complexity of each individual gradiometer. For fMRI, to compensate for the low temporal42

resolution, we concatenate the BOLD time series from a group of regions (either the whole brain or each of Yeo’s seven43

networks19) into a single sequence, resulting in a “concatenated LZ” (LZc). To quantify alertness, we use an adapted version44

of the Automated Micromeasures of Alertness (AMA) algorithm20 for MEG, and functional-connectivity-based k-means45

clustering for fMRI.21. Following the procedures described in the Methods, we computed all complexity and alertness measures46

using the resting-state segments of both MEG and fMRI sessions (Fig. 1).47

In the MEG data, we quantified the effect of drowsiness with a linear mixed-effects (LME) model predicting LZ using48

AMA as predictor and subject identity as random effect. The results showed a very reliable effect of drowsiness on LZ, with49

greater drowsiness associated with less complex brain activity (β =−0.0128±0.0003 bit, t =−35.6). It should be noted that50

AMA is a novel measure, not used in MEG before. Therefore we validated our results with the more traditional alpha-theta51

ratio measure,22 with qualitatively similar results (β =−0.0091±0.0003 bit, t =−26.6). Furthermore, to demonstrate that52

these results are not dependent on any single measure of neural complexity, we also carried out these comparisons with other53

measures (see Supplementary Figure S1), with again broadly similar results.54

Next, we performed a similar analysis on the fMRI data, with two main differences: First, alertness level was quantified via55

the functional connectivity clustering method of Haimovici et al.21 instead of AMA. Second, given the much smaller number of56

time points in the fMRI data (5 windows of 50 TRs each), instead of using an LME we split the subjects into alert and drowsy57

groups, labelling as alert those who had all 5 time windows classed as awake by the Haimovici algorithm (N = 352), and as58

drowsy those who had at least 3/5 time windows classed as drowsy or early sleep (N = 74). As a sanity check, we verified59

that the proportion of awake subjects in each window decreased with time, replicating previously reported results of subjects60

becoming more drowsy during the scan23 (see Supplementary Materials).61

To relate alertness and complexity, we averaged LZc across all 5 temporal windows for each subject and performed a62

two-sample t-test comparing the two groups. This analysis showed strong agreement with the MEG results, with drowsy63

subjects having significantly lower complexity than alert subjects (t =−12.5, p < 0.001). We repeated this analysis for each of64

Yeo’s seven brain networks19 in turn, and all networks showed a significant LZc reduction in drowsiness (all p < 0.001) to65

varying extents. In particular, the visual and somatomotor networks showed the lowest levels of resting LZc but the largest66

reductions with drowsiness, while the frontoparietal and salience network showed the smallest changes.67
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Figure 1. Resting-state neural complexity is reduced with drowsiness. (left) Effect of drowsiness on MEG signal
complexity, quantified as t-values of linear-mixed effects models predicting LZ at different MEG sensor groups. (right)
Two-sample t-values comparing drowsy subjects with alert subjects in the fMRI session. Black horizontal dashed lines show
the p = 0.001 significance threshold. See Supplementary Figure S2 for the effect sizes of these comparisons. DMN: default
mode network, SOM: somatomotor, VIS: visual, SAL: salience, DAN: dorsal attention network, FPN: frontoparietal network,
LIM: limbic.

LZ is modulated by task68

Having established that LZ meaningfully fluctuates with alertness levels between full alertness and drowsiness, we next explored69

how LZ changes by task. The CamCAN database offers an excellent opportunity to explore this, thanks to its high sample70

numbers and wide repertoire of tasks available (see Methods). To this end, we computed whole-brain average complexity for71

all subjects and all tasks in both MEG and fMRI sessions (averaged across channels in MEG, concatenated in fMRI), revealing72

striking changes both within and between tasks (Fig. 2).73

In the MEG session, participants showed a wide spectrum of LZ values, which varied markedly between tasks (see74

Supplementary Figure S5). Of all 12 pairwise comparisons between tasks (including sets A and B), 11 of them had significant75

