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Abstract 29 

Viruses infecting marine prokaryotes have large impacts on the diversity and dynamics 30 

of their hosts. Model systems suggest viral infection is frequency-dependent and 31 

constrained by the virus-host encounter rate. However, it is unclear whether the 32 

frequency-dependent infection is pervasive among the abundant prokaryotic populations 33 

with different growth strategies (i.e. r-strategy and K-strategy). To address this question, 34 

we performed a comparison of prokaryotic and viral communities using 16S rRNA 35 

amplicon and virome sequencing based on samples collected monthly for two years at a 36 

Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and 37 

viral community dynamics indicated that abundances of viruses correlated with that of 38 

their predicted host phyla (or classes). Co-occurrence network analysis between abundant 39 

prokaryotes and viruses revealed 6 423 co-occurring pairs, suggesting a tight coupling of 40 

host and viral abundances and their “one to many” correspondence. Although dominant 41 

K-strategist like species, such as SAR11, showed few co-occurring viruses, a fast 42 

succession of their viruses suggests viruses infecting these populations changed 43 

continuously. Our results suggest the frequency-dependent viral infection prevailed in 44 

coastal marine prokaryotes regardless of host taxa and growth strategy. 45 

  46 
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Introduction 47 

 Marine prokaryotes are ubiquitous in the ocean and play key roles in the global 48 

biogeochemical processes [1]. Most of observed species (>35,000 species-level 49 

operational taxonomic units [OTUs], based on 97% 16S rRNA sequence identity) fall 50 

into several major taxa (phyla or classes for Proteobacteria), such as α-Proteobacteria (e.g. 51 

SAR11), Bacteroidetes (e.g. Flavobacteriaceae), and Cyanobacteria (e.g. Synechococcus 52 

and Prochlorococcus) [2, 3]. Although individual species have distinct ecological niches, 53 

they are often classified into one of two growth strategists based on their potential growth 54 

rate and temporal dynamics: (i) K-strategist (slow-growing and persistently dominant, e.g. 55 

SAR11) and (ii) r-strategist (fast-growing and opportunistic, e.g. Flavobacteriaceae) [4]. 56 

However, recent high-frequency sampling schemes (e.g. daily) uncovered that species not 57 

recognized as r-strategists exhibit drastic fluctuations (e.g. Marine Group II 58 

euryarchaeota) [5, 6]. Further, finely resolved populations (genotypes or strains) within a 59 

species-level OTU often show distinct temporal dynamics [7–11], indicating species 60 

described as K-strategist can show frequent fluctuation. 61 

 Viruses infecting prokaryotes are abundantly present in the ocean and estimated 62 

to lyse 20–40% of the prokaryotic cells each day [4, 12, 13]. Viruses are thought to infect 63 

their specific hosts (often restricted to strains within a species) in a frequency-dependent 64 
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manner, in which the encounter rate between the viruses and their hosts is a determinant 65 

for the infection rate [14, 15]. Thus, viruses infect host populations that become abundant 66 

and frequencies of host and viruses oscillate over time, leading to the maintenance of the 67 

diversity of the host community [16, 17]. Moreover, mathematical models have 68 

demonstrated that a prokaryotic species with faster growth rate can be susceptible to viral 69 

infection [17]. This trend allows K-strategists to reach a higher abundance than r-70 

strategists because of their higher resistance against viral infection by cryptic escape 71 

through reduced cell size and/or specialized defense mechanisms [4, 18]. However, the 72 

discovery of SAR11 viruses questions this prediction [19]. It is currently unclear whether 73 

K-strategists suffer from viral infection or viral infection is prevalent in abundant 74 

prokaryotes regardless of their growth strategies.. 75 

 Previous monthly observations of microbial communities have revealed that 76 

seasonal oceanographic features have a strong influence on the prokaryotic community 77 

[20, 21]. Seasonal variability of viral community also have been reported using PCR-78 

based analysis [22, 23] and viral metagenomics (viromics) [24–26]. Although viruses are 79 

obligate parasites, viral seasonality was often discussed independently from the 80 

seasonality of their hosts except for few prokaryotic-virus pairs (e.g. 81 
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Synechococcus/Prochlorococcus) [23, 27] because of the difficulty in connecting 82 

uncultured viruses and their hosts [13, 28].  83 

In this study, we aimed to solve the two fundamental questions whether viral 84 

infection is prevalent among abundant prokaryotic populations or the way viruses infect 85 

differs depending on the taxa and/or growth strategies of their hosts. For this purpose, we 86 

monitored prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay, 87 

monthly for two-years. We compare the community dynamics of viruses and that of their 88 

putative hosts using the in silico host prediction analysis [29, 30] and prevalence of viral 89 

infection is discussed based on the potential virus-host pairs determined through their co-90 

occurrence dynamics. 91 

Materials and methods 92 

Sampling and processing 93 

Seawater samples (4 l) were collected at a 5 m depth at the entrance of Osaka 94 

Bay (34°19′28″N, 135°7′15″E), Japan, within 3 h before or after high tide, between March 95 

2015 and November 2016, at monthly intervals. Seawater was filtered through a 142 mm-96 

diameter (3.0 μm pore size) polycarbonate membrane (Millipore, Billerica, MA) and then 97 

sequentially through 0.22 μm-pore Sterivex filtration units (SVGV010RS, EMD 98 
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Millipore). After filtration, filtration units were directly stored at -80 °C for subsequent 99 

DNA extraction. The filtrates were stored at 4°C before treatments. Water temperature 100 

and salinity were monitored using fixed water intake systems of the Research Institute of 101 

Environment, Agriculture and Fisheries, Osaka prefecture. Nutrient concentrations (NO3-102 

N, NO2-N, NH4-N, PO4-P, and SiO2-Si) were measured by continuous flow analysis (BL 103 

TEC K.K., Japan.). 104 

rRNA gene amplicon sequencing analysis 105 

 For prokaryotic community analysis, DNA was extracted from the stored 106 

filtration units as previously described [31, 32]. Total 16S rDNA was amplified using a 107 

primer set based on the V3–V4 hypervariable region of prokaryotic 16 S rRNA genes 108 

