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Abstract 

Protein sequences can be viewed as a language;  therefore, we benefit from using the models initially 
developed for natural languages such as transformers. ProtAlbert is one of the best pre-trained 
transformers on protein sequences, and its efficiency enables us to run the model on longer sequences 
with less computation power while having similar performance with the other pre-trained transformers. 
This paper includes two main parts: transformer analysis and profile prediction. In the first part, we propose 
five algorithms to assess the attention heads in different layers of ProtAlbert for five protein characteristics, 
nearest-neighbor interactions, type of amino acids, biochemical and biophysical properties of amino acids, 
protein secondary structure, and protein tertiary structure. These algorithms are performed on 55 proteins 
extracted from CASP13 and three case study proteins whose sequences, experimental tertiary structures, 
and HSSP profiles are available. This assessment shows that although the model is only pre-trained on 
protein sequences, attention heads in the layers of ProtAlbert are representative of some protein family 
characteristics. This conclusion leads to the second part of our work. We propose an algorithm called 
PA_SPP for protein sequence profile prediction by pre-trained ProtAlbert using masked-language modeling. 
PA_SPP algorithm can help the researchers to predict an HSSP profile while there are no similar sequences 
to a query sequence in the database for making the HSSP profile.  
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1. Introduction 

Proteins consist of linear chains of twenty types of amino acids, each with different chemical properties. 
Proteins are the most versatile organic molecules in cells or living organisms and play critical roles in the 
body. The diversity of proteins functions is generally related to their diverse structures. The sequence of 
amino acids determines a unique protein tertiary structure which directly impacts its specific function1. 
New sequencing technologies have led to an explosion in generating biological data such as protein 
sequences in the past two decades. UniProt2 Archive and Swiss-Prot3 databases contain most of the publicly 
available protein sequences globally. These sequences grow exponentially every few years2.  Despite the 
strong interest in protein structure determination, there is currently a massive gap between the number of 
known sequences and experimentally determined structures deposited in the Protein Data Bank4 (PDB), 
highlighting the difficulties of structure elucidation5. Therefore, computationally predicting protein 
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structure from the query sequence remains to be largely unsolved6 7 8. Homology modeling is a common 
approach for protein structure prediction. In this approach, homologous proteins of the query sequence 
are found by sequence comparison in a database. Then, a sequence profile is created to show the 
conservative and non-conservative regions in the homologous sequences 9 10.  
Profiles are used in many bioinformatics problems. For example, they are applied to model protein 
families11, predict protein domains12, detect protein homology13 14, design proteins15 16, and identify 
orthologous genes and proteins17. Homology-derived Secondary Structure of Proteins (HSSP) database 
includes a sequence profile for each PDB protein. In HSSP, a Multiple Sequence Alignment (MSA) of putative 
homologs is prepared to construct a profile for each PDB protein. The list of homologous sequences is the 
result of an iterative database search in Swiss-Prot18. A well-defined profile can group information of similar 
sequences on conserved regions. It helps us to assign a query sequence to the family. This assignment is 
challenging when the query sequence length is short, and there is little similarity between this sequence 
and any sequences in the profile. 
Protein structures are more conserved than protein sequences.  Homologous proteins sharing a common 
evolutionary ancestor  can have high sequence-level variations19, and when the protein sequence similarity 
is below 30% at the amino acid level, the alignment score usually falls into a twilight zone20 21. Therefore, 
simply comparing sequence similarities often fails to capture global  structural and functional similarities of 
proteins.  
Concerning the above discussion, improving the profile prediction methods to get more information about 
the sequence and families is an active research area in bioinformatics.  In this paper, our primary goal is to 
predict a profile for query protein sequence using transformers.  
In the following, we review the transformer-based models processing protein sequences. Proteins, as a 
linear chain of amino acids, can be viewed precisely as a language. Therefore, they can be modeled using 
Language Models (LMs) taken from Natural Language Processing (NLP). These LMs are used for biology 
identity representation and new prediction tools in various bioinformatics problems. The central concept 
behind this approach is to interpret protein sequences as sentences of characters (amino acids) and each 
character as a single word22 23 24. Recent research has shown that contextualized representations in NLP 
work well for contextual protein representation learning25 26.  In the training phase, LMs learn to extract 
useful features from many samples and generate appropriate representations of these features 27 28 29 30. 
In these papers, architectures inspired by NLP are employed for protein processing. Also, pre-training tasks 
such as Masked-Language Modeling (MLM) and autoregressive generation are utilized to investigate 
protein-specific pre-training tasks. 
One of the latest architectures that showed significant superiority over previous models is transformers31. 
Devlin et al.32  introduced a new language representation model based on transformers called Bidirectional 
Encoder Representations from Transformers (BERT).  This model is designed to pre-train deep bidirectional 
representations from unlabeled text to create state-of-the-art models for a wide range of tasks. Bepler and 
Berge33 proposed a framework for mapping any protein sequence to a sequence of vector embeddings that 
encode structural information. Also, they defined a novel similarity measure between these arbitrary length 
vectors to learn useful position-specific embeddings.  Similarly, Alley et al.34 used a Recurrent Neural 
Network (RNN) named UniRep to learn statistical representations of proteins and demonstrated that such 
representations predict the stability of natural and de novo designed proteins, as well as the quantitative 
function of molecularly diverse mutants.  Rao et al.35 introduced TAPE as a new benchmark consisting of 
five relevant semi-supervised tasks for assessing such protein representation.  
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Elnaggar et al.29 trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-
encoder models (BERT, ALBERT) on data extracted from UniProt Reference Clusters (UniRef) datasets and 
Big Fat Database (BFD). They showed the effects of these pre-training models upon the success of the 
subsequent supervised training for predicting secondary structure, subcellular localization, and membrane-
bound or water-soluble protein problems. Lu et al.36 applied the principle of mutual information 
maximization between local and global information as a self-supervised pre-training signal for protein 
embeddings to introduce a contrastive loss that trains an RNN to discriminate fragments from a source 
sequence versus randomly sampled fragments from other sequences. Min et al.37 introduced a novel pre-
training scheme for protein sequence modeling called PLUS consisting of masked language modeling and a 
complementary protein-specific pre-training task, namely same-family prediction. They showed the 
advances of the PLUS on six out of seven protein biology tasks. Sturmfels et al.38  introduced a new pre-
training task for protein sequence models. They used profile-hidden Markov models derived from MSAs as 
labels during pre-training for profile prediction. They utilized the model on a set of five downstream tasks 
for protein modeling and demonstrated that the model outperforms masked language modeling alone on 
all five tasks. 
Although most previous studies on using transformer models for embedding protein sequences in different 
bioinformatics problems show acceptable results, they apply the model as a black box. 
Here, we analyze heads in layers of a pre-trained transformer on protein sequences to find representative 
heads for some protein characteristics. The results of the analyses lead us to propose an algorithm for 
protein sequence profile prediction.  
 At the first step, we select pre-trained ProtAlbert, because its efficiency enables us to run the model on 
longer sequences with less computation power while having similar performance with the other pre-trained 
transformers. Then, we propose five algorithms called RLH_NNI, RH_SAA, RH_BBP, RH_PSS, and RH_PTS to 
analyze five protein characteristics, nearest-neighbor interactions, type of amino acids, biochemical and 
biophysical properties of amino acids, protein secondary structure, and protein tertiary structure  at 
attention heads in the layers of ProtAlbert.   
For this assessment, we make a dataset by extracting 55 proteins from CASP13 which their sequences, 
experimental tertiary structures, and HSSP profiles are available. In addition, we perform our analysis on 
three proteins to show no difference between the average result of CASP13 and case studies. 
After executing each of the transformer head analyzer algorithms, we reach the following results:  

