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Abstract 
 
Sensory systems are often tasked to analyse complex signals from the environment, to separate 
relevant from irrelevant parts. This process of decomposing signals is challenging when component 
signals interfere with each other. For example, when a mixture of signals does not equal the sum of 
its parts, this leads to an unpredictable corruption of signal patterns, making the target recognition 
harder. In olfaction, nonlinear summation is prevalent at various stages of sensory processing, from 
stimulus transduction in the nasal epithelium to higher areas, including the olfactory bulb (OB) and 
the piriform cortex. Here, we investigate how the olfactory system deals with binary mixtures of 
odours, using two-photon imaging with several behavioural paradigms. Unlike previous studies using 
anaesthetised animals, we found the mixture summation to be substantially more linear when using 
awake, head-fixed mice performing an odour detection task. This linearisation was also observed in 
awake, untrained mice, in both engaged and disengaged states, revealing that the bulk of the 
difference in mixture summation is explained by the brain state.  However, in the apical dendrites of 
M/T cells, mixture representation is dominated by sublinear summation. Altogether, our results 
demonstrate that the property of mixture representation in the primary olfactory area likely reflects 
state-dependent differences in sensory processing. 
 
 
  
Introduction 
 
As animals in nature navigate through their environment in order to find food, mates, and to avoid 
dangers, their sensory systems are tasked to detect and recognise signals of interest despite a 
background of interfering signals. This figure-ground segregation is a ubiquitous task for many, if not 
all, sensory systems. In the visual system, for example, segmentation of spatial pattens of light allows 
animals to recognise objects despite some parts being obscured (Marr, 2010). In the auditory system, 
spectral combinations of sound waves are recognized and strung together over time to form a stream, 
allowing animals to recognise social calls from specific individuals among other noises (Bregman, 
1990). In olfaction, too, animals face challenges in identifying an odour of interest in the presence of 
other molecules (Laing and Francis, 1989; Rokni et al., 2014). 
 
Olfactory stimuli are first detected by a large family of olfactory receptors residing in the nasal 
epithelium (Buck and Axel, 1991). Due to a broad ligand-receptor binding (del Mármol et al., 2021), 
each odour molecule may activate a number of olfactory receptor types, leading to combinatorial 
representations (Malnic et al., 1999). As a result, when several compounds are present in a given 
mixture, they can activate overlapping sets of olfactory receptors, causing complex pharmacological 
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interactions. For example, molecules may bind a common receptor, which, depending on the efficacy, 
can lead to antagonism (Cruz and Lowe, 2013; Kurahashi et al., 1994; Oka et al.; Reddy et al., 2018; 
Singh et al., 2019), or enhancement (Xu et al., 2020). Recent large-scale studies demonstrate that this 
is a widespread phenomenon (Inagaki et al., 2020; Xu et al., 2020; Zak et al., 2020), which means that 
neural responses to mixtures often do not equal the sums of responses to the individual odours. In 
addition to the interactions in the periphery, there are many forms of nonlinear summation at multiple 
stages of olfactory processing, including the saturation of neural responses (Firestein et al., 1993; 
Wachowiak and Cohen, 2001) and inhibitory interactions in the olfactory bulb (Economo et al., 2016). 
Widespread suppressive interactions are also observed in downstream areas, including the piriform 
cortex (Penker et al., 2020; Stettler and Axel, 2009).  
 
Nonlinear summation of signals in some brain areas is desirable, for example, when specific 
combinations of signals carry special meanings (Agmon-Snir et al., 1998; Jacob et al., 2008). However, 
in primary sensory areas, it is sometimes considered information limiting (Laughlin, 1989). For 
olfaction, this is thought to limit the analytical ability – whether a mixture can be perceived in terms 
of the constituent qualities (Jinks and Laing, 1999). Nonlinear summations, or “interactions”, do not 
occur for all odour mixtures (Fletcher, 2011; Gupta et al., 2015; Tabor et al., 2004), but occur 
prevalently when the background and target activation patterns overlap. This happens when a mixture 
contains many components (Mathis et al., 2016), as well as when the background odours are 
structurally related the target odour (Cruz and Lowe, 2013; Fletcher, 2011; Jinks and Laing, 1999; Kay 
et al., 2003; Mathis et al., 2016; Tabor et al., 2004). Nonlinear summation poses a difficulty because it 
may distort a pattern of interest brought by non-uniform addition of unpredictable background 
patterns. Thus, the difficulty of demixing olfactory perception of mixtures goes beyond the challenge 
of detecting signals above noise. Due to this difficulty, some studies have suggested that the olfactory 
system may not decompose mixture representations into component parts, but instead, solve the task 
by learning task-specific boundaries (Mathis et al., 2016; Wilson and Stevenson, 2003).  
 