[33] with added overhang adapter sequences at each 5ʹ end according to the sample 109 

preparation guide (https://support.illumina.com/content/dam/illumina-110 

support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-111 

library-prep-guide-15044223-b.pdf). Amplicons were sequenced using MiSeq 112 

sequencing system and MiSeq V3 (2 × 300 bp) reagent kits (Illumina, San Diego, CA). 113 

 Paired-end 16S rDNA amplicon sequences were merged using VSEARCH with 114 

the “-M 1000” option [34]. Merged reads containing ambiguous nucleotides (i.e., “N”) 115 

were discarded. The remaining merged reads were clustered using VSEARCH to form 116 
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operational taxonomic units (OTUs) at a 99% sequence identity threshold. Singleton 117 

OTUs were discarded. The representative sequences of the remaining OTUs were 118 

searched against the SILVA ribosomal RNA gene database (release 138) [35] to 119 

taxonomically annotate OTUs using SINA [36] at a 99% sequence identity threshold. 120 

Abundant OTUs were defined as OTUs exceeding 1 % relative abundance by assuming 121 

the reported minimum host cell density for effective viral infection (≒104 cells/ml) [37] 122 

and typical coastal marine prokaryotic cell density (≒106 cells/ml) [38]. 123 

 To identify statistically relevant variants within abundant OTUs, we applied 124 

minimum entropy decomposition (MED) [11] as previously reported [7]. All the 125 

sequences from each 99% OTU were aligned using MAFFT v7.123b (-retree 1 -126 

maxiterate 0 -nofft -parttree) [39]. The alignment of sequences containing positions with 127 

entropy of >0.25 position was decomposed, and decomposition continued until all 128 

positions had entropy of <0.25. The minimum number of the most abundant sequence 129 

within each amplicon sequence variant (ASV) needed to exceed 50 and ASVs that did 130 

not exceed 1% of the parent OTU composition were discarded [7]. 131 

Virome sequencing, assembly, classification, and calculation of relative abundance 132 

 The filtrate containing viruses was concentrated via FeCl3 precipitation [40] and 133 

purified using DNase and a CsCl density centrifugation step [41]. The DNA was then 134 
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extracted as previously described [42]. We failed to obtain enough amount of DNA for 135 

virome sequencing for one sample (February 2016), the sample was removed from the 136 

analysis. Libraries were prepared using a Nextera XT DNA sample preparation kit 137 

(Illumina, San Diego, CA) according to the manufacturer’s protocol, using 0.25 ng viral 138 

DNA. Samples were sequenced using a MiSeq sequencing system and MiSeq V3 (2 × 139 

300 bp) reagent kits (Illumina, San Diego, CA). 140 

 Viromes were individually assembled using SPAdes 3.9.1 with default k-mer 141 

lengths [43]. Additionally, we used scaffolds of these assemblies (hereafter referred to as 142 

contigs for simplicity). Circular contigs were determined as previously described [44]. 143 

Contig sequences were clustered at 95% global average nucleotide identity with cd-hit-144 

est (options: -c 0.95 -G 1 -n 10 -mask NX, 549 redundant contigs were discarded) [45]. 145 

A total of 5 226 mts-OBV contigs (monthly time series Osaka Bay viral contigs, >10 kb, 146 

62 — 926 contigs/samples, including 202 circular ones) were obtained. Genome 147 

completeness and quality of mts-OBV contigs were evaluated using checkV (v0.7.0) [46] 148 

 In addition, this assembly generated 181 131 short contigs (i.e., from 1 kb up to 149 

10 kb). The abundance of these contigs was assessed based on the relative abundance of 150 

terminase large subunit genes (terL) as previously described [32]. In total, 4 666 genes 151 

were detected as putative terL genes (i.e., genes with the best hit to PF03354.14, 152 
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PF04466.12, PF03237.14, and PF05876.11). Fragments per kilobase per mapped million 153 

reads (FPKM) for putative terL genes were calculated using in-house ruby scripts. 154 

 The mts-OBV contigs with complete viral genomic sequence set collected in a 155 

previous study [44] were used for viral abundance estimation based on read mapping. The 156 

complete viral genomic sequence belonged to one of the following two categories: (i) 1 157 

811 environmental viral genomes (EVGs; all are circularly assembled genomes, 45 were 158 

assembled in Osaka Bay in a previous study [44]) derived from marine virome studies; 159 

(ii) 2 429 reference viral genomes (RVGs) of cultured dsDNA viruses. Genus-level 160 

genomic OTUs (gOTUs) were previously assigned for complete genomes based on 161 

genomic similarity score (SG) using ViPTree [47]. For the mts-OBV contigs, if a sequence 162 

showed a high similarity to one of the complete genomes (with SG  > 0.15), the sequence 163 

was assigned to the gOTU of the most similar genome as previously described [32, 44]. 164 

Quality controlled virome reads were obtained through quality control steps as previously 165 

described [44]. These reads were mapped against the viral genomic sequence set using 166 

Bowtie2 software with the “--score-min L,0,-0.3” parameter [48]. FPKM values were 167 

calculated using in-house ruby scripts. 168 

Viral host prediction 169 
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 First, we assigned putative host groups based on the genomic similarity with 170 

viral genomic sequence set collected in a previous study [44]. If mts-OBV contigs were 171 

classified into the same gOTU with the viruses with a known (via cultivation) or predicted 172 

(by genomic content [44]) host group, the host group was assigned to the contigs. We also 173 

compared similarity with mts-OBV contigs, the viral genomes deposited in a virus-host 174 

database (as of October 2018), and recently reported isolates [49, 50]. 175 

 In addition, for the viruses without assigned host groups via genomic similarity, 176 

we performed in silico host prediction based on the nucleotide sequence similarity 177 

between viruses and prokaryotes as previously described [30, 51, 52]. First, a total of 220 178 