LZ differences at the p < 0.001 level using one-sample t-tests, with the only non-significant comparison being between76

multi-mismatch negativity and incidental memory in task set A. Interestingly, all active tasks (i.e. tasks that required subjects’77

input; including SNG, picture naming, and SC) had lower complexity than wakeful rest, suggesting that more cognitively78

demanding tasks in fact decrease neural complexity. This result shows that LZ, and other common measures of conscious level79

(see Supplementary Material), at least with the high temporal resolution of M/EEG, are also sensitive to the neural dynamics of80

cognitive processes, opening a new fertile scientific ground at the intersection of these two phenomena.14
81

As in the previous section, the fMRI results were largely in agreement with the MEG results. Between tasks, there was82

a significant difference between the three conditions for the whole brain (all p < 0.001), and within each task LZc declined83

steadily for all tasks (including resting state), possibly reflecting a general drop in alertness or interest in the task. In line84

with previous results,4 LZc increased with respect to the resting-state baseline when participants passively watched a movie,85

providing further evidence that contextual factors can affect subjects’ spontaneous neural complexity. Note that, however, in86

fMRI LZc is higher during task than in wakeful rest, unlike the results for the MEG data. The cause of this discrepancy is87

unclear, but it is unlikely to be caused by the concatenation of channels in LZc since it also occurs with average channel-wise88

LZ (see Supplementary Figure S4).89

Finally, it is worth mentioning a few important differences in LZc between brain networks as they relate to the tasks in90

the fMRI session. For both task and movie-watching, the visual and somatosensory networks showed the largest increases91

with respect to rest, while the frontoparietal network showed slightly weaker task distinctions compared to the other networks.92

Additionally, the dorsal attention network was the only one to show a positive interaction effect between task and movie-93

watching, with higher complexity during task (t = 6.77, p < 0.001; see Supplementary Figure S6).94
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Figure 2. Neural complexity is modulated by task in both MEG and fMRI sessions. (left) Time course of average LZ
throughout the MEG session, for participants in task set B (see Supp. Fig. S3 for task set A). Error bars show standard error of
the mean across subjects. (right) Whole-brain LZc in each window of the fMRI session, showing both variation across tasks
and negative drifts within tasks, suggesting subjects became progressively drowsy during each task. Note that MEG and fMRI
represent different neural processes and LZc is different from LZ, so values are not directly comparable between the two.

LZ correlates with task performance95

The fact that these complexity measures track alertness and are modulated by task suggests they can be used to explore the96

connection between consciousness and cognition. For this we focused on the one attentionally demanding, executive task97

present in both fMRI and MEG task sets: the SNG task.98

In each trial of the SNG task, subjects are presented with one of four types of visual stimuli. For two of them (go-left and99

go-right signals) the subject must respond via button press as quickly as possible (with their left or right hand, respectively).100

For the other two stimuli (stop and no-go signals), the subject must withhold their response and wait for the next trial. For this101

analysis we focused on the reaction times in the go trials and the total number of omission and commission errors, regardless of102

which stimulus type they were triggered by (see Supplementary Figure S7).103

In the MEG session, we analysed the trial-by-trial relationship between LZ and reaction time using an LME model to104

predict reaction time in a given trial, using the LZ of the preceding 4 s as predictor and subject identity as random effect.105

This revealed a small but consistent negative effect (β = −533± 50 msbit−1, t = −9.13), showing that subjects responded106

faster in trials with a higher level of pre-stimulus LZ. To investigate this further, we analysed whether subjects with higher107

inter-trial LZ variability also had higher RT variability. In agreement with the previous result, we found a significant positive108

correlation between the coefficient of variation (CV) of reaction time and the CV of LZ (r = 0.31, p = 0.023), indicating that109

subjects whose LZ fluctuated more widely during the session also saw their reaction times fluctuate. In the fMRI session,110

although trial-by-trial data is not available (due to the limited temporal resolution of fMRI), meaning we couldn’t perform the111

same analysis as in MEG, we also found evidence of the relationship between LZ and task performance: average LZc was112

anti-correlated with the subject’s total number of errors, including omission and commission (r =−0.36, p = 0.017).113