The question therefore remains: how does the mammalian olfactory system deal with nonlinear 
summation of responses? To investigate this, we used binary mixtures of odours to investigate mixture 
representations in mice performing tasks. While temporal structures caused by turbulence may be 
used to segregate odours of interest from the background (Ackels et al., 2021; Hopfield, 1991), we 
tackle the case when temporal information from the environment is not available. We demonstrate, 
by comparing the mixture responses using various paradigms, that the property of mixture summation 
depends on the brain state. Our results further suggest that the linearization is implemented in the 
olfactory bulb, emerging in the deeper layer. 
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Results 
 
Olfactory figure ground segregation is most difficult when the target and background odours evoke 
overlapping activity patterns (Rokni et al., 2014). To study this task using binary mixtures, we first 
characterized how our target odour relates to other odours in our panel. The target odour was ethyl 
butyrate and the rest of the odours in our set comprised a range of small esters structurally similar to 
ethyl butyrate, as well as non-esters (Fig. 1A). According to Rokni et al., the masking index, which 
measures the amount of overlap in response patterns between the target odour and background 
odours, correlates well with behavioural performances (Rokni et al., 2014).   
 
To measure the masking indices from single odour responses, we obtained activity patterns from the 
OB output neurons, the mitral and tufted (M/T) cells. Using a two-photon microscope, we imaged 
from the glomerular layer of the olfactory bulb in Tbet-Cre::Ai95D mice, which express the calcium 
indicator GCaMP6f (Dana et al., 2019) in M/T cells (Haddad et al., 2013). To reproduce previous results, 
these initial imaging experiments took place in mice under anaesthesia (Fig. 1B). We studied the 
degree of overlap between ethyl butyrate and other odour responses, by presenting single odours in 
a randomized order. An analysis of glomerular activity patterns revealed that methyl butyrate 
responses overlap the most with the ethyl butyrate response patterns, followed by closely related 
esters (Fig. 1C-E).  
 
Previous studies from anaesthetised animals showed that neural responses to odour mixtures exhibit 
widespread nonlinear summation (Inagaki et al., 2020; Oka et al.; Reddy et al., 2018; Singh et al., 2019; 
Xu et al., 2020). In particular, suppressive interactions become dominant among large responses, due 
to the saturation effect (Mathis et al., 2016). This pattern is observed at many stages of olfactory 
processing, including in the olfactory bulb (Economo et al., 2016; Fletcher, 2011) and anterior piriform 
cortex (Penker et al., 2020), but it depends on the complexity of mixtures, as well as odorant choices 
(Fletcher, 2011; Gupta et al., 2015; Rokni and Murthy, 2014; Tabor et al., 2004). We therefore 
characterized the property of binary mixture summation using our odour set.  
 
We first confirmed that our olfactometer is capable of presenting stable concentrations of odours for 
mixtures, leading to linear sums of ionization levels when two odours are mixed (Fig. 2A-C). Then, to 
assess how the OB output represents binary mixtures, we imaged the individual somata of mitral and 
tufted cells in Tbet-cre::Ai95D mice (Fig. 2D). A typical session consisted of about 40 trials, to minimise 
time-dependent effects. Single odours and their binary combinations were presented in a semi-
random order. Since ethyl butyrate, methyl butyrate, and the mixture of these two odours are of 
particular importance in this study, these three trial types appeared every 10 trials (Fig. 2E; see 
methods). To assess how the mixture of ethyl butyrate and methyl butyrate is represented, the 
amplitudes of the mixture responses were compared against those of linear sums of single odour 
responses (Fig. 2F,G). As reported before, a large proportion of M/T cells exhibited nonlinear 
summation (39.0% of M/T cells showed a deviation from linearity greater than 2; 71/182 ROIs, 7 fields 
of view, 4 mice) with a large fraction showing sublinear summation (35.7%, 65/182 ROIs). A simple 
feed-forward network performed was used to test if decoding the presence of component odours is 
easier when inputs sum linearly (Supplementary Fig. 1). This demonstrate that nonlinear summation 
can be a hindrance for demixing. Together, our results confirm that nonlinear summation is prevalent 
for closely related odours even in binary mixtures.  
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Given that nonlinear summation is so widespread in the OB output, how well can mice analyse binary 
mixtures at the behavioural level, to accurately detect the presence of the target odour? To assess 
this, we used a Go/No-Go paradigm for head-fixed mice. The rewarded stimulus (S+ odour) contained 
ethyl butyrate, either as a single odour or as a component of a binary mixture (Fig 3A). To train mice 
on this task efficiently, after habituation, the head-fixed mice were first trained to discriminate ethyl 
butyrate against other single odours (Fig 3A). The mice learned to perform this task well, reaching an 
accuracy of 80% within 200 trials on average (Fig. 3 B,C; number of trials to reach 80% accuracy = 194.3 
± 21.9; n = 7 mice). Subsequently, these mice were trained to detect the presence of ethyl butyrate in 
binary mixtures (Fig. 3B,C). The mice performed the mixture task at a high accuracy from the beginning 
(90.2 ± 1.3 % of trials with correct responses in the first session; n = 7 mice). However, the mistakes 
they made were odour-specific, in that they tended to lick more indiscriminately on methyl butyrate-
containing trials regardless of the presence of ethyl butyrate (Fig 3D,E; mean lick preference index for 
MB trials = 0.74 ± 0.04 vs. 0.93 for 5 other background odours, p = 0.0035, 1-way ANOVA; n = 7 mice). 
However, with training, the performance on methyl butyrate trials, too, became accurate, 
demonstrating that mice are able to improve the ability to accurately detect the target odour in binary 
mixtures even when the background odour is similar.  
 