103 viral genomes/contigs derived from marine viromes were collected and used for the 179 

analysis [24, 44, 53–55] (Supplementary Table 1). For the putative host genomes, we 180 

collected a total of 8 016 MAGs/SAGs from marine metagenomic or single cell genomic 181 

studies [56–60]. From Pachiadaki et al, we only used 1 040 high quality SAG assemblies 182 

with ≥ 80% completion [60]. To remove the contamination of virus-like contigs from the 183 

MAGs/SAGs, 14 967 contigs classified as viral-like sequences using VirSorter (category 184 

1, 2, and 3) [61] were discarded (Supplementary Table 1). Details of each prediction 185 

method were reviewed previously [29]. 186 

CRISPR-spacer matching 187 
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CRISPR-spacer sequences were predicted using the CRISPR Recognition Tool 188 

[62], and then a total of 13 305 sequences were extracted. Detected spacer sequences and 189 

spacer sequences deposited in CIRSPRdb [63] were queried against viral genomes using 190 

the BLASTn-short function [64] with the following parameters: At least 95% identity 191 

over the whole spacer length and only 1–2 SNPs at the 5′-end of the sequence was allowed. 192 

tRNA matching 193 

tRNAs were recovered from MAGs/SAGs and viral genomes using ARAGORN 194 

with the ‘-t’ option [65]. A total of 213 939 and 31 439 tRNAs were recovered from 195 

MAGs/SAGs and viral genomes, respectively. The recovered prokaryotic and viral 196 

tRNAs with 111 385 tRNAs deposited in GtRNAdb [66] were compared using BLASTn 197 

[64] and only a perfect match (100% length and 100% sequence identity) was considered 198 

as indicative of putative host-virus pairs. 199 

Nucleotide sequence homology of prokaryotic and viral genomes 200 

Viral genomes/contigs were queried against prokaryotic MAGs/SAGs and 201 

prokaryotic genomes in NCBI RefSeq (as of December 2019) using BLASTn [64]. Only 202 

the best hits above 80% of identity across alignment with a length of ≥1500 bp were 203 

considered as indicative of host-virus pairs. For the prediction based on MAG/SAGs 204 
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contigs, we performed taxonomic validation of the matching contigs in MAG/SAGs as 205 

previously described [30]. Viruses belonging to the same gOTU were assigned consistent 206 

host groups according to a previous study [44], with three exceptional gOTUs (G404, 207 

G405, and G495), which annotated multiple host lineages. For the contigs assigned to the 208 

three gOTUs, genomic similarity among the same gOTU members were calculated and 209 

the potential host of each contig was assigned based on the most similar genomes/contigs 210 

which was annotated via host prediction 211 

Statistical analyses 212 

 Before statistical analyses, 16S rRNA amplicon reads were rarefied using the 213 

“vegan” package in R (20 803 reads per sample, based on minimum sample size) [67]. 214 

To examine within-sample alpha-diversity (Shannon diversity, evenness, and richness) 215 

and beta-diversity (Bray-Curtis similarity: 1 - Bray-Curtis dissimilarity, for all of the 216 

possible pairwise combinations among all of the sampling points), we used the vegan 217 

package in R [68]. Mantel tests were performed using R and the vegan package [68] only 218 

on fully overlapping sets of data. Pairwise correlations between estimated abundance of 219 

prokaryotic ASVs and viral contigs (having putative host information and exceeding 220 

FPKM >10 at least a month, 2 735 contigs ) on fully overlapping sets of data were then 221 

determined via Spearman correlation (P<0.01, Q<0.05) as implemented in the local 222 
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similarity analysis program. [69, 70]. Network visualizations of correlation matrices were 223 

generated using Cytoscape_v3.8.0 [71]. 224 

Estimation of the growth strategy of ASVs 225 

 We established indexes for the approximation of the r (intrinsic rate of natural 226 

increase) and K (carrying capacity) of each ASV by monitoring their monthly dynamics. 227 

For the approximation of the r of each ASV, the maximum increase of the normalized 228 

relative rank (0-1) per month was applied. Similarly, for the approximation of K for each 229 

ASV, the length of continuously dominant month (>0.1% relative abundance, 1-18 230 

months) of each ASV was applied. 231 

Detection of SNPs 232 

 Reads were mapped to the viral contigs using Bowtie2 with a “--score-min L,0,-233 

0.3” [48] and the resulting alignment files were converted to BAM format and sorted 234 

using samtools [72]. The average genome entropy of the contigs which exceeded more 235 

than 10 coverage each month was computed using the DiversiTools 236 

(http://josephhughes.github.io/DiversiTools/). 237 

Data availability 238 
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 Sequences obtained from the observations were deposited at the DNA Data Bank 239 

of Japan (DDBJ) under project number PRJDB10879. Raw sequence reads can be found 240 

under accession numbers DRX260081 to DRX260115 and assemblies of viromes can be 241 

found under BioSample SAMD00279559. 242 

Results and discussion 243 

Overview of prokaryotic and viral communities in Osaka Bay 244 

 We obtained 2.8 M paired-end reads (24 168 to 846 565 reads per sample) from 245 

the 16S rRNA gene V3-V4 region amplicon sequencing libraries derived from 18 246 

collected samples and these sequences were clustered into 35 191 OTUs (1 462 to 18 268 247 

OTUs per month) with a sequence identity threshold of 99% (species-level populations, 248 

Supplementary Table S2). The prokaryotic community was dominated by α-249 

Proteobacteria (41%), γ-Proteobacteria (21%), Bacteroidetes (19%), and Cyanobacteria 250 