Taken together, these results suggest that in the cognitive domain neural complexity is characteristic of a state of conscious114

readiness, in which neural dynamics switch between a diverse set of possibilities, able to adapt quickly in response to task115

demands. More generally, they reinforce our main thesis that LZ can be used to mechanistically connect consciousness and116

cognition: higher cognitive demands may call on the same (or similar) neural processes that underpin consciousness, which can117

be measured via LZ.118
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Discussion119

Fine-grained fluctuations in consciousness and complexity120

In this paper we have demonstrated, using both MEG and fMRI, that neural complexity measures can be used to track fluctuating121

conscious level during wakefulness. Furthermore, these same complexity measures change for different tasks, reflecting changes122

in the subject’s condition and cognitive state. Finally, we have shown that these complexity measures correlate with accuracy123

and reaction time in an executive task. These results suggest that conscious levels not only change from awake to sleep states,124

but fluctuate, in line with alertness and drowsiness, on a moment by moment basis – and these spontaneous fluctuations offer us125

an opportunity to investigate the inner workings of consciousness during wakefulness.126

In addition to the temporal dynamical aspects captured by LZ, this type of analysis allows us to explore the spatial127

heterogeneity of complexity throughout the brain. Although there were no differences between local regions in the MEG data,128

in fMRI there were intriguing differences between the seven Yeo brain networks. For example, the somatomotor and visual129

networks had lower complexity overall, both during alertness and drowsiness. In contrast, the frontoparietal network had one130

of the highest LZc overall, demonstrated the least decline from alert to drowsy states, and was less modulated by task than131

other networks. One explanation for this is that the frontoparietal network, by having the highest LZc generally, even sustained132

during drowsiness, is more centrally involved in supporting conscious contents than lower-level networks involved in sensory133

processing or motor output (which would be closely in accord with the existing literature11, 13).134

Connecting neural complexity and cognitive processing135

On the cognitive level, our results demonstrate that complexity measures are predictive of behaviour and cognitive performance.136

We demonstrated this in fMRI using broad temporal averages, as well as in MEG with a trial-by-trial analysis, showing in137

both cases that higher neural complexity was associated with better performance (in terms of fewer errors and faster reaction138

times). Although the posited association between executive processing and consciousness is not new,24 here we’ve provided, to139

our knowledge, the first neurally-driven evidence supporting its connection, albeit in a provisional form we hope that we, and140

others, will build on in future studies.141

Interestingly, however, there is one important aspect for which the MEG and fMRI results disagree: in the MEG session LZ142

was lower for all tasks than during resting state, while the opposite was true in fMRI. To the best of our knowledge this is the143

first reported discrepancy between LZ changes across multiple imaging modalities, with previous works showing consistent144

results in fMRI, MEG, and EEG.2, 4, 5, 25 However, it is worth noting that these reported consistent changes all concern drastic145

changes in conscious state, such as between wakeful rest and deep sleep or anaesthesia. Thus, the fine-grained structure of the146

fluctuations of consciousness during wakefulness studied in this paper poses a new challenge for empirical tests of current147

theories of consciousness and cognition.148

Nonetheless, there are also a few consistent patterns across fMRI and both MEG sessions that are worth mentioning. Most149

notably, both fMRI and MEG passive tasks (i.e. multi-mismatch, word recognition, and movie watching) induce consistently150

higher complexity than active tasks. This could be caused by these tasks calling on different underlying cognitive mechanisms,151

although without further experiments we cannot discard an effect of salience driving the LZ results: for example, the word152

recognition task in MEG had unexpected non-words, and the movie shown in the fMRI session was engaging and fast-paced,153

while the active tasks were generally repetitive – which could explain the differences in complexity between the two.154

Overall, although future work is needed to explain these results, we can attempt to interpret them within the framework155

of the Entropic Brain Hypothesis (EBH).26 Put briefly, the EBH states that the richness of phenomenal experience should be156

accompanied by a similarly rich repertoire of neural dynamics, quantifiable via complexity or entropy measures.27 If, as the157