To understand why mice were able to acquire the binary mixture task so easily, we sought to analyse 
the mixture representations of OB output neurons in trained, behaving mice. We performed two-
photon imaging of M/T cell somata in a separate group of Tbet-Cre::Ai95D mice that were awake and 
accurately performing the mixture task (Fig 4A). Surprisingly, in these mice, ethyl butyrate and methyl 
butyrate mixture responses largely matched linear sums of the component responses. Only 8% of ROIs 
(16/202; n = 13 imaging sessions, 6 mice) showed sublinear summation. On the other hand, when the 
same animals were later anaesthetized, sublinear summation increased substantially, with 46% of 
ROIs (47/103; n = 8 imaging sessions, 4 mice). Notably, the difference was apparent already in the 
early phase of the evoked responses (Fig. 4D-F). This result indicates that the property of mixture 
summation is state-dependent, and linearization is not imprinted permanently as a result of learning.  
 
To what extent does task learning affect the mixture summation? Previous studies suggest that prior 
exposures and familiarity to odours can affect the ability to analyse odour mixtures (Grabska-
Barwińska et al., 2017; Poupon et al., 2018). To address this, we assessed how ethyl butyrate and 
methyl butyrate mixtures are represented in naïve but awake, head-fixed mice. We took care to 
engage the mice as much as possible, since the level of motivation, with an accompanying change in 
the sniff patterns, affects the property of the olfactory system (Carey and Wachowiak, 2011; Jordan 
et al., 2018). To this end, we presented the same sets of odour stimuli, but instead of associating 
specific odours with reward, the water reward was delivered on randomly selected trials (Fig. 5A). In 
this scenario, mice often generated anticipatory licks, but without discriminating between trials with 
vs. without ethyl butyrate (Fig 5B,C; mean number of licks for EB vs. non-EB trials = 3.40 ± 0.64 vs. 3.41 
± 2.01; p = 0.97, paired t-test, n = 20 sessions, 6 mice). We then assessed the mixture responses of 
M/T cells in naïve, engaged mice (Fig. 5D,E). Surprisingly, the ethyl butyrate and methyl butyrate 
responses summed linearly. As with the trained mice, the largely linear summation was observed in 
the early phase of the responses (Fig. 5D,E). Furthermore, M/T responses are comparable in 
amplitudes between awake, naïve, and engaged mice and trained mice performing the task (Fig. 5F).  
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The similarity of mixture representations between naïve mice and the mice that learned to accurately 
analyse binary mixtures, was surprising. Since the behavioral context is a crucial determinant of how 
different groups of OB neurons are recruited (Carey and Wachowiak, 2011; Jordan et al., 2018; 
Wachowiak, 2011), we assessed if the level of behavioural engagement affected the property of 
mixture summation at all. To test this, we designed a behavioural paradigm to make head-fixed mice 
disengaged toward odour presentations. The paradigm involved delivering the water reward every 
trial, 15-20 seconds before the onset of odour (Fig. 6A). The level of disengagement was confirmed by 
slow inhalations taken by the mice during odour, unmodulated from the baseline pattern, especially 
compared to trained mice performing the mixture task or naïve mice undergoing random reward 
association (Fig. 6B). When the mixture response properties of M/T cells were analysed, however, the 
mixture summation was found to be largely similar to awake, engaged mice (Fig 6C,D). In addition, 
when a normalization model was used to remove the small saturation effects that persists, the 
residual nonlinearity was comparable across brain states (Supplementary Fig. 2), indicating that no 
further linearization of summation occurs with training or task engagement. Overall, these 
experiments suggest that wakefulness explains the bulk of the state-dependent linearization of binary 
mixture representation by the OB output, rather than the training or the level of engagement.   
 
Finally, we sought to understand at what stage of olfactory processing the linearisation is 
implemented. Since sensory information processing in the OB involves different interneuron types in 
the superficial vs. deep layers, we studied the mixture responses of M/T cells in the apical dendrites 
vs. somata (Fig 7). We found that, unlike in the somata, mixture summation is predominantly sublinear 
in the apical dendrites, with 44.7% of ROIs showing sublinear summation in trained mice performing 
the target detection task (38/85 ROIs, 7 sessions, 7 mice). This is despite the fact that odour-evoked 
responses are generally dampened in awake mice compared to the anaesthetised case 
(Supplementary Fig. 3). It is possible that an extra mechanism operates at, or near, the soma. For 
example, we found that an apparent, odour-locked inhibition associated with complex response 
waveforms in wakefulness (Kato et al., 2012), is restricted to somata (Supplementary Fig. 3). 
Altogether, the subcellular specificity suggests that a mechanism exists in the primary olfactory area 
that linearises mixture summation, which is absent under anaesthesia.  
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Discussion 
 
Segmentation and extraction of relevant information from mixtures of signals are important and 
perpetual tasks for sensory systems. Nonlinear summation of signals can pose a difficulty in demixing 
component signals faithfully. In this study, by imaging from the primary olfactory area of awake mice 
while they analyse olfactory binary mixtures, we demonstrate that the signal summation in the 
primary olfactory area of the mouse is state-dependent. Generally, mixture summation is subject to 
less saturation effect and as a result more linear in awake mice, irrespective of the behavioural 
engagement level.  
 