(7%) at the phylum level (class level for Proteobacteria). 251 

 To explore viral community composition, we obtained 60 M paired-end reads of 252 

viromes (929 884 to 8 124 354 sequences per sample), which were generated from the 253 

virus size fraction of 17 samples that were concomitantly collected with the prokaryotic 254 

size fractions (Supplementary Table S2). After decontamination of prokaryotic 255 

sequences, 5 226 virus-like large contigs (> 10 kb, monthly time series Osaka Bay viral 256 
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contigs: mts-OBV contigs) were obtained, including 202 circularly assembled viral 257 

genomes (Supplementary Table S2). In this study, we refer to these contigs 258 

operationally as species-level viral populations, according to the previous proposal in 259 

viral ecology [73]. The majority (~75%) of mts-OBV contigs showed high genomic 260 

similarity (genomic similarity score; SG > 0.15; see [44] for the definition of SG) with one 261 

of the previously reported viral complete genomes [44] and the 202 circular genomes 262 

assembled in this study. Based on the SG, these mts-OBV contigs were classified into 314 263 

gOTUs (Supplementary Table 2). On average, 40% of virome reads (29 to 53% per 264 

sample) were mapped on the mts-OBV contigs or previously reported viral genomes [44]. 265 

The mts-OBV contigs occupied 96% relative abundance on average for individual 266 

samples (based on the FPKM values calculated from read counts). Relative abundance of 267 

terminase large subunit genes (terL) of the whole set of contigs (>1 kb) indicates that all 268 

mts-OBV contigs (>10 kb) were ranked at the top (>30%) of the whole community in at 269 

least one sample (the lowest of maximum relative abundance was 0.0115%, 270 

16Jan_NODE_472, Supplementary Figure S1). 271 

 Alpha-diversity (Shannon index) of the viral community was significantly higher 272 

than that of the prokaryotic community (p< 0.001, Supplementary Figures S2A-B). 273 

Both richness and evenness were also significantly higher in the viral community than in 274 
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the prokaryotic community (Supplementary Figure S2C-F, p< 0.001). It should be 275 

noted that prokaryotic diversity was evaluated via single marker gene analysis (i.e., 16S 276 

rRNA) but viral diversity was evaluated via whole genome sequencing. Thus, the 277 

methodological difference could have caused the relatively higher diversity of the viral 278 

community. Another possible explanation for the higher viral diversity is that a 279 

prokaryotic species can be infected by more than one viral species at each time point 280 

(discussed below). 281 

Seasonal dynamics of prokaryotic and viral communities 282 

 We investigated seasonal dynamics of prokaryotic and viral communities using 283 

the Bray-Curtis similarity index between all possible pairs of samples (136 pairs, 1- to 284 

17-month intervals). Both prokaryotic and viral communities showed clear seasonal 285 

patterns, with a peak of average similarity at an interval of about 12 months, representing 286 

the same seasons, and the bottom of average similarity at an interval of 6 months, 287 

representing opposite seasons (Figure 1). Prokaryotic community dynamics were 288 

concordant with seasonal environmental variables, such as water temperature and 289 

inorganic nutrients, which increased in summer (June to September) presumably because 290 

of the increasing river inflow during the rainy season (Supplementary Table S3, 291 

Supplementary Figure S3). The similarity between samples was systematically lower 292 
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for the viral community than that for the prokaryotic community (Figure 1, discussed 293 

below). The viral community composition was significantly correlated with the 294 

prokaryotic community composition, as well as the seasonal environmental variables 295 

(Mantel rho = 0.504, p < 0.01, Supplementally Table S3 ). 296 

 Given that each virus can only propagate in its specific host, and thereby the viral 297 

community composition is shaped by prokaryotic community composition, abundance of 298 

each virus might reflect the abundance of its host. To test this hypothesis, compositions 299 

of prokaryotic and viral communities were compared using the information of predicted 300 

viral hosts (mostly host phylum- or class level composition). Putative host groups of 301 

viruses were predicted using four commonly used genome-based in silico prediction 302 

methods (similarity with known viruses, CRISPR-spacer match, tRNA match, and 303 

genome homology). First, based on the similarity with cultured viruses, putative host 304 

groups of 951 mts-OBV contigs (22 gOTUs) were predicted 305 

(Synechococcus/Prochlorococcus, 182 contigs; SAR11, 501 contigs; SAR116, 214 306 

contigs; Roseobacter, 31 contigs; others, 23 contigs, Supplementally Table S4). 307 

Similarly, putative host groups of 504 mts-OBV contigs (39 gOTUs) were predicted 308 

based on the similarity with uncultured viral genomes considering previous assignment 309 

of putative hosts (Bacteroidetes, 468 contigs; MGII, 36 contigs [30, 44], Supplementally 310 
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Table S4). For other 1 460 mts-OBV contigs (α-Proteobacteria, 35 gOTUs, 621 contigs; 311 

Bacteroidetes, 80 contigs; γ-Proteobacteria, 236 contigs; δ-Proteobacteria 326 contigs; 312 

others, 53 contigs, Supplementally Table S4-5), putative host groups were predicted via 313 

the sequence similarity (i.e. CRISPR-spacer matching, tRNA matching, and genome 314 

homology) between viral (mts-OBVs with previously reported >200,000 marine viral 315 

genomes [24, 44, 53–55]) and prokaryotic genomic data sets (>8 000 marine prokaryotic 316 

metagenome-assembled genomes in previous studies [56–60] and the genomes in the 317 

NCBI RefSeq database). Altogether, we assigned potential host groups for 2 844 mts-318 

OBV contigs (α-Proteobacteria, 1 375 contigs; Bacteroidetes, 548 contigs; δ-319 

Proteobacteria, 326 contigs; γ-Proteobacteria, 250 contigs; Cyanobacteria 190 contigs, 320 

Supplementally Table 4). 321 

 Major phyla (or classes for Proteobacteria) in the prokaryotic community did not 322 

change drastically but the relative abundance of several phyla (classes) exhibited 323 

remarkable seasonal dynamics (Figure 2). The seasonal dynamics of the predicted viral 324 

hosts resembled the seasonal dynamics of prokaryotes (Figure 2). For example, 325 

Cyanobacteria (79% of reads were assigned to OTU_8, Synechococcus) dominated in 326 

summer (up to 9.6% and 22.6% of the community in June 2015 and July 2016, 327 

respectively, Figure 2) and Synechococcus virus abundance also increased in summer (up 328 
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to 5.3 and 12.1% of the community in August 2015 and August 2016, respectively, 329 