• RLH_NNIi algorithm detects representative heads in the layers of the ProtAlberl model for 
interaction between amino acids located at distances on the protein sequence. 

• RH_SAAii algorithm finds specific heads for aspartic acid, glutamic acid, proline, tryptophan, and 
histidine.  

• RH_BBPiii algorithm announces representative heads for amino acids classified based on R-group. 

• RH_PSSiv algorithm identifies some heads which contain significant attention weights from helix to 
helix, coil to coil, and sheet to sheet.  

• RH_PTSv algorithm finds a representative head for protein contact map, which is a simple tertiary 
structure representation.  

Generally, these analyses show the representative heads of the pre-trained ProtAlbert on protein 
sequences to detect protein family features. So, we propose an algorithm called PA_SPPvi for sequence 
profile prediction by pre-trained ProtAlbert on protein sequences using MLM. Next, the predicted profiles 
are compared to the HSSP profiles. The result shows the high similarity between the predicted and HSSP 
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profiles.  PA_SPP algorithm can help the researchers to predict a profile similar to the HSSP profile while 
there are no similar sequences to the query sequence in the database for making the HSSP profile.  

2. Material and Method  

This section first introduces the basic definitions needed to interpret ProtAlbert as a transformer model. 
Next, we propose five algorithms for assessing the layers and heads of ProtAlbert to identify some protein 
characteristics. Then, our approach is illustrated for the sequence profile prediction problem in more detail. 
In the end, we introduce the dataset used for evaluation.  

2.1 Notation and Definition 

The sequence of protein  with length  is represented by: 
 

where  shows the set of amino acids. We define amino acid  as a -neighbor of  in 

sequence . The positive (negative) value of  shows that the position  attends from left to right (from 
right to left) of the sequence to find the neighboring amino acid at distance . 
In protein folding, the sidechain backbone of nearest-neighbor interactions may restrict the accessible 
conformations to a chain of protein39.  Neighboring amino acids can be structurally categorized according 
to their separation in the primary sequence as proximal (1-4 positions apart) and otherwise distal40. For 
each protein , the -neighbor interaction is defined based on the interaction of each position  with 
position  on the sequence . 
In addition to the effect of the nearest neighbor amino acids on protein folding, each amino acid has 
different biochemical and biophysical properties that can effectively determine the protein structure. 
Amino acids are classified based on R-groupvii into five classes (see Table 1). 

Table 1: Classification of amino acids based on R-group: . 

Name of class Amino acids Biochemical and biophysical properties  

N {G,A,V,L,I,P,M} Hydrophobic, Nonpolar, Aliphatic 

H {F,Y,W} Hydrophobic, Aromatic 

U {S,T,C,N,Q} Hydrophilic, Uncharged, Polar,  

A {D,E}  Acidic, Negatively charged 

B {R,H,K} Basic, Positively charged  

The experimental structure of proteins can be extracted from PDBviii. Therefore, the 3D coordinate of each 
atom of amino acids in the protein sequence is available.  Here, we represent the tertiary structure of 
protein  with length , by contact map   as follows: 