EBH postulates, LZ essentially captures the variety of phenomenological events, and given the cognitive tasks were relatively158

prescribed and uniform compared to resting state, it is natural that entropy is higher in resting state. At the same time, this159

variety of phenomenology is more likely to be captured by the higher temporal resolution of MEG, but not fMRI, which only160

captures slower neural processes due to the timescale of the haemodynamic response28. Overall, this discrepancy highlights161

the need for future work exploring the profile of neural complexity across scales, from aggregated cellular activity to BOLD162

signals, and paints a more nuanced picture regarding the interpretation and physiological relevance of LZ deserving further163

investigation.164

Limitations and future work165

Our approach in this study has been openly empirically-driven, applying an experimentally validated set of measures to a166

large neuroimaging dataset and analysing the results. Nonetheless, like previous studies linking complexity measures to167

consciousness,1–3 a theoretical foundation behind these analyses is largely underspecified. For instance, it is not clear how168

LZ (and its variants) map onto elements of candidate theories of consciousness, such as the differentiation or integration169

components of IIT1 – or, for that matter, whether the different measures proposed historically by IIT can in fact meaningfully170

1Although there is some preliminary evidence in toy logic-gate models,29 it is unclear how or to what extent these results apply to whole-brain dynamics.
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assess integration and differentiation in brain dynamics,30, 31 and how these relate to cognition.32 Therefore, we need better171

theories to fully interpret these results and incorporate them into a broader picture of consciousness as a neurobiological172

phenomenon. In this sense, we see these results as a more challenging testbed for upcoming theories of consciousness, that are173

willing to go beyond gross changes in conscious level (such as between wakefulness and sleep or coma) and able to explain174

these subtle fluctuations of consciousness during wakefulness.175

One concern with the analyses presented here is whether there may be some specific details of LZ that generate these results.176

To rule out this possibility, we have used a range of measures, including multiple flavours of LZ, multi-scale entropy,33 and177

context-tree weighted predictors34 (see Supplementary Material). Broadly speaking, all these measures behaved similarly,178

suggesting that the link between neural complexity and fluctuating conscious levels during wakefulness and between tasks is a179

robust finding independent of any individual measure. However, complexity is a fundamentally multi-dimensional concept,35
180

and there are plenty of complexity measures that differ heavily from LZ on conceptual grounds.2 Furthermore, all the measures181

explored here quantify the temporal statistics of individual regions, ignoring possible high-order statistical structures taking182

place across regions.31, 39 This study opens the door to future work investigating the subtle differences between other types of183

complexity measures and their specific relationships with consciousness and cognition.184

Finally, a separate issue concerns whether the observed changes in neural complexity measures are driven by changes in185

spectral power. For instance, in MEG, it could have been the case that as participants became more drowsy, and their faster186

alpha power diminished while their slower theta power increased, this spectral shift automatically supported less diverse activity187

patterns, thereby lowering the measured LZ. Although preliminary results on the MEG SNG data suggest that some, though not188

all, complexity changes are not explained by spectral power,40 this analysis should be extended to all aspects covered here (as189

well as to previous studies with larger changes in conscious state). Overall, we see this line of work as a necessary step to better190

understand the dynamical and mechanistic basis of neural complexity measures, so we may better leverage them in empirical191

and theoretical studies of consciousness.192

Final remarks193

For these analyses we leveraged the power of big data via the CamCAN18, 41 database, which allowed us to resolve subtle194

changes in the measures of interest thanks to its large size, and make first steps towards elucidating the components of195

consciousness. We believe that this will be a powerful, flexible new approach to accelerate progress in consciousness science196

generally.197

Although the results presented here provide intriguing putative clues as to the components of consciousness, we believe that198

their main purpose is to demonstrate the utility of this approach for future, more directed, studies than was possible with the199