Figure 2). Similarly, the relative abundance of Bacteroidetes increased from winter to 330 

spring (up to 33.7% of the community in May 2016, Figure 2) and Bacteroidetes virus 331 

abundance also increased during spring (up to 30.2% of the community in May 2016, 332 

Figure 2). Relative abundances of both SAR11 (from 5 to 47% of the community, Figure 333 

2) and SAR11 viruses (from 9 to 22% of the community, Figure 2) showed changes over 334 

time but they were always abundant throughout the observed period. Therefore, virally 335 

community appear to generally follow the dynamics of their host. 336 

 However, viral abundance did not always match with their putative host 337 

abundance (Supplementally Figure S4). For example, the proportion of putative γ-338 

Proteobacteria viruses was lower compared with that of γ-Proteobacteria and the 339 

proportion of putative δ-Proteobacteria viruses was much higher compared with that of 340 

δ-Proteobacteria (Figure 2). The lack of a tight correlation between viral and host 341 

abundance may not be surprising. The host prediction based on genome analysis in this 342 

study was mostly at the phylum or class level except for contigs showing similarity with 343 

cultured viruses, such as Synechococcus/Prochlorococcus cyanoviruses, while typical 344 

prokaryotic viruses could only infect specific host species or strains. Further, although 345 

our analysis annotated putative hosts at nearly 60% of the viral community, remaining 346 
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populations without host prediction may lead to the underestimation of viruses infecting 347 

some taxa. The difference in burst sizes among viruses, which have been estimated to 348 

range from 6 to 300 in the marine environment [74], can also influence the estimation of 349 

viral abundance. Next, to investigate whether viral abundance increased according to 350 

specific host abundance, we statistically examined associations (i.e. co-occurrence) 351 

between the viruses and ASVs extracted from the abundant 73 prokaryotic OTUs . 352 

Co-occurrence network analysis between the abundant prokaryotes and viruses 353 

 To examine the dynamics of closely related (nearly strain-level) variants within 354 

each OTU, 114 ASVs (1~4 ASVs per OTU, Supplementally Figure S5) were extracted 355 

from the abundant 74 OTUs via minimum entropy decomposition [7, 10, 11]. Then, 356 

pairwise correlations (co-occurrence network) between the 114 prokaryotic ASVs and the 357 

viral species, which were predicted to infect the prokaryotic ASVs via host prediction 358 

(e.g. 37 Bacteroidetes ASVs and 548 mts-OBV contigs predicted as Bacteroidetes virus), 359 

were determined via Spearman’s correlations. In total, 6 423 significant correlations 360 

between 104 prokaryotic ASVs and 1 366 viral species were detected (Figure 3, 361 

Supplementary Figure S6). The majority (88.6%) of prokaryotic ASVs correlated with 362 

at least one viral species. In contrast, only 34% and 31% of prokaryotic ASVs positively 363 

and negatively correlated with environmental variables, respectively (Spearman 364 
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correlations (r>|0.6|, P<0.01, Q<0.05, Supplementary Table S6). The number of co-365 

occurring viral species ranged from 0 (13 ASVs) to 359 (ASV6-1, classified into 366 

Planktomarina) and the median value was 16. 367 

 Using the detected 6 423 putative virus-host pairs, we examined whether the 368 

viruses were abundant when their putative host was abundant. First, four cyanobacterial 369 

ASVs and co-occurring 130 cyanovirus species were examined. Since substantial 370 

numbers of Synechococcus/Prochlorococcus-virus pairs have been reported in culture-371 

based studies [75–78], host prediction for cyanoviruses is likely to be reliable. These 372 

cyanoviral species were more dominated in the viral community when their co-occurring 373 

ASVs exceeded predicted minimum host cell density for effective propagation of 374 

prokaryotic viruses (103 cells/ml [79] or 104 cells/ml [37], Figure 4, Supplementary 375 

Figure S7, S8). Thus, cyanobacterial viral species were not abundant or often 376 

undetectable when their putative hosts were less abundant, but they became dominant 377 

when putative host abundance increased. This viral increase with host abundance was 378 

also observed in 98 other prokaryotic ASVs and their co-occurring viral species (Figure 379 

4, Supplementary Figure S7, S8). This result clearly indicates that frequency-dependent 380 

viral infection is prevalent in abundant prokaryotes at least between the detected virus-381 
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host pairs.   382 

Characterization of the virus-host interaction by host taxa  383 

 The community of viruses showed a higher alpha-diversity that the community 384 

of prokaryotes (Supplementary Figure S2), and the co-occurrence analysis indicated 385 

one-to-many associations between the host and viral populations (median 16 viral species 386 

per a prokaryotic ASV). This suggests that one abundant prokaryotic ASV can interact 387 

with multiple viral species. Note that the numbers of co-occurring viral species were 388 

overestimated since each contig could be a partial genome fragment derived from the 389 

same viral genome (average completeness of mts-OBV contigs was 39%, 390 

Supplementary Table S4). However, the contigs classified into different genera (average 391 

8 gOTUs) often co-occurred with an ASV. Next, we characterized the “one to many” 392 

virus-host interaction network (i.e. how many viruses co-occurred with each ASV) with 393 

respect to their host taxa and host growth strategy. 394 

 The number of co-occurring viral species for prokaryotic ASVs was generally 395 

dependent on the predicted number of their viruses determined via host prediction 396 

(Supplementary Figure S9). For example, Bacteroidetes viruses (548 viruses) were the 397 

second most frequently observed ones and an average of 71.5 viruses co-occurred with 398 

Bacteroidetes ASVs (1–208 viruses per ASV, between 37 Bacteroidetes ASVs and 339 399 
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Bacteroidetes viruses). The number of co-occurring viruses could be overestimated 400 

because of the double count of co-occurring viruses between two co-occurring ASVs (if 401 