 

where  is the Euclidian distance and  shows the 3D coordinate of the atom  for amino 

acid  at position  of protein . The value of  is set 4.87 based on paper41. Each element  with 

value 1 indicates that two amino acids  and  are in contact.   
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The secondary structure of protein  is extracted from the tertiary structure using DSSPix software.  This 
method provides eight classes, 3-helix, 4-helix, 5-helix, β-strand, β-bridge, turn, bend, and coil. Typically, 
the DSSP states are converted into three classes using the following convention. 3-helix, 4-helix, and 5-helix 
are considered helix (H).  β-strand and β-bridge are displayed by a sheet (E). The rest of the states are shown 
as a coil (C). The secondary structure of protein  with length  is displayed as follows: 

 

As mentioned in42, the secondary structure of each position in the protein sequence is dependent on its 
neighbors. The length of each type of regular secondary structure43 is about 6. We define a secondary 
structure matrix named  on protein  with length  as follows: 

 

where  indicates the same secondary structure between two amino acids  and  with distance 

less than 7 in sequence . 
For each protein  with length  in PDB database, a profile named  is extracted from the HSSP 

database18. In this database, there is an MSA of all available homologous sequences properly aligned to 
protein sequence . This MSA is constructed based on searching in the Swiss-Prot database considering 
the sequence family and structure.  Each sequence of MSA is more than 30% identical to . Using MSA, 
the profile   is generated where  shows the probability of amino acid  at position  of 

MSA. 
In the following, we assume that dataset  includes  proteins where their sequences, 

experimental tertiary structures, and HSSP profiles are available. 

2.2 ProtAlbert as a pre-trained transformer model on protein 
sequences 

As described earlier, protein sequences can be viewed as a language,  and therefore, we can benefit from 
using the models initially developed for natural languages. One of the latest architectures that showed 
significant superiority over previous models is transformers.  
As it was mentioned, BERT32is a method of pre-training language representations. It means that after 
training a general-purpose language understanding model on a large corpus of text, the model can be used 
on downstream tasks. BERT is an example of auto encoding language modeling trained using MLM. During 
the training, 15% of the input is randomly masked, and the model is asked to predict the masked tokens. 
This process lets the model predicts the masked tokens based on the other available tokens. It shows that 
the model has a good idea about the language and the context. This self-supervised pre-training method, 
which means the labels are in the training corpus, got better results in many downstream tasks.  
A year after BERT32, ALBERT44 was released by Google research that improved state-of-the-art performance 
in 12 NLP tasks. The main idea in the ALBERT was to allocate capacity more efficiently. They made two 
design changes to BERT, but the training process was MLM. First, while the input level embeddings need to 
be context-independent representations, the hidden-state embeddings need to take context into account. 
This was addressed by splitting the embedding matrix between a low dimension input-level embedding 
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with length 128 and a higher dimension hidden-layer embedding with size 4096.  The second critical change 
was removing redundancy and therefore increasing the capacity of the model to learn. Previously, it was 
observed that the various layers of BERT with different parameters in the model learned similar operations. 
This possible redundancy was eliminated in ALBERT by parameter sharing in different layers.  These two 
design changes resulted in 90% parameter reduction compared to BERT with slightly decreased accuracy. 
However, this reduction allows scaling the hidden size from 768 in BERT to 4096 in ALBERT. It is shown that 
the bigger hidden layer embeddings can capture and represent the context better44. 
We base our experiments on ProtAlbert, a transformer-based model on ALBERT architecture from the 
ProtTrans project29. ProtAlbert is pre-trained on 216 million protein sequences from the UniRef100 
dataset.  In this paper, we do not train or fine-tune the model. In the ProtAlbert model, the protein 
sequences are tokenized using a single space between each amino acid (indicating words), and each 
sequence is stored in a separate line (indicating sentences). Also, all non-generic or unresolved amino acids 
(B,O,U,Z) are mapped to the unknown token X. This model can process sequences with lengths of up to 
40K, although this length is bound by the hardware capacity.  The details of the ProtAlbert model are 
available in Table 2. 

Table 2:  ProtAlbert Parameters. 

Hyperparameter ProtAlbert 

Dataset UniRef100 

Number of Layers 12 

Hidden Layers Size 4096 

Hidden Layers Intermediate Size 16384 

Number of Heads 64 

Positional Encoding Limits 40K 

Target Length 512/2048 

Our work contains two main parts, transformer analysis, and profile prediction. For the first part, a protein 
sequence is given as an input to the ProtAlbert transformer. Then, we analyze and interpret the attention 
weights at attention heads in different layers. In the second part, protein profile is predicted using 
ProtAlbert and masked token prediction. In other words, a protein sequence with some masked amino 
acids is fed to the model for predicting the most likely amino acids in the masked positions. 
We choose ProtAlbert29 because its efficiency enables us to run the model on longer sequences with less 
computation power while having similar performance with ProtBert29, which is a great advantage. The 
ProtBert model is a pre-trained BERT-based language model with 420M parameters from the ProTrans 
project that has been trained on the same dataset as the ProtAlbert model with 224M parameters. 

2.3 Proposed algorithms for analyzing ProtAlbert transformer to 
identify protein characteristics 

In this sub-section, we propose five algorithms to analyze the attention heads and layers of ProtAlbert for 
finding the specific properties of proteins (see Table 3). This analysis is essential because it shows that 
ProtAlbert transformer can learn some biological features from only protein sequences. It allows us not to 
apply the transformer as a black box but to select the ProtAlbert features specific to the bioinformatics 
problems. 
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Table 3: Five protein characteristics. 

Nearest-neighbor interaction 

Type of amino acids  

biochemical and biophysical properties of amino acids 

Protein secondary structure 

Protein tertiary structure 

The input and output of this assessment are defined as follows:  

• Input:     Sequence  of protein . 