We also observed that the property of mixture summation depends on the subcellular compartment 
of the output neurons. This gives rise to two hints about the underlying mechanism. First, this makes 
it likely that some of the linearisation is implemented in the olfactory bulb. That is, a mechanism seems 
to adjust the dynamic range of mitral and tufted responses to odours, so that mixture responses 
remain below the saturation level. Second, the appearance of this phenomenon at the soma suggests 
that a mechanism located in a deeper layer is involved. For example, perisomatic inhibition mediated 
by granule cells and axonless interneurons of the external plexiform layer (Burton, 2017; Shepherd, 
2004) are more likely than that by juxtaglomerular inhibitory neurons. Some short axon cells that 
ramify their processes at the level of M/T cell lateral dendrites, on the other hand, are reported to 
contact granule cell dendrites (Eyre et al., 2008), thus may not be the direct source of perisomatic 
inhibition we observed. The EPL interneurons and granule cells both exhibit odour-locked responses 
(Miyamichi et al., 2013), and affect odour responses of M/T cells (Shani-Narkiss et al., 2020). Further, 
both types show state-dependent modulation (Kato et al., 2012; Kato et al., 2013). In addition to 
inhibitory mechanisms, the apparent reduction in response amplitudes could arise from an increase 
in the baseline firing rates of M/T cells. A higher baseline calcium signal could result in reduced change 
in fluorescence during odour responses. However, since a difference in baseline firing rates is 
expected to affect the apical dendrites, too, it is difficult to explain the subcellular specificity of our 
observation with this factor alone. Exactly what circuit mechanism underlies our observation, causally, 
will be an intriguing question for future investigations. Finally, it is of note that, since the mechanism 
here is dependent on the brain state, it is likely different from stimulus-dependent mechanisms, such 
as sensory adaptation described in the retina (Laughlin, 1989).  
 
Perception of olfactory mixtures has long fascinated investigators. Mixtures of odours often have 
qualities that are different from those of the individual components. Accurate recognition of 
components is particularly hard for human subjects. For untrained subjects, olfactory mixtures that 
contain about 30 components tend to smell alike (Weiss et al., 2012). Even highly trained people like 
perfumers can only accurately identify individual components if unfamiliar mixtures contained no 
more than 5 components (Poupon et al., 2018). These demonstrate an ultimate limit in the analytical 
ability. In addition, in untrained human subjects and rodents alike, when the task is to look for a 
particular aroma in the mixture, the tendency is to falsely report the presence of the target odour 
even when the mixture does not contain it (Laing and Glemarec, 1992; Rokni et al., 2014). In all cases, 
an extensive training for specific odours can improve the ability to detect the target odour, as seen in 
the case for sommeliers who routinely analyse key components in wines, which can contain several-
hundred component mixtures (Ilc et al., 2016). Thus, while mixture perception is highly context 
specific (Rokni and Murthy, 2014), training in specific odours seems to be key to improving on mixture 
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analysis. With more complex mixtures, linearization in the olfactory bulb may reach a limit, and also 
is unlikely to be the only mechanism that is used to solve the task. Elucidating what role the primary 
sensory areas plays is a crucial step towards a mechanistic understanding of complex sensory 
processing.  
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Methods  
  
Animals   
All animal experiments have been approved by the OIST Graduate University’s Animal Care and Use 
Committee (Protocol 2016-151 and 2020-310). Tbet-Cre (Haddad et al., 2013) and B6J.Cg-
Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/MwarJ, also known as Ai95D (Madisen et al., 2015), were originally 
obtained from Jackson Laboratory (stock numbers 024507 and 028865, respectively). Tbet-Cre::Ai95D 
mice were generated by crossing homozygous Tbet-Cre and Ai95D mice resulting in heterozygous 
animals used for imaging experiments. C57Bl6J mice were purchased from Japan CLEA (Shizuoka, 
Japan) and were acclimatized to the OIST facility for at least 1 week before they were used for 
experiments. All mice used in this study were adult male (8 – 11 weeks old at the time of surgery).  
 
Olfactometry  
A custom-made flow-dilution olfactometer was used to present odours. Briefly, 
custom Labview codes were used to control to control solenoid valves, and flow controller (C1005-
4S2-2L-N2, FCON, Japan) was used to regulate the rate of air flow. A pair of normally closed solenoid 
valves was assigned per odorant and used to odorise the air. These solenoid valves were attached to 
a manifold, such that a set of 8 pairs had access to the common stream of air. To generate binary 
mixtures of odours while keeping concentrations stable, one odour from each manifold (lines A & 
B) was used. For single odour presentations, odour was mixed with air passed through an empty 
canister. The odorised air was directed towards the animal only when the solenoid valve closest to 
the animal (final valve) opened. Final valve was opened for a short time (0.1 s for experiments 
involving behavioural analysis only, and 0.5 s for all imaging experiments, to accommodate for slow 
respirations during anaesthesia), to avoid adaptation related to temporal filtering for high sniff 
frequencies associated with long odour pulses (Verhagen et al., 2007). Total air flow, which is a sum 
of odorised air and the dilution air, was approximately 2 L/min, which was matched by the air that 
normally flows towards the animal. Inter-trial interval was approximately 40 seconds to ensure that 
the flow controllers have stabilised before each odour presentation. All odorants were from Tokyo 
Chemical Industry (Tokyo, Japan), apart for ethyl butyrate (W242705), which was from Sigma-Aldrich. 
Product number were: T0247 (Ethyl tiglate), V0005 (Methyl valerate), A0061 (Acetophenone), A0500 
(Methyl anthranilate), B0757 (Butyl butyrate), B0763 (Methyl butyrate), S0015 (Methyl salicylate), 
S0004 (Salicylaldehyde), T0248 (Methyl tiglate), A0232 (Eugenol). Purity of all odorants was at least 
98 % at the time of purchase. Stock odorants were stored at room temperature in a cabinet filled with 
N2 and away from light.  
 