ASV-A and ASV-B co-occurred, the viruses co-occurring with ASV-A also can be 402 

included in the viruses co-occurring with ASV-B and vice versa. In fact, up to 16 ASV-403 

ASV co-occurring pairs were detected for Bacteroidetes). In contrast, the taxa with less 404 

frequently detected viruses (e.g. MGII, 38 viruses) had a smaller number of co-occurring 405 

populations (0–3 viruses per ASV, Supplementary Figure S9). Thus, the number of co-406 

occurring viral species might be underestimated in these taxa because of host prediction 407 

limitations. Exceptionally, SAR11 had relatively few co-occurring viral species even 408 

though there were more than 500 putative SAR11 viral species (Supplementary Figure 409 

S9). SAR11 is often regarded as a K-strategist, which is believed to be resistant to viral 410 

infection [4], and the growth strategy may influence the co-occurrence dynamics with 411 

viruses. Next, we examined the number of co-occurring viruses among prokaryotic ASVs 412 

classified in the same taxa depending on the growth strategy to solve this issue. 413 

Characterization of the virus-host interaction by host growth strategy  414 

The growth strategy (r or K) of each prokaryotic ASV was defined by the indexes that we 415 

introduced (see methods). According to these, 13 ASVs were determined as K-strategist-416 

like ASVs (i.e. K-index>12, r-index< 0.1). Among the 13 ASVs, seven were classified 417 
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into SAR11 (Supplementally Figure S10). Twenty two of 57 ASVs belonging to the 418 

taxa previously predicted as r-strategist (i.e. Flavobacteriaceae, Rhodobacteraceae, 419 

Vibrio, and Marine Group II) were classified into the r-strategist-like ASVs (K-index<3, 420 

r-index>0.5, total 33 ASVs) (Supplementally Figure S10). Generally, r-strategist-like 421 

ASVs, such as members of Bacteroidetes, showed a large number of co-occurring viral 422 

species (Supplementally Figure S10). In contrast, K-strategist-like ASVs of 423 

Synechococcus and SAR11 showed relatively few co-occurring viral species 424 

(Supplementally Figure S10). The most abundant ASV of Synechococcus (ASV8-1, 425 

making up 76.7% of the whole cyanobacterial reads) and SAR11 (ASV1-1, occupied 7-426 

64% of whole SAR11 reads of each month) showed 7 and 16 co-occurring viruses, 427 

respectively, even though 183 cyanoviruses and 500 SAR11 viruses were detected during 428 

the observation (Supplementally Figure S10). 429 

 If a temporal switch of virus-host pairs occurred, co-occurrence analysis may fail 430 

to detect virus-host associations.. Therefore, we compared dynamics of the two dominant 431 

prokaryotic ASVs and viral species that did not co-occur with their predicted hosts. 432 

Representative sequence of ASV8-1 matched with the members of Synechococcus 433 

subcluster 5.1a at 100% of identity. Among the 53 cyanoviral species that did not co-434 

occur with any cyanobacterial ASV, 41 species were classified into two gOTUs (G14, 435 
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T7-like cyanosiphovirus, and G386, T4-like cyanomyovirus), which are known to infect 436 

subcluster 5.1a (e.g. Synechococcus sp. WH 8103, clade II), suggesting plausible 437 

interaction between ASV8-1 and these viruses. ASV8-1 especially dominated during 438 

summer (maximum 8% and 21% of prokaryotic community in June 2015 and July 2016, 439 

respectively, Figure 5A). Of these 53 viral species, abundances of which also increased 440 

in summer, four were only abundant in 2015 (from five to > 170 times abundant in 2015 441 

than 2016) and other 38 species were more abundant in 2016 (from five to >300 times 442 

more abundant in 2016 than 2015) (Figure 5A). Similarly, ASV1-1 of SAR11 was always 443 

abundant (Figure 5B) and SAR11 viruses occupied a major fraction of the viral 444 

community. However, abundant members of SAR11 viruses (309 contigs) were replaced 445 

in a relatively short time (a few months) (Figure 5B). These results suggest that the host-446 

virus interaction might have been underestimated in the co-occurrence analysis and K-447 

strategists also interact with multiple viruses based on their cell density. 448 

 Finally, we investigated whether the observed viruses, including those not 449 

statistically detected as co-occurring viruses with hosts (e.g., 53 cyanoviruses and 309 450 

SAR11 viruses in Figure 5), were also produced via increased contact frequency with 451 

hosts. To infer the contact frequency, we focused on single-nucleotide polymorphisms 452 

(SNPs) in viral genomes. SNPs of closely related viral populations were previously 453 
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observed in abundant viral populations, such as freshwater cyanoviruses [80] and marine 454 

viruses in other coastal areas [24]. Since a recent study suggested that the majority of 455 

viruses observed in the virome were produced via diel and local viral-host interactions 456 

[32], it likely indicates that multiple infection events may lead to the generation of 457 

mutations through DNA replications. We thus hypothesized a frequent reproduction and 458 

mutations for abundant viruses with an increased contact frequency with their hosts. 459 

Therefore, SNPs from mts-OBV contigs with more than ten coverages (2 356 contigs) 460 

were calculated. We observed an increase of intrapopulation genetic diversity (SNPs 461 

quantified by average genomic entropy) as a function of overall population abundance 462 

regardless of their host taxa (Supplementary Figure S11). This result corroborates the 463 

notion that contact-rate is the key parameter for the viral reproduction regardless of 464 

whether they show a long term co-occurrence pattern with their hosts. 465 

Ecological interpretation inferred from virus-host dynamics 466 

 There are at least three possible mechanisms of the above-mentioned virus-host 467 

pair switch (Figure 5). First, more closely related prokaryotic populations that cannot be 468 

differentiated by the 16S rRNA gene polymorphism could co-occur with viruses. 469 

Previous studies focusing on the polymorphism of ITS sequences (ITS-ASV) in SAR11 470 

and Cyanobacteria reported that ITS-ASV dynamics correlate more with viral dynamics, 471 
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inferred from T4-like viral marker genes, than 16S-ASV dynamics of these taxa [7, 27]. 472 