• Output:  Extracting attention matrix  from ProtAlbert for each head  in layer  to interpret 

the properties of protein  displayed in Table 3. 
ProtAlbert includes 12 encoder layers, and each encoder has 64 attention heads. Each protein sequence 

 is given to the model as an input, then it goes through the encoder layers, and the attention 

mechanism in each layer generates output to go to the next layer.  
For the input sequence  with length , each attention head in the layer  
produces a matrix of positive attention weights named . The value  shows the attention 

weight from amino acid  to  and . So, each amino acid at head  in layer  can attend to 

all other amino acids in the sequence, but the level of the attention is determined by the .  
Based on the attention matrix , adjacency matrix  is constructed as follows: 

 

where the value of  is determined by its application. We use attention and adjacency matrices for 
introducing our approaches to quantify representative heads in layers for some protein features (see Table 
3). 

2.3.1 RHL_NNI algorithm to quantify the representative heads and layers of 

ProtAlbert for nearest-neighbor interaction 

We propose the RHL_NNI algorithm to determine if head  in layer  of the ProtAlbert model represents 
the interaction of -neighbor amino acids in dataset  . The main steps of this algorithm are defined as 
follows: 

1. For each protein , 

i. The interaction of -neighbor amino acids from the sequence is quantified, as: 

 

where adjacency matrix  is generated based on Eq.3 for each head  in layer  .  
ii. The normalized -neighbor interaction is defined like this: 
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where  shows the absolute function. For each head  in layer ,  indicates the 
percentage of positions in protein  which attend to the  amino acid in the neighbor. 

iii. The weighted quantification of -neighbor interaction is computed based on attention 
matrix, as : 

 

2. The average of normalized  -neighbor interaction is computed on dataset , as: 

 

3. The maximum interaction value of neighbor amino acids at each head in the layer is computed to 
determine the nearest neighbor radius for interaction, as: 

 

4. For each  and , if  ,  

i. Head  in layer  is announced representative for -neighbor interaction on dataset .  

ii. For head  in layer , the average of weighted quantification of  -neighbor interaction 

is computed on dataset , as: 

 

The average of weighted quantification ( ) and the average of normalized interaction ( ) is 

compared to show the effect of discretizing of attention weights in the adjacency matrix.  

2.3.2 RH_SAA algorithm to quantify representative heads of ProtAlbert for 

specific amino acids  

Here, we introduce the RH_SAA algorithm to investigate if the head  of ProtAlbert attends significantly to 
a specific amino acid in the protein dataset . To quantify the quality of attention head  for amino acid 

, we apply the F-measure criterion to evaluate the occurrence rate of amino acid  versus the rest in 
this head. In the following, this algorithm is described in more detail: 

1. For each protein , 

i. True positive is defined based on the number of amino acid  in protein sequence  

 which is attended by at least one position of the sequence at head  in at least 

one layer: 
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where 

 

      where adjacency matrix  is generated based on Eq.3 for head  in layer . 
ii. False positive, ,  is obtained as follows: 

 

where  represents the number of amino acid  attended by at least one position 

of the sequence at head  in at least one layer. 
iii. False negative, ,  is computed as follows: 

 

 where  shows the frequency of amino acid  in sequence . 

iv. F-measure criterion, , is computed to quantify head  for amino acid : 

 

v. The relative occurrence of amino acid  of protein  in head  is computed as: 

 

vi. The weighted occurrence of amino acid  of protein  is calculated as follows: 

 

where  

 

vii. The normalized weighted occurrence of amino acid  of protein  is calculated as follows: 

 

2. The average of F-measure is computed on the dataset :  

 

3. The candidate representative head for amino acid  is computed, as: 

 

4. For each  , if : 
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i. Head  is announced as a representative head for amino acid .  

ii. In head , the average of normalized weighted occurrence of amino acid  is computed 

on dataset , as: 

 

where the normalized weighted occurrence of amino acid  shows the effect of attention 
weights attending from each amino acid to  at head . 

 
iii. The average of the relative occurrence of amino acid 𝑎 at head  is computed on 

dataset  as: 

 

where the relative occurrence of amino acid  shows the probability of amino acid  
detection at head  .   

 

2.3.3 RH_BBP algorithm to quantify representative heads of ProtAlbert for 

biochemical and biophysical properties of amino acids 

In this sub-section, we illustrate the RH_BBP algorithm to find representative heads of ProtAlbert on the 
biochemical and biophysical properties using the classification of amino acids based on the R-group. Table 
1 shows this classification, . The algorithm is very similar to RH_SAA, which identifies 
specific heads for amino acids. In the following, the details of RH_BBP are available: 

1. For each protein , 

i. For class , true positive is defined by  to show the number of amino acids from 

class  in protein sequence   ( )  attended by at least one position of the sequence 
at head  in at least one layer: 

 

where 

 

ii. For class , false positive, ,  is obtained as follows: 

 

where  represents the number of amino acids from class  attended by at least 

one position of the sequence  at head  in at least one layer. 
iii. For class , false negative, , is computed as follows: 
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where  shows the frequency of the amino acids from class  in sequence . 

iv. For class , F-measure criterion, , is computed to quantify head  at this class: 

 

v. The relative occurrence of class  for protein  in head  is computed as: 

 

vi. The weighted occurrence of class  for protein  is calculated as follows: 

 

where  

 

vii. The normalized weighted occurrence of class  for protein  is calculated as follows: 

 

2. The average of F-measure is computed on dataset : 

 