Surgery 
Head plate implantation: All recovery surgery was conducted in an aseptic condition. 8-11week old 
male C57Bl6/J mice were deeply anaesthetised with isoflurane. The body temprature was kept at 
36.5 °C using a heating blanket with a DC controller (FHC, Bowdoin, USA). To attach a custom head 
plate about 1 cm in width weighing a few grams, the skin over the parietal bones was excised and the 
soft tissue underneath was cleaned, exposing the skull. The exposed skull was gently scarred with a 
dental drill, cleaned, dried, and coated with cyanoacrylate (Histoacryl, B.Braun, Hessen, Germany) 
before placing the headplate and fixing with dental cement (Kulzer, Hanau, Germany). For optical 
window implantation, adult, male Tbet-Cre::Ai95D mice were deeply anaesthetised, and underwent a 
window implantation procedure as previously described (Koldaeva et al., 2019). Briefly, after exposing 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.23.461425doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461425
http://creativecommons.org/licenses/by-nd/4.0/


the frontal bone, a craniotomy about 1 mm in diameter was made over the left olfactory bulb and on 
the exposed dorsal surface, a cut piece of coverslip that snugly fit in the craniotomy, on the edge of 
the drilled bone, was gently pressed down and sealed with a cyanoacrylate and fixed with dental 
cement. Mice were recovered in a warm chamber, returned to their cages and given carprofen 
subcutaneously (5 mg/kg) for 3 consecutive days. 
 
Habituation and behavioural measurements 
Two weeks after surgery, water restriction started, and mice went through 3 days of habituation to 
head fixation, one session per day for approximately 30 minutes, until mice learned to lick vigorously 
for water reward. Respiration pattern was measured by sensing the air flow just outside the right 
nostril by placing a flow sensor (AWM3100V, Honeywell, North Carolina, USA), and the data was 
acquired at 1 kHz. Licking response was measured using an IR beam sensor (PM-F25, Panasonic, Osaka, 
Japan) that was part of the water port. Nasal flow, an analog signal indicating the odours used, lick 
signal, a copy of the final valve and water valve timing were acquired using a data acquisition interface 
(Power1401, CED, Cambridge, UK). 
 
Discrimination training 
After habituation, the head-fixed mice were trained to associate a water reward with a rewarded 
odour. The reward was two droplets of water (10 µl each), that arrived 3 seconds after the onset of 
the final valve opening. The mice underwent single odour discrimination training first, until they 
generated anticipatory licks in response to ethyl butyrate presentations, and correctly refrained from 
licking in response to other single odours. Once the overall accuracy was above 80% in at least one 
behavioural session, the mice went through the mixture detection task. A typical training session 
comprised roughly 100 trials, lasting about 1 hour. Rewarded trials comprised a third of all trials. Two-
photon imaging took place once the mice performed at 80% accuracy or above. 
 
Random association paradigm 
After habituation, the head-fixed mice were presented with the same odour mixture stimuli as those 
that underwent the discrimination training. The water reward was delivered on randomly selected 
trials, 3 seconds after the onset of the final valve opening. One behavioural session was used to 
accustom the mice to the odours. Two-photon imaging commenced from the second behavioural 
session.  
 
Disengagement paradigm 
After habituation, the head-fixed mice were presented with the same odour mixture stimuli as above. 
The water reward was delivered every trial, 20 seconds before the onset of the final valve opening, 
arriving in the middle of the inter-trial interval, which was 40 seconds to ensure thorough purging to 
clear the lines, as well as to stabilize the flow controllers. Two-photon imaging commenced from the 
second behavioural session.  
 
Odour mixture trial composition 
Binary mixtures have been chosen due to the smaller number of possible odour combinations 
compared to more complex mixtures. However, even with 11 odours, there is a limit in the number of 
trials each head-fixed mouse can sample in a given session. We therefore decided to focus on the EB 
+ MB mixtures. However, it was crucial that, EB, MB, and EB + MB mixture are not presented too 
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frequently, to avoid possible adaptation, as well as mice becoming over familiar, especially in the EB-
detection task, where the goal was not to train mice to remember specific odour combinations. Thus, 
we used a compromise paradigm where EB, MB, and EB + MB appeared every 10 trials. 
 