Therefore, dynamics of more highly resolved populations (e.g. ITS-ASVs or whole 473 

genome sequence based-populations) might have synchronized with observed viral 474 

dynamics. Second, the temporal acquisition of host resistance or viral counter-resistance 475 

as often observed in culture model systems [83] may cause a switch of the dominant viral 476 

species. Third, it can be interpreted as a result of the founder effect, following host 477 

fluctuation via genetic drift [81]. Seasonal fluctuating of host population cause bottleneck 478 

effect, and therefore, the founder effect following the bottleneck effect enables the 479 

abundance of several viral species to equally increase. This was suggested as a 480 

mechanism of an incomplete selective sweep in the freshwater Cyanobacteria populations 481 

having different CRISPR-spacer genotypes [82]. The scenario is more plausible between 482 

ASV8-1 and their viruses because ASV8-1 experienced clear seasonal fluctuation 483 

(Figure 5A).  484 

 Altogether, we revealed that the frequency-dependent infection occurred in 485 

abundant prokaryotic populations according to the cell density via “one to many” host-486 

virus correspondences regardless of the host growth strategy. One to many host-virus 487 

correspondences may suggest a prokaryotic species attacked by multiple viruses having 488 

a different infection strategy (e.g. different cell surface targets). This can cause difficulties 489 
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in establish complete resistance toward multiple co-existing viruses and sustain 490 

continuous virus-host interaction in the environment. The difficulty of the emergence of 491 

“virus-free” species may be a potential mechanism for the prevailed frequency-dependent 492 

selection of abundant marine prokaryotes. 493 

Conclusion 494 

 Comparison of monthly dynamics between prokaryotic and viral communities 495 

indicated concurrent seasonal shifts at the whole community level. Concurrent seasonal 496 

shifts were also broadly observed between the corresponding virus and host pairs at the 497 

phylum or class level based on the host prediction analysis. We further statistically 498 

confirmed their co-occurrence via network analysis among abundant prokaryotic 499 

populations and their viruses regardless of the host taxa or growth strategies. These results 500 

suggested that abundant prokaryotes were exposed to frequent viral infection regardless 501 

of their taxa or growth strategy. It indicates that lysis of the abundant prokaryotes via viral 502 

infection have a considerable contribution to the biogeochemical cycling and 503 

maintenance of prokaryotic community diversity. Further, these abundant prokaryotic 504 

populations should reflect actively growing members of the community since they 505 

became dominant even though they suffered frequent loss by viral lysis. 506 

 507 
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 760 

Figure legends 761 

 762 

Figures  763 

Figure 1. Seasonality of the prokaryotes and viruses at the Osaka Bay (OB) during 764 

observation.  765 

The Bray-Curtis community similarity index was calculated among all of the possible 766 

sample pairs from normalized abundances of prokaryotic OTUs and OBV contigs and 767 

plotted as a function of the number of months separating their sampling.  768 

Figure 2. Comparison of prokaryotic and viral taxonomic community composition 769 

based on the host prediction. 770 
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(A) Relative abundance of phylogenetic groups of prokaryotic communities. Quality-771 

controlled reads were clustered into OTUs with sequence identity of 99% using 772 

VSEARCH (Rognes et al., 2016). These OTUs were classified at the phylum level (class 773 

level for Proteobacteria) using SINA (Pruesse et al., 2012). 774 

(B) Relative abundance of viruses based on their putative hosts assigned by host 775 

prediction. Normalized abundances of viral contigs were calculated from fragments per 776 

kilobase of per million reads mapped (FPKM) value. 777 

 778 

Figure 3. Broad overview of detected positive correlations between prokaryotic 779 

ASVs and viral populations which potentially infect each prokaryotic taxa based 780 

on host prediction analysis.  781 

(A) Flavobacteria and their viruses. (B) α-proteobacteria and viruses. (C) γ-782 

proteobacteria and their viruses. (D) Cyanobacteria and their viruses. (E) Other major 783 

groups (SAR324, Marine group II, and Actinobacteria) and their viruses. Prokaryotic 784 

nodes are circles and viral node are v-shapes. Node color indicates prokaryotic taxa. 785 

Solid lines are positive correlations. 786 

 787 

Figure 4. Increase of viral abundance according to the host cell density between co-788 

occurring host-virus pairs. 789 

Normalized relative rank of each virus in community (0 ~1) were plotted when their 790 

putative host relative abundance exceeding 1% (≒104 cells/ml, yellow), 0.1% (≒103 791 

cells/ml, green), and below 0.1% (blue). Boxplots are constructed with the upper and 792 

lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as 793 

points. 794 

 795 

Figure 5. Dynamics of the most dominant prokaryotic population (ASV1-1 and 796 

ASV8-1) with viruses which predicted to infect these host taxa by host prediction 797 

analysis but did not co-occurred with any ASV.  798 

(A) Dynamics of ASV8-1 which classified into Synechococcus and 53 cyanoviruses 799 

which did not co-occurred with cyanobacterial ASVs. (B) Area chart represents relative 800 

abundance of the ASV8-1 and lines represents viral contigs over time. The panels were 801 

separated by viral annual pattern (2015 type, 2016 type, and both years, if the virus was 802 

more than five times abundant in one year comparing with another year, the virus was 803 

defined as year-specific virus). Colors represent gOTU (genus) of the virus. (B) Dynamics 804 

of ASV1-1 which classified into SAR11 clade and 309 putative SAR11 viruses which did 805 

not co-occurred with any SAR11 ASVs. Area chart represents relative abundance of the 806 
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ASV1-1 and lines represents viral contigs over time. The panel were separated based on 807 

the classified gOTUs of each virus. 808 

 809 

Supplementary Figure/Tables 810 

 811 

Supplementary Figure S1. Virome abundance of OBV long contigs as assessed by 812 

putative terL genes.  813 

Abundance of 1,078 mts-OBV long contigs (indicated by red) was assessed by the 814 

abundance of putative terL genes (from 4,666 contigs in total). y-axis represents the terL 815 