CamCAN dataset. We envisage these future studies to focus on fluctuations in complexity measures during wakefulness and200

these changes to be linked to specific cognitive components. In this way, a taxonomy of the potential cognitive machinery of201

conscious could be found.202

Methods203

Participants204

We examined a pre-existing dataset, collected by the Cambridge Centre for Ageing and Neuroscience (CamCAN) project,205

involving adults who had undergone both fMRI and MEG at two stages, approximately 2 years apart. In the first stage, here206

termed CamCAN650, 650 adult participants (after attrition for technical issues) underwent a series of fMRI and MEG RS207

and task-based scans. In the second stage, here termed CamCAN280, 280 of the CamCAN650 participants returned for more208

extensive fMRI and MEG scans. These scanned subjects were behaviourally tested to ensure they were neurologically normal.209

Ages ranged from 18 to 88, with a roughly equal-N split between deciles. This age range was designed to explore to the effects210

of age on cognition and the brain. Although we also found modulatory effects of age on some of the effects reported below,211

these are not relevant to the core results and are described elsewhere (paper in preparation). For more details on the CamCAN212

database, see Shafto et al.18 and the CamCAN website.3213

Tasks214

For both MEG and fMRI, in addition to RS, the experiment included different sets of tasks of varying cognitive load. Here we215

analysed fMRI and MEG data for all tasks using the complexity measures described below. Furthermore, some of them were216

active tasks (i.e. that included behavioural responses) that were centrally cognitive, which allowed us to perform additional217

analyses linking complexity values to performance, under the putative assumption that consciousness is related to cognition,218

given its involvement in most high-level cognitive skills.11, 42
219

2Examples include measures of information synergy36 fractal dimension,25 metastability37 or network connectivity,38 to name a few.
3http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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The tasks are described in more detail elsewhere,18, 41 and are briefly summarised here for completeness. See the220

Supplementary Material for further information about tasks in both MEG and fMRI sessions.221

MEG222

Given that the CamCAN650 session did not include cognitive tasks, here we focus on the CamCAN280 session. Participants223

were divided into two groups (of approximately N = 140 each). All participants first underwent a 5 min resting state scan224

and then carried out a set of tasks, which was different for groups A and B (details in Table S1 and the original CamCAN225

publications18, 41). Here we analysed complexity values for all tasks, and additionally analysed the Stop-Signal Go/No-Go task226

(SNG) (the only core cognitive task presented) for connections to task performance.227

fMRI228

CamCAN650 included resting state, passive movie watching, and a basic sensorimotor task, where participants pressed a button229

if they heard or saw a stimulus. Here we analyse all participants in CamCAN650 for the RS and movie sessions, and focus on230

CamCAN280 to link complexity values to performance on executive control tasks. In particular, we analyse the sub-group231

of subjects within CamCAN280 that took the same SNG as in the MEG session, to enable a comparison across scanning232

modalities.233

Neural complexity and alertness measures234

MEG235

The main elements of our MEG (and fMRI) data analysis fall into two categories: previously validated measures of alertness236

(which we apply only to RS data), and measures of complexity (which we apply to all data).237

The first alertness measure we use is adapted from the Automated Micromeasures of Alertness (AMA) algorithm, a238

machine-learning-based technique which classifies EEG data into alert, drowsy, or various sleep stages.20 In order to work with239

MEG data, we swapped the key EEG electrodes the original algorithm uses with equivalent MEG channels, and, given that the240

CamCAN data is unlikely to include any significant portions of actual sleep, removed the parts of the algorithm that classify241

sleep stages. The result is a classification of each epoch as “alert” or “drowsy” which is objective, non-relative, and can be242

compared between subjects.243

Given the novelty of this method, we also used another measure of alertness: the ratio of alpha to theta power (Alpha-Theta244

Ratio; ATR), a robust and empirically well-established marker of drowsiness in eyes-closed EEG.22, 43. We took theta power in245

the 3–5 Hz range, alpha power in the 8–12 Hz range, and calculated the ratio between these two frequency bands as the mean of246

all MEG gradiometer sensors per epoch. More drowsy epochs were those where alpha power was reduced and theta power was247

increased.248

In terms of neural complexity measures, in line with recent literature1–4 we focused on Lempel-Ziv complexity (LZ)44 as a249

measure of neural signal diversity. In short, the procedure to estimate LZ from a time series of neural activity of length T is as250

follows: first, the signal is binarised around its median. Then it is scanned sequentially using the algorithm by Kaspar and251