Data analysis 
The data was anlaysed offline using custom Matlab codes. To calculate the accuracy, the number of 
licks during 3 seconds from the final valve onset was measured for each trial. Threshold for an 
anticipatory lick was set to 2, thus the correct response for rewarded trials was 2 or more beam breaks, 
and the correct response for unrewarded trials was 1 lick or less during the response time window. To 
calculate the learning curve, the accuracy was expressed as the proportion of correct trials in a 
given block of 50 trials. Time to inhalation peak: to calculate the speed of inhalation, onset of 
inhalation and peak of inhalation was detected using Spike2 (CED, Cambridge, UK), using the built-in 
event detection functions. Briefly, inhalation peaks were detected using the “rising peak” function. 
These events were used to search backwards in time for the inhalation onset, when the flow signal 
crossed a threshold value. Lick preference index: To measure how well mice discriminated rewarded 
vs. unrewarded mixtures, anticipatory licking patterns for the two types of trials were compared using 
the following formula:  
 

Lick preference index = (Lickrewarded – Lickunrewarded)/(Lickrewarded + Lickunrewarded) 
 
Where Lickrewarded corresponds to the average number of anticipatory licks on rewarded trials, and 
Lickunrewarded corresponds to that for unrewarded trials.  
   
Imaging  
A custom-made two-photon microscope (INSS, UK) with a resonant scanner was used to observe 
fluorescence from the olfactory bulb of Tbet-Cre::Ai95D mice in vivo. 3D co-ordinates for imaged field 
of view was recorded relative to the location of a reference, blood vessel pattern on the 
surface. Imaging from somata was done relatively superficially, just below the glomeruli, thus mainly 
comprised TCs, which use firing rate modulation to represent odours (Fukunaga et al., 2012). Fields of 
view for glomerular and somatic levels were 512 µm x 512 µm, and 256 µm x 256 µm, respectively, 
and overlapped for awake and anaesthetised conditions, but fewer sessions took place under 
anaesthesia. In each trial, 400 image frames were acquired at 30 frames per second, with 200 frames 
before the final valve opening to obtain steady baseline. Unless otherwise stated, the time 
window analysed for the odour-evoked responses was the first 1 second since the onset of final valve 
opening. For imaging under ketamine/xylazine anaesthesia (100 mg.kg-1/20 mg.kg-1 intraperitoneally), 
mice were kept on a warm blanket (FHC, Bowdoin, USA) to maintain the body temperature at 36 °C.  
  
Image analysis  
Transients were extracted as follows. Regions of interest (ROI) were manually delineated using an 
average frame from each imaging session. Pixel values within each ROI were averaged to obtain a time 
series. Imaging sessions with motion artefacts and drifts were removed from analyses. For each 
transient, the baseline period was defined as 2 seconds preceding the final valve opening. Relative 
fluorescence change (DF/F) was calculated with respect to this baseline. Odour response period was 
1 second (30 frames) starting at the onset of the final valve opening, unless otherwise stated. Awake 
mice tended to adjust sniff patterns, so the final valve opening was not triggered by nasal flow. 
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Masking index for the glomerular level was calculated as previously described (Rokni et al., 2014). 
Briefly, responses to single odours were obtained from glomeruli of anaesthetised mice. In each field 
of view, only the glomeruli responsive to the target odour (EB) were analysed. To obtain glomeruli 
evoked by the target odour, the evoked response amplitudes were converted into z-scores. Glomeruli 
that responded to ethyl butyrate with z-scores higher than 2 were considered. The masking index was 
the average overlap in the evoked response, where the maximum value for each glomerulus was 1. 
For each odour, responses were averaged over 3 or more trials. Mean and standard error of the mean 
are shown in figures, unless otherwise stated. Boxplots were constructed using the Matlab function 
boxplot, and show the median, 25th and 75th percentiles, and extreme data points not considered 
outliers. Outliers are shown with red crosses. 
 
Deviation from linearity was the normalised difference between an observed mixture response 
amplitude and a linear sum of components:  
Deviation from linearity = (Robserved – Rlinear sum)/(s.e.m.observed + s.e.m.linearsum) 
Where Robserved is the mean response amplitude for observed mixture (e.g., response to EB + MB 
mixture), Rlinear sum is the trial average linear sum of component responses (e.g., EB response + MB 
response), and s.e.m. is the standard error of the mean for the corresponding amplitudes.  
 
Decoding analysis 
The decoding analysis was used to assess if nonlinear summation poses any difficulty for demixing, 
compared to linearly summed signals. The effect of nonlinear summation on decoding ability was 
assessed for M/T cells somatic responses from anaesthetised mice, presented with odour stimuli used 
in the mixture detection task (Supplementary Fig. 1). A simple feed-forward network with 1 hidden 
layer and three output units was trained using patternnet in Matlab. The input was single odour 
responses from each field of view. The hidden and output layers each received a weighted 
combination of the patterns from the previous layer. The output was trained to be 100, 010, or 001, 
for EB, MB, and other single odours, respectively. Due to the limited number of trials, the number of 
units in the hidden layer was 10. Cross validation was implemented by removing one trial each of 
responses to single EB and MB from the training set and assessing the performance of the trained 
network. To test how well the network performs for EB + MB mixture responses, the observed EB + 
MB responses from individual trials were fed into the trained network, and the output was averaged 
(3 or more trials per field of view). To generate a linear sum of EB + MB responses, the single EB and 
MB responses that had been removed from the training set were summed linearly and fed into the 
trained network.  
 