3. The candidate representative head for class  is calculated, as: 

 

4. For each  , if : 

i. Head  is announced as a representative head for class .  

ii. In head , the average of normalized weighted occurrence of class  is computed on 

dataset , as: 

 

where the normalized weighted occurrence of class  shows the effect of attention weights 
attending from each amino acid to the amino acids in class  at head . 

iii. The average of the relative occurrence of class  at head  on dataset  is computed as: 

 

where the relative occurrence of class  shows the probability of class  detection at head    
.   
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2.3.4 RH_PSS algorithm to quantify representative heads of ProtAlbert for 

protein secondary structure 

 Although ProtAlbert only has been pre-trained on protein sequences, we propose the RH_PSS algorithm 
on dataset  to assess attention heads about the protein secondary structure matrix (see Eq.2). The detail 
of this algorithm is as below: 

1. For each protein , 

 
i. Predicting the secondary structure matrix , of protein  with length n for each head  

as follows: 

 

       where adjacency matrix   is constructed based on Eq.3 for each head  in layer . 
ii. Making the natural secondary structure  for protein  based on Eq.2. 

iii. Computing the cosine similarity between  and  for each , , 

. 
2. The average of cosine similarity is computed as: 

. 

2.3.5 RH_PTS algorithm to quantify representative heads of ProtAlbert for 

protein tertiary structure 

We propose the RH_PTS algorithm to compare the natural protein contact map to the predicted contact 
map from head  on dataset . The main steps of this algorithm are as follows: 

1. For each protein , 

i. Making matrix   as: 

 

      where  represents the attention matrix of protein  in layer  and head . 
ii. Normalizing matrix   as bellow: 

 

iii. Predicting contact map based on matrix , as: 

 

iv. Making real contact map  for protein  based on Eq.1. 

v. Computing the cosine similarity between  and   for each , 

. 
2. Computing the average of cosine similarity as: 
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3. Finding head  to indicate the maximum similarity between natural and predicted contact maps: 

 

where head  is known as a representative head for contact maps. 

2.4 Proposed algorithm for sequence profile prediction problem  

In the second part of our work, we propose the PA_SPP algorithm for the sequence profile prediction 
problem. The input and output of this problem are defined as follows:  

• Input:      Sequence  of protein . 

• Output:   Predicting profile  using pre-trained ProtAlbert. 

To solve this problem, we apply pre-trained ProtAlbert to predict the masked token of an input sequence 
containing unknown amino acids in one position of the sequence . ProtAlbert model generates the most 
likely amino acids for that position. In other words, the model predicts the masked amino acid in the 
sequence based on the context of other amino acids surrounding it. This process is called masked token 
prediction and represented by  

 

where generates   two vectors   and . Vectors  and  represent the type of 

amino acids and the score for each amino acid replaced at the masked position in the sequence . For 
each ,  shows the score of substitution of amino acid  at position  of sequence  .  Figure 1 

illustrates the PA_SPP algorithm for solving the profile prediction problem. In the first step, the sequence 
  is given as an input to the algorithm. In the second step, a zero-matrix named  is defined where 

 is updated during algorithm running by predicting the probability of  amino acid at the  position 
of sequence . The third step selects each position , , in sequence  for masking.  In the fourth 
step, temporary memory  is defined to keep the sequence  with masking position . In the fifth step, 
sequence  is fed to  process of ProtAlbert. The model generates two vectors  and  for position

.  In the sixth step, we set the probability vector  into the  row of matrix  according to the order of 
amino acids in . In the end, we call  the predicted profile for protein . 
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Figure 1: PA_SPP algorithm for protein profile prediction. 

2.5 Dataset 

In this study, we use the CASP13x dataset. This dataset includes 194 proteins. We select 55 proteins  (see 
Supplementary 1) whose profiles are available in the HSSP database. We call the selected proteins from 
CASP13, dataset  where .  The tertiary structure and sequence of each protein are 
extracted from the PDB database. In addition, their HSSP profiles are downloaded from xssp site.  
The distribution of the extracted target sequences lengths is shown in Figure 2. In addition, Figure 3 
represents the frequency of amino acids in the sequences of dataset .  

 

Figure 2: Distribution of the length of protein sequences in ∆. 
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Figure 3: The frequency of amino acids (AA) in the ∆. 

In addition to dataset , we select three essential proteins (see Table 4) in different organisms for case 
studies to show that our result is generally reliable. The details of these proteins are available in 
Supplementary 2. 
 

Table 4: Details of three case study proteins. 

Abb Protein Name Chain Length 

LuxB Alkanal monooxygenase beta chain  A 325 

Mpro Replicase polyprotein 1ab 

Fragment: 3C-like proteinase (Main protease) 

A 306 

Taq  Taq DNA polymerase I A 832 

3. Result and Discussion 

In this section, we apply  and three case study proteins, LuxB, Mpro, and Taq, to analyze 
ProtAlbert as a pre-trained transformer on protein sequences. We find representative heads of ProtAlbert 
for five protein characteristics (Table 3). This part assures us that the heads contain the information 
required by a family of proteins. Then, we use this dataset for profile prediction. In the end, we compare 
the predicted profiles to the HSS profiles. 