Schuster,45 counting the number of different “patterns” in the signal. Finally, following Ziv46 this number is normalised by252

log2(T )/T to yield an estimate of the signal’s entropy rate.47 This process is repeated for all channels and the results averaged253

into a single whole-brain average LZ.254

Although our focus here is on using LZ, other suitable complexity measures exist, some of which have already been255

successfully applied to distinguish between conscious levels.3, 48, 49 Therefore, to demonstrate the robustness of our findings256

we replicate our analyses with a range of entropy-based complexity measures, and show they yield consistent results (see257

Supplementary Material).258

fMRI259

As with the MEG analysis, we apply two types of measures to the fMRI data: a measure of alertness for resting-state fMRI, and260

several measures of complexity.261

To measure fluctuations in alertness during the fMRI session, we relied on a study by Haimovici and colleagues that262

combined simultaneous EEG and fMRI while subjects transitioned from full alertness to deep sleep.21 Haimovici et al. used a263

k-means algorithm to cluster subjects’ functional connectivity into “awake” and “sleep” clusters. For our analysis, we took the264

cluster centroids from the Haimovici study in order to classify the CamCAN data into high- and low-alertness segments (of265

100 s each), roughly equating to the “awake” and “drowsy” micromeasures classification in the MEG dataset.4266

To measure complexity we again focus on LZ complexity, for consistency with the MEG analysis. It is worth noting that267

although fMRI has less temporal resolution than MEG, recent studies25 have shown that fMRI LZ is as robust of an index of268

conscious level as it is in other modalities. Nevertheless, given the short length of fMRI BOLD time series (compared to MEG),269

4Note that the Haimovici study labelled the non-alert state as “sleep” – however, given that in the CamCAN650 dataset subjects still responded regularly on
the sensorimotor task when classed in this state, we believe that “drowsy” is a more appropriate label than sleep. See Supplementary Material for details.
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instead of computing LZ on each region separately, we concatenated all time series into a single one-dimensional signal, and270

then computed and normalised LZ as described in the MEG section, resulting in a “concatenated LZ” (LZc). This procedure271

was performed for all parcels in the Schaefer 300-region atlas, as well as in those subsets of parcels that belong to each of Yeo’s272

seven networks.19 Again, as in the MEG analysis we verified the robustness of our results through other similar measures of273

complexity (see Supplementary Material).274

Data preprocessing275

MEG276

All data were automatically analysed with Matlab scripts using the SPM1250 and EEGLAB51 libraries. First, Independent277

Components Analysis (ICA) was used to reduce the effects of eye blinks. The data was split into gradiometer and magnetometer278

channels, and only the 204 gradiometer channels were selected for further preprocessing, due to superior signal-to-noise ratios.279

Following this, the data was downsampled to 250 Hz, and filtered with a 0.5–30 Hz bandpass filter. Data were epoched to 4 s280

segments in both RS and task recordings. For a further analysis relating task performance with complexity at the trial level, we281

focused on the only CamCAN executive task (SNG), and extracted 1 s epochs immediately prior to each trial. Epochs with282

muscle artefacts (widespread frequency above 120 Hz across channels) or unusually reduced signal (less than 25% of average283

signal compared with the rest of the session) were excluded from the analysis.284

fMRI285

Functional MRI data were preprocessed in two separate pipelines. The first one uses the AAL atlas52 and replicates the286

preprocessing steps of Haimovici et al.21 in order to use their functional-connectivity-based drowsiness classification. The287

second pipeline uses the Schaefer 300-region parcellation grouped into Yeo’s seven networks,19 and was used for all complexity288

analyses. Note that the usage of two separate pipelines is necessary for a network-based complexity analysis, since Yeo’s289

networks are defined on the cortical surface, and mixing surface- and volume-based parcellations (like the Schaefer and AAL290

parcellations, respectively) reduces the accuracy of spatial localisation.53 The details of both pipelines are described in the291

Supplementary Material.292
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