FPKM of each virus. Contigs (x-axis) are lined in order of the assembled month (from 816 

2015 May to 2016 Nov ).  817 

 818 

Supplementary Figure S2. Alpha diversity profiles of prokaryotic and viral 819 

communities in Osaka bay during observation.  820 

Average of Shannon H’ (A), richness (number of OTUs or contigs, C), and evenness 821 

(Pielou's j: Shannon diversity divided by log richness, E) were calculated from 822 

normalized abundances of prokaryotic OTUs based on rarefied reads and viral contigs 823 

from fragments per kilobase of per million reads mapped (FPKM) value. The boxes 824 

represent the first quartile, median, and third quartile. Asterisks denote significance 825 

(Student's t-test adjusted by Bonferroni correction., ***p< 0.001). The change of 826 

Shannon H’ (B), richness (D), and evenness (F) of prokaryotic and viral communities of 827 

the time-series were plotted. 828 

 829 

Supplementary Figure S3. Changes in environmental parameters at the Osaka Bay 830 

(OB).  831 

Heatmap represents z-score transformed value of measured environmental parameters. 832 

 833 

Supplementary Figure S4. Relationship of relative abundance of prokaryotic taxa 834 

and viruses predicted to infect the corresponding prokaryotic taxa.  835 

x-axis indicate relative abundance of viruses at each month. y-axis indicate relative 836 

abundance of prokaryotes at corresponding month. Pro indicate the prokaryotic taxa and 837 

Vir indicate putative host of the viruses. 838 

Supplementary Figure S5. Dynamics of abundant prokaryotic OTUs and its 839 

decomposed ASVs.  840 
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The yellow area-graph represents the relative abundance over time of each abundant OTU 841 

as a proportion of the whole community. The colored lines are the estimated relative 842 

abundance of each ASV (only >0.1% in abundance among whole community are shown) 843 

as a proportion of the whole community of prokaryotic sequences.  844 

 845 

Supplementary Figure S6. Dynamics of ASVs and their co-occurring viruses 846 

The yellow area-graph represents the normalized relative abundance (0 to 1) over time of 847 

each ASV. The dashed lines represents the normalized relative abundance (0 to 1) over 848 

time of each viruses which co-occurred with the ASVs. Only up to top 30 most abundant 849 

co-occurred viruses were show for each ASV. 850 

 851 

Supplementary Figure S7. Plots of relative abundance of co-occurring host-virus 852 

pairs. 853 

Relative abundance of each prokaryotic ASV and their co-occurring viruses at each 854 

month were shown. Black and red dot-lines represents 103 cells/ml and 104 cells/ml of 855 

host abundance, respectively. 856 

 857 

Supplementary Figure S8. Comparison of relative rank of viruses and host ASVs 858 

abundance among co-occurring host-virus pairs. 859 

Normalized relative rank of each virus in community (0 ~1) were plotted when their 860 

putative host ASV relative abundance exceeding 1% (≒104 cells/ml, yellow), 0.1% (≒861 

103 cells/ml, green), and below 0.1% (blue). Boxplots are constructed with the upper and 862 

lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as points. 863 

 864 

Supplementary Figure S9. Number of virus-host co-occurring pairs by taxa. 865 

Number of detected viruses by host prediction of each host taxa were shown as blue (first 866 

y-axis) and number of co-occurring viruses per an ASV (on average) by host taxa were 867 

show as yellow (second y-axis). 868 

 869 

Supplementary Figure S10. Distribution of the number of co-occurring viruses 870 

among prokaryotic ASVs based on their growth strategy inferred from 871 

approximated index of carrying capacity (K) and intrinsic rate of natural increase 872 

(r) based on their dynamics.  873 

x-axis indicates approximation index of r and y-axis indicates approximation index of K. 874 

Size of the circles represents the number of co-occurring viruses with each ASV. Color 875 

of the circles indicate the taxa of each ASV. 876 
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 877 

Figure S11. Correlation of genome average entropy and abundance of OBV 878 

contigs calculated from SNP profiles.  879 

The graphs show the average genomic entropy of mts-OBV contigs and read coverage 880 

of the mts-OBV contigs at given time-series samples. The panel were separated based 881 

on the predicted hosts of the mts-OBV contigs. 882 

 883 

Supplementary Table S1. Basic statistics of microbial and viral genomes used for 884 

the host prediction analysis. 885 

Supplementary Table S2. 16S rRNA amplicon and virome read sequences in each 886 

time series samples. 887 

Supplementary Table S3. Rho values of Partial Mantel tests for prokaryotic and 888 

viral communities and environmental parameters. The value in each box is the Rho 889 

value and data with p < 0.005 are indicated with * and with p<0.01 are indicated with 890 

**  891 

Supplementary Table S4. General genomic features and putative hosts of 5,226 892 

mts-OBV contigs. 893 

Supplementary Table S5. Putative virus-host pairs predicted in this study by 894 

methods based on CRISPR-spacers, tRNA, and host-virus genomic similarity. 895 

 896 

Supplementary Table S6. Detected significant Spearman’s correlations (r>|0.6|, 897 

p<0.01,q<0.05) between environmental variables and dynamics of ASVs. 898 

 899 
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Figure 1. Seasonality of the prokaryotes and viruses at the Osaka Bay (OB) during 

observation. 
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(A) (B)

Figure 2. Comparison of prokaryotic and viral taxonomic community

composition based on the host prediction.
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Figure 3. Broad overview of detected positive correlations between prokaryotic ASVs 

and viral populations which potentially infect each prokaryotic taxa based on host 

prediction analysis. 
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Figure 4. Increase of viral abundance according to the host cell density between 

co-occurring host-virus pairs.
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(A) (B)

Figure 5. Dynamics of the most dominant prokaryotic population (ASV1-1 and

ASV8-1) with viruses which predicted to infect these host taxa by host prediction

analysis but did not co-occurred with any ASV.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.23.461490doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461490
http://creativecommons.org/licenses/by/4.0/