3.1 Analyzing ProtAlbert as a pre-trained transformer on protein 
sequences 

Here, we find representative heads in the layers of ProtAlbert for five protein characteristics displayed in 
Table 3 using algorithms RLH_NNI, RH_SAA, RH_BBP, RH_PSS, and RH_PTS. In these algorithms, we use 
some cutoffs obtained by our trial and error.   Cutoffs are set high for sequence feature analysis because 
ProtAlbert has been pre-trained on the protein sequences. For structures feature analysis, cutoffs are set 
low. 
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3.1.1 Assessment of nearest-neighbor interactions at heads in layers of 

ProtAlbert 

As mentioned in40, -neighbor interaction where  is known as proximal interaction, which is 
effective in the first step of protein folding. Here, we apply RHL_NNI algorithm on dataset  to 
find the representative heads in the layers of ProtAlbert for the nearest neighbor radius of amino acids 
interaction.  
In Eq.4 and Eq.5 of this algorithm, we consider threshold 0.5 to make an adjacency matrix from the 
attention matrix.  In the fourth step of RHL_NNI, we select representative head  in layer  for the 

interaction of -neighbor amino acids in dataset , if . For each selected head  in layer  

and protein ,  is computed. Table 5 shows the representative heads in 

layers for the interaction of -neighbor amino acids. The results show that the average of normalized 

-neighbor interaction is close to the normalized -neighbor interaction on each case study protein. 

Also, the average of the weighted quantification of -neighbor interaction, is calculated. Also, the 

weighted quantification for each case study protein , , is available in this table.  The values of 

 are close to  ones; it shows that attention weights are high in -neighbor on the dataset and cases 

study proteins. The results show that  

• head 10 in layers 2-9, head 21 in layers 1-9, and heads 14 and 44 in layer 1 represent interactions at 
one position apart.  

• head 23 in layers 1- 8 and head 33 in layer 1 are specific for interactions at two positions apart. 

• heads 3 and 51 in layer 1 indicate interactions between each amino acid and its third neighbor in 
the sequence. 

• head 51 in layers 2 – 8, head 53 in layers 1- 8, head 2 in layers 1-2 represent the interaction between 
each amino acid and its fourth neighbor in the sequence. 

• head 56 in layer 1 is specific for interactions at five positions apart. 
In conclusion, we have identified the representative heads in different layers for proximal positions in 
proteins. According to 40, proximal positions are essential in the first step of protein folding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.23.461475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461475
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Table 5: Representative heads in layers of ProtAlbert for nearest-neighbor interaction. 
Nearest-neighbor  ∆Dataset= Protein=LuxB Protein=Mpro Protein=Taq 

 

   

         