Normalisation model 
Previous studies observed that the saturation effect of mixture summation can be modelled by a 
normalization model (Mathis et al., 2016; Penker et al., 2020). The equation of normalization (Penker 
et al., 2020) was: 

𝑅!∗ =	𝑅#$% $
2

1 + 𝑒&'.)!
− 1* 

where Rj represents the linear-sum amplitude of the jth neuron, 𝑅!∗  is the normalized response 
amplitude of jth neuron. Parameters 𝑠 and 𝑅#$%were obtained by fitting the data to observed mixture 
responses.   
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Figures 
 

 
Figure 1: Masking indices of odours used with respect to the ethyl butyrate pattern 
(A) Odours in the panel with abbreviations used in the rest of the manuscript. Ethyl butyrate was the target 
odour for behavioural experiments. (B) Two-photon imaging of GCaMP6f signals from the apical dendrites 
of M/T cells in Tbet-Cre::Ai95D mice under ketamine and xylazine anaesthesia. Scale bar = 0.1 mm. (C) 
Example GCaMP6f transients expressed as a change in fluorescence (DF/F). Scale bar = 1 DF/F. Gray = Odour 
presentation (0.5 s). (D) Example of evoked responses. Manually delineated ROIs are shown with 
fluorescence change evoked by odours, indicated with the corresponding colour map. The amplitude 
indicated is the average change during 1 second from the final valve opening. (E) Masking indices for all 
odours in the panel, with EB as the target. N = 4 fields of view, 4 mice. Mean and s.e.m. of 3 trials or more 
shown. 
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Figure 2: Mixture suppression dominates under anaesthesia 
(A-C) Validation of linear mixing by the olfactometer. (A) Binary mixtures are generated by mixing odorized 
air from two streams each equipped with a mass flow controller and presented as a stimulus when a five-
way valve (“final valve”) is actuated. To present single odours, odorized air from one line was mixed with 
air that passes through a blank canister in the other line. A photoionization detector (PID) was used for 
calibration. (B) Example PID measurements for single odours (“Odour A” and “Odour B”), and their 
mixtures. Linear sum of the components (light blue trace) is shown superimposed with the observed PID 
signal (black). (C) Observed amplitudes for mixtures vs. linear sum of component amplitudes. Light blue 
line = the observed mixture amplitude equals the linear sum of components. (D-G) Investigation of mixture 
summation by M/T cells under anaesthesia. (D) Top: schematic, Two-photon GCaMP6f imaging from 
somata of M/T cells in naïve Tbet-Cre::Ai95D mice under ketamine/xylazine anaesthesia. Bottom: example 
field of view. Scale bar = 50 µm. (E) Example session structure. Single EB and MB trials, as well as EB+MB 
mixture trials, are indicated with colour codes. (F) Transients from 3 example ROIs. Linear sum (blue trace) 
was constructed by linearly summing averages of single EB and MB responses. Gray bar represents time of 
odour presentation (0.5 s).  (G) Scatter plot of observed mixture response amplitude against linear sum of 
components. N = 183 ROIs, 7 fields of view, 4 mice.  
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Figure 3: Mice can learn to accurately analyse difficult binary mixtures 
(A) Behavioural paradigm: Go/No-Go task with head-fixed mice. EB-containing olfactory stimulus was the 
rewarded stimulus. (B) After habituation, mice learned to discriminate ethyl butyrate against other single 
odours in the panel. Once proficient, mice learned to detect the presence of ethyl butyrate in binary 
mixtures. 30% of stimuli in the mixture stage were single odours. (C) Behavioural performance for all mice 
(n = 7 mice). Mean and s.e.m. shown. (D) Odour-specific accuracy shown for the 1st (left) and last day of 
mixture training (right). Green shades indicate high accuracy. Top row corresponds to rewarded trials, and 
bottom 6 rows correspond to unrewarded trials. Average accuracy from all animals shown (n = 7 mice). (E) 
Lick preference index measures licks that occur preferenrially on rewarded trials for a given background 
odour. Relative lick of 1 occurs when all anticipatory licks were observed in rewarded trials. Gray points = 
data from individual animals; mean and s.e.m. shown in black. 
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Figure 4: Mixture summation is more linear in awake, behaving mice. 
(A) Schematic of experimental setup. Imaging of GCaMP6f signals from the somata in Tbet-Cre::Ai95D mice 
performing the mixture detection task. On the last day, imaging took place under ketamine/xylazine 
annaesthesia (Anae). (B) Example field of view showing the same neuron from two imaging sessions. (C) 
Relative fluorescence change evoked by EB, MB and their mixture for the two conditions, for the neuron 
indicated by arrow in (B). (D) Scatter plot of observed EB + MB mixture response amplitude against linear 
sum of component odour responses (average of 20 frames). Indicated time is relative to odour onset. (E) 
Summary of deviations from linearity, for data from trained, behaving mice (black) anaestherised mice 
(blue). (F) Timecourse of deviation from linearity. Central thick line is the median, and 25th and 75th 
percentiles shown below and above, respectively. N = 202 ROIs, 6 mice for behaving; 103 ROIs, 4 mice for 
anaesthetised case. 
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Figure 5: Mixture summation is also largely linear in naïve, engaged mice 
(A) Schematic of experimental setup. (B) Lick raster from an example session relative to the final valve 
opening. Water reward delivery (2 seconds after the final valve onset) is marked with a pale blue line. 
Odour was presented for 0.5 seconds (gray). (C) Occurrence of anticipatory licks in EB-containing trials vs. 
trials where EB was not present, for random association sessions (left, “Rand.”), shown next to the 
anticipatory lick patterns observed in mice trained to perform EB detection task (right, “Trained”). (D) 
Scatter plot of observed EB + MB mixture response amplitude against linear sum of component odour 
responses. Indicated time is relative to odour onset. (E) Summary of deviations from linearity as z scores, 
for data from trained, behaving mice (black) and mice that underwent random association (orange). (F) 
Left: Cumulative histogram of response amplitudes for linearly summed EB and MB, for ketamine/xylazine 
condition (blue), trained, behaving (gray) and random association (orange) cases. Right: Same as left panel, 
but with x-axis zoomed in as indicated. P = 0.19, two-sample K-S test.  
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Figure 6: Analyses under three behavioural paradigms demonstrate that wakefulness explains the bulk of 
linearisation 
(A) Contingency between odour and water reward for three behavioural conditions examined. (B) Analysis 
of inhalation speed to confirm the behavioural states; (top) time to inhalation peak was from the onset of 
inhalation to its peak, measured using a flow sensor. (bottom) Cumulative histogram of inhalation peak 
time during odour presentation, colour-coded by the paradigm (same colour code as panel A). Each line 
corresponds to each imaging session. Boxplots above describe the medians. (C) Side-by-side comparison 
of observed vs. linear sum of EB + MB response amplitudes for the conditions indicated. (D) Summary 
showing the proportion of ROIs showing sublinear (deviation < -2), supralinear (deviation > 2), or linear 
summation for the EB + MB mixture. 
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Figure 7: Subcellular difference in mixture representation in trained, behaving mice 
(A) Left, example field of view showing GCaMP6f signals in Tbet-Cre::Ai95D mice, at the level of apical 
dendrites. Scale bar = 100 µm. Right, Scatter plots of observed EB + MB mixture responses against linear 
sum of single odour responses. Cyan line indicates the unity line, where summation is exactly linear. (B) 
Same as in A, but for individual somata, with scale bar = 50 µm. (C) Summary histograms showing deviation 
from linear summation (observed response amplitude – linear sum of component responses), expressed 
as the z-score.  
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Supplementary figure 1: Nonlinear summation adds difficulty to component pattern recognition  
(A) Schematic of the analysis. A simple, feed-forward network with 1 hidden layer (n = 10 nodes) was 
trained using activity patterns evoked by single odours. The output was a vector of 3 components, with 0 
and 1 indicating the absence and presence of odour in the stimulus, respectively (EB, MB, and other odours). 
W = weights, b = bias. We chose not to test the binary classifier, because, mixtures containing the target 
and non-target odour will have multiple solutions (i.e., classification into target odour, and classification 
into non-target odour, are both correct). (B) Cross validation of the trained network. Response pattern to 
single odours not used for training was used as inputs. Network output when EB pattern was used as input 
(top), and when MB pattern was used as input (bottom). Shuffle control was obtained by randomly 
permutating the trial order. A better performance for decoding MB is likely a reflection of sensory tuning 
in the fields of view, as other decoders such as SVM gave similar results (data not shown). (C) Output of 
the network when input was the activity pattern evoked by EB + MB. To construct the linear sum of EB + 
MB responses (Linear Sum), one EB trial and one MB trial were removed from the training set. Their linear 
sum was used as the input pattern. The decoder classified the input into “other” odours more frequently 
when observed mixture responses were the inputs, compared to when the linear sum of component 
responses was used. p = 0.92 for EB, 0.0098 for MB, and 0.004 for other odours; Wilcoxson signed rank 
test; N = 13 fields of view from 6 naïve, anaesthetised mice. 
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Supplementary figure 2: No difference in residual nonlinear summation after normalisation  
(A) Neural responses are often normalized due to saturation of cellular mechanisms as well as actions by 
local inhibitory circuits. (B) Amplitude-dependent, saturation effect was removed by fitting the data using 
a standard normalisation model (Penker et al., 2020). Consequently, amplitude distributions of normalized 
linear sums were similar to those of observed EB + MB mixtures. (C) Cumulative histograms of response 
amplitudes, for linear sum (grey), Normalised linear sum (purple), and observed EB + MB responses (black). 
Distributions for normalised linear sum and observed responses should overlap perfectly when 
normalization is successful. (D) Relationship between the observed response and normalized linear sum 
for all conditions. (E) Proportions of ROIs showing sublinear summation (blue), supralinear summation (red), 
and linear summation (dark grey) after normalization, for the conditions indicated above.    
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Supplementary figure 3: Subcellular difference in the state-dependent temporal profile  
(A) Left: Evoked responses imaged from M/T cell apical dendrites of behaving mice, shown with the 
indicated colormap. Each ROI corresponded to a glomerulus. Right: Relative fluorescence change were 
averaged for all ROIs from behaving mice (black) and anaesthetised mice (blue), and shown as raw average, 
or when traces were normalized to the peak and averaged. Mean +- s.e.m. shown. (B) Same as in (A) but 
for M/T cell somata. (C) Quantification of the timecourse of evoked response in M/T cells somata of 
anaesthetised mice, expressed as the amplitude during late phase (purple) – amplitude during early phase 
(turquoise). Negative values indicate that early responses were larger. (D) same as (C), but for behaving 
mice. 
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