4 2 1 0.974 0.995 0.974 1 0.975 1.000 0.937 0.944 

2 0.878 0.940 0.889 0.963 0.882 0.954 0.889 0.955 

51 2 0.920 0.958 0.911 0.966 0.915 0.960 0.913 0.930 

3 0.962 0.981 0.961 0.991 0.950 0.987 0.974 0.993 

4 0.970 0.980 0.985 0.997 0.950 0.983 0.984 0.996 

5 0.965 0.980 0.988 0.997 0.940 0.980 0.988 0.998 

6 0.965 0.977 0.986 0.997 0.933 0.990 0.990 0.999 

7 0.970 0.977 0.990 0.997 0.944 0.993 0.992 0.999 

8 0.953 0.974 0.966 0.997 0.944 0.980 0.984 0.998 

-3 3 1 0.944 0.997 0.943 1.000 0.940 1.000 0.909 0.954 

1 10 2 0.991 0.994 0.993 1 0.992 1.000 0.987 0.998 

3 0.990 0.991 0.994 0.997 0.993 0.993 0.991 0.998 

4 0.989 0.989 0.997 0.997 0.986 0.997 0.992 0.996 

5 0.987 0.987 0.996 0.997 0.985 0.997 0.995 0.998 

6 0.985 0.987 0.995 0.997 0.985 0.997 0.996 0.998 

7 0.985 0.986 0.996 0.997 0.982 0.993 0.997 0.998 

8 0.987 0.986 0.996 0.997 0.983 0.997 0.997 0.998 

9 0.953 0.975 0.919 0.985 0.980 0.993 0.973 0.995 

14  1 0.944 0.997 0.946 1 0.946 1 0.900 0.953 

-1 10 1 0.968 0.996 0.970 1.000 0.969 1.000 0.902 0.941 

21 1 0.879 0.997 0.881 1.000 0.873 1.000 0.863 0.960 

2 0.826 0.875 0.804 0.858 0.840 0.859 0.825 0.883 

3 0.856 0.922 0.808 0.867 0.866 0.954 0.848 0.929 

4 0.887 0.953 0.877 0.981 0.850 0.948 0.878 0.972 

5 0.893 0.956 0.924 0.991 0.852 0.957 0.909 0.982 

6 0.895 0.957 0.918 0.985 0.832 0.961 0.926 0.986 

7 0.932 0.972 0.955 0.985 0.870 0.974 0.957 0.987 

8 0.974 0.987 0.985 1.000 0.958 0.987 0.988 0.995 

9 0.951 0.970 0.934 0.985 0.985 0.990 0.972 0.993 

44 1 0.719 0.832 0.713 0.873 0.713 0.839 0.712 0.623 

-2 23 1 0.984 0.998 0.986 1.000 0.985 1.000 0.960 0.963 

2 0.859 0.960 0.849 0.957 0.893 0.997 0.847 0.951 

3 0.805 0.912 0.761 0.873 0.851 0.977 0.787 0.901 

4 0.794 0.898 0.769 0.932 0.833 0.970 0.773 0.905 

5 0.775 0.871 0.775 0.926 0.820 0.961 0.758 0.900 

6 0.758 0.827 0.759 0.867 0.779 0.944 0.755 0.878 

7 0.758 0.802 0.754 0.805 0.764 0.938 0.754 0.861 

8 0.726 0.686 0.696 0.570 0.742 0.898 0.729 0.724 

2 33 1 0.976 0.997 0.978 1 0.977 1.000 0.944 0.961 

3 51 1 0.949 0.996 0.951 1 0.948 0.977 0.921 0.954 

-4 53 1 0.978 0.997 0.977 1.000 0.977 1.000 0.951 0.959 

2 0.994 0.996 0.997 1.000 0.998 1.000 0.993 1.000 

3 0.996 0.995 0.998 1.000 0.998 1.000 0.997 1.000 

4 0.995 0.995 0.998 1.000 0.998 1.000 0.998 1.000 

5 0.993 0.994 0.998 1.000 0.995 1.000 0.998 1.000 

6 0.991 0.992 0.997 1.000 0.994 0.993 0.997 1.000 

7 0.989 0.990 0.997 1.000 0.992 0.993 0.997 1.000 

8 0.961 0.980 0.941 1.000 0.982 0.990 0.977 0.998 

-5 56 1 0.736 0.985 0.735 1.000 0.731 0.997 0.707 0.740 
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3.1.2 Assessment of the type of amino acids at heads of ProtAlbert 

In this sub-section, we use the RH_SAA algorithm to find a representative head for each amino acid on 
dataset . In Eq.6 and Eq.7 of this algorithm, we consider threshold 0.4 to make adjacency matrix 
from attention matrix. In the third step of RH_SAA, we select candidate representative head  for amino 

acid . At the fourth step, head  is announced as a representative head for amino acid , if . 

Meanwhile, we compute the F-measure criterion, , for amino acid  in each protein 

 at head .  Table 6  shows that the average of the F-measure is similar to the F-

measure of each case study. 
Moreover, this table represents the average of the relative occurrence of amino acid  in dataset  and 

each case study protein  by  and , respectively. In addition, the average 

of normalized weighted occurrence of amino acid  in dataset Δ and case study protein 𝑃 are shown by  

 and , respectively. As a result, we find that 

• the average of F-measure on the dataset is close to case study ones, 

• heads 8 and 18 can support hydrophilic acidic amino acids, aspartic acid (D) and glutamic acid (E), 

• heads 13, 20, and 63 are specific for proline (P), tryptophan (W), and histidine (H), respectively. 
To better understand the selected heads for specific amino acids, Figure 4 shows the weighted stacking of 

amino acids ( ) at attention heads 8, 13, 18, 20, and 63.  

Table 6: The representative heads for amino acids found based on F-measure ( ). 

Hea
d 
 

Amin
o acid 

 

Dataset= ∆ Protein=LuxB Protein=Mpro Protein=Taq 

            

8 E,D 0.41,0.4
1 

0.85,0.8
9 

0.34,0.4
0 

0.45,0.48 0.90,0,90 0.42,0.46 0.20,0.44 0.78,1.0 0.24,0.49 0.59,0.39 0.78,0.85 0.53,0.33 

13 P 0.52 0.9 0.39 0.48 1 0.32 0.61 1.0 0.41 0.47 0.72 0.29 

18 D 0.42 0.97 0.56 0.48 1 0.6 0.43 1.0 0.56 0.46 0.9 0.6 

20 W 0.57 0.94 0.58 0.44 1 0.67 0.75 1.0 0.57 0.81 0.92 0.86 

63 H 0.32 0.5 0.37 0.31 0.3 0.42 0.44 0.57 0.48 0.37 0.44 0.38 

 

 

Figure 4:Logo consists of the weighted stacking of amino acids relative to the occurrences of amino acids in the protein 

sequences at heads 8, 13, 18, 20, and 63. 
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3.1.3 Assessment of biochemical and biophysical properties of amino acids at 

heads of ProtAlbert 

In the previous sub-section, we found representative heads 8 and 18 for amino acids D and E. They are 
hydrophilic acidic amino acids. In the following, we assess the heads in layers to find more biochemical and 
biophysical properties based on the R-group of amino acids. This classification, , is shown 
in Table 1. To do the assessment, we apply the RH_BBP algorithm on dataset . In Eq.8 and Eq.9 
of this algorithm, we consider threshold 0.4 to make adjacency matrix from attention matrix. In the third 
step of RH_BBP, head  is selected to identify the maximum quantity for class . At the fourth step, 

we announce that head  is representative for class  if . Meanwhile, we compute  

for each protein at the selected head  .  Table 7 shows the average F-measure 

for representative class  at head  is similar to the case study ones.  

 Moreover, this table represents the average relative occurrence of class  for dataset  and each case 

study protein  by and , respectively. In addition, the average weighted occurrence of class  

and each case study protein  at this head are shown by and , respectively.  

In conclusion, representative heads 8, 44, and 49 show hydrophilic acidic, hydrophobic aliphatic, and 
hydrophobic aromatic amino acids, respectively. Also, head 43 can represent both polar and basic amino 

acids. Figure 5 consists of the weighted stacking of amino acids ( ) at attention heads 8, 43, 44, 
and 49. 

Table 7: The representative heads for the classes in set ℂ  based on F-measure ( ). 

Head 
 

Class Amino acids 
 

Dataset= ∆ Protein=LuxB Protein=Mpro Protein=Taq 

            

8 A={E,D} 0.66 0.86 0.74 0.72 0.81 0.88 0.53 0.92 0.61 0.77 0.81 0.86 

43 B={R,H,K} 
U={ S,T,C,N,Q } 

0.46 
0.40 

0.64 
0.40 

0.28 
0.44 

0.51 
0.46 

0.71 
0.45 

0.33 
0.43 

0.36 
0.58 

0.69 
0.56 

0.15 
0.60 

0.56 
0.14 

0.60 
0.37 

0.33 
0.35 

44 N={G,A,V,L,I,P,M} 0.63 0.99 0.67 0.56 1 0.58 0.62 1 0.59 0.71 0.97 0.73 

49 H={F,Y,W} 0.45 0.86 0.5 0.5 0.83 0.46 0.54 0.94 0.48 0.46 0.86 0.33 

 

 

Figure 5: The logo consists of weighted stacking of amino acids in class  relative to the occurrences of these amino acids 

in the protein sequences at heads 8, 43, 44, and 49. 

3.1.4 Assessment of the protein secondary structure at heads of ProtAlbert 

ProAlbert has been pre-trained on protein sequences, but we use the RH_PSS algorithm on dataset 
 to show that some heads with high attention weights are attending from helix to helix, sheet 
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to sheet, and coil to coil. In Eq.10 of this algorithm, we consider threshold 0.1 to make an adjacency matrix 

from the attention matrix. At step two of RH_PSS, the average of cosine similarity, , between the 
predicted and natural secondary structure matrices. 

Figure 6 shows the heatmaps of , at each head ,  on data set .   In addition, the 
cosine similarity, , for each case study protein is computed. The high 
similarity between the predicted and natural protein secondary matrices can be seen at heads 2, 3, 8, 9, 
10, 13,14, 18, 20, 21, 23, 32, 49, 51, 53, 56, and 63. Some of these heads are common with the heads in 
nearest-neighbor interaction. After removing the common heads, we find that heads 8, 9, 13,18, 20, 32, 49, 
and 63 are only informative about the secondary structure. These heads show more attention from each 
amino acid secondary structure to the same structure, with less than 6 amino acids in neighbors.  

 

Figure 6: Heatmap of cosine similarity between the predicted and natural protein secondary structure matrices 

3.1.5 Assessment of the protein tertiary structure at heads of ProtAlbert 

In this sub-section, we compute the similarity between the natural contact map (see Eq.1) and predicted 
contact map of protein  using the RH_PTS algorithm on dataset . In this algorithm, threshed 
0.1 is defined for Eq.11 to discretize the predicted contact map. 
Table 8 shows the average similarity between the predicted and natural contact maps at  on 

dataset  obtained from step three of the algorithm. Then  is calculated based on the second step of 

RH_PTS.  In addition, the cosine similarity, is computed for each case study protein 
. It seems that head 10 can show appropriate information on contact maps. 
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Table 8: Cosine similarity between natural and predicted contact map for proteins at head 10. 
Data Cosine similarity 

Dataset=∆ =0.7949 

P=Mpro =0.7299 

P=Taq =0.8071 

P=LuxB =0.8167 

3.2 Predicting profile using ProtAlbert  

The above assessment shows that transformers can extract some protein features from the sequence to 
represent the protein family. These features can lead us to find appropriate information about the 
homologous sequences of each protein sequence given as an input to ProtAlbert. Therefore, the PA_SPP 
algorithm (see Figure 1) employs pre-trained ProtAlbert to predict a profile for a query sequence. Here, we 
compare the predicted profiles to real ones obtained from the homologous sequences (HSSP profile). 
For each protein  and three case study proteins, Taq, Mpro, and LuxB, the PA_SPP algorithm 
predicts profile . Then, we compare the similarity of the predicted profile  to HSSP profile  using 
cosine similarity. We want to show that the predicted profile is close to the HSSP profile. It should be noted; 
some HSSP profiles are more reliable than the other ones because the number distribution of sequences 
aligned to the query sequence is different. For example, some profiles are obtained by less than 100 aligned 
sequences, and some are made based on more than 1000 aligned sequences. Therefore, the HSSP profile 
constructed with more aligned sequences is more reliable. So, the weighted average similarity between 
predicted and HSSP profiles are computed by the number of aligned sequences. Figure 7 shows that the 
predicted profiles are more similar to the HSSP profiles with more alignment sequences. 
 

 

Figure 7: The weighted cosine similarity between predicted profiles and HSSP profiles based on the number of aligned sequences 

to the query sequence. 

4. Conclusion 

This paper contained two parts, ProtAlbert model analysis and profile prediction. Most previous studies 
used pre-trained transformer models to generate an embedding for protein sequence in different 
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bioinformatics problems as a black box. Here, we would like to find the representative heads in layers for 
some protein characteristics. For this assessment, we used ProtAlbert because its efficiency enables us to 
run the model on longer sequences with less computation power while having similar performance with 
the other pre-trained transformers on proteins which is a great advantage for us. 
 In this study, we did not train or fine-tune ProtAlbert. In other words, we used pre-trained ProtAlbert to 
determine the interaction of nearest-neighbor amino acids, type of amino acids, biochemical and 
biophysical properties of amino acids, protein secondary structures, and tertiary structures at attention 
heads in different layers. This analysis is crucial because it shows that ProtAlbert learns some protein family 
features from only sequences. It led us to propose an algorithm called PA_SPP for profile prediction from a 
query sequence using ProtAlbert. The results showed that the predicted profile is close to the profile 
obtained from the homologous sequences. 
We believe that the proposed algorithm for profile prediction can help the researchers to make a profile 
for a query sequence while there are no similar sequences to the query sequence in the database. In the 
future, we can improve this predictor with new transformer models. 
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