#### 1 Title

| 2 | Prevalence of viral | frequency-depen | dent infection in | i coastal marine | prokaryotes |
|---|---------------------|-----------------|-------------------|------------------|-------------|
|---|---------------------|-----------------|-------------------|------------------|-------------|

- 3 revealed using monthly time series virome analysis
- 4

#### 5 Running title

6 Viral frequency-dependent selection in marine prokaryotes

7

#### 8 Authors and affiliations

9 Kento Tominaga<sup>1,2</sup>, Nana Ogawa-Haruki<sup>1</sup>, Yosuke Nishimura<sup>3</sup>, Hiroyasu Watai<sup>1</sup>, Keigo

10 Yamamoto<sup>4</sup>, Hiroyuki Ogata<sup>5\*</sup>, Takashi Yoshida<sup>1\*</sup>

- <sup>1</sup>Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku,
- 12 Kyoto, 606-8502, Japan
- 13 <sup>2</sup>Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-
- 14 shi, Chiba, 277-0882, Japan
- 15 <sup>3</sup>Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha,
- 16 Kashiwa-shi, Chiba, 277-8564, Japan
- <sup>4</sup>Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture,
- 18 Tanagawatanigawa, Misaki-cho, Sennan-gun, Osaka, 599-0311, Osaka, Japan

- <sup>5</sup>Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011
- 20 Japan
- 21

#### 22 Correspondence:

- 23 Takashi Yoshida; Graduate School of Agriculture, Kyoto University, Kitashirakawa-
- 24 Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan; voshida.takashi.7a@kyoto-u.ac.jp, , +8175-
- **25** 753-6217
- 26 Hiroyuki Ogata; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto,
- 27 611-0011 Japan; ogata@kuicr.kyoto-u.ac.jp, +8177-438-3270
- 28

#### 29 Abstract

30 Viruses infecting marine prokaryotes have large impacts on the diversity and dynamics 31 of their hosts. Model systems suggest viral infection is frequency-dependent and 32 constrained by the virus-host encounter rate. However, it is unclear whether the 33 frequency-dependent infection is pervasive among the abundant prokaryotic populations 34 with different growth strategies (i.e. *r*-strategy and *K*-strategy). To address this question, 35 we performed a comparison of prokaryotic and viral communities using 16S rRNA 36 amplicon and virome sequencing based on samples collected monthly for two years at a 37 Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and 38 viral community dynamics indicated that abundances of viruses correlated with that of 39 their predicted host phyla (or classes). Co-occurrence network analysis between abundant 40 prokaryotes and viruses revealed 6 423 co-occurring pairs, suggesting a tight coupling of 41 host and viral abundances and their "one to many" correspondence. Although dominant 42 K-strategist like species, such as SAR11, showed few co-occurring viruses, a fast 43 succession of their viruses suggests viruses infecting these populations changed 44 continuously. Our results suggest the frequency-dependent viral infection prevailed in 45 coastal marine prokaryotes regardless of host taxa and growth strategy.

46

3

#### 47 Introduction

64

| 48 | Marine prokaryotes are ubiquitous in the ocean and play key roles in the global                            |
|----|------------------------------------------------------------------------------------------------------------|
| 49 | biogeochemical processes [1]. Most of observed species (>35,000 species-level                              |
| 50 | operational taxonomic units [OTUs], based on 97% 16S rRNA sequence identity) fall                          |
| 51 | into several major taxa (phyla or classes for Proteobacteria), such as $\alpha$ -Proteobacteria (e.g.      |
| 52 | SAR11), Bacteroidetes (e.g. Flavobacteriaceae), and Cyanobacteria (e.g. Synechococcus                      |
| 53 | and Prochlorococcus) [2, 3]. Although individual species have distinct ecological niches,                  |
| 54 | they are often classified into one of two growth strategists based on their potential growth               |
| 55 | rate and temporal dynamics: (i) K-strategist (slow-growing and persistently dominant, e.g.                 |
| 56 | SAR11) and (ii) <i>r</i> -strategist (fast-growing and opportunistic, e.g. <i>Flavobacteriaceae</i> ) [4]. |
| 57 | However, recent high-frequency sampling schemes (e.g. daily) uncovered that species not                    |
| 58 | recognized as r-strategists exhibit drastic fluctuations (e.g. Marine Group II                             |
| 59 | euryarchaeota) [5, 6]. Further, finely resolved populations (genotypes or strains) within a                |
| 60 | species-level OTU often show distinct temporal dynamics [7-11], indicating species                         |
| 61 | described as K-strategist can show frequent fluctuation.                                                   |
| 62 | Viruses infecting prokaryotes are abundantly present in the ocean and estimated                            |
| 63 | to lyse 20–40% of the prokaryotic cells each day [4, 12, 13]. Viruses are thought to infect                |

their specific hosts (often restricted to strains within a species) in a frequency-dependent

4

| 65 | manner, in which the encounter rate between the viruses and their hosts is a determinant    |
|----|---------------------------------------------------------------------------------------------|
| 66 | for the infection rate [14, 15]. Thus, viruses infect host populations that become abundant |
| 67 | and frequencies of host and viruses oscillate over time, leading to the maintenance of the  |
| 68 | diversity of the host community [16, 17]. Moreover, mathematical models have                |
| 69 | demonstrated that a prokaryotic species with faster growth rate can be susceptible to viral |
| 70 | infection [17]. This trend allows K-strategists to reach a higher abundance than r-         |
| 71 | strategists because of their higher resistance against viral infection by cryptic escape    |
| 72 | through reduced cell size and/or specialized defense mechanisms [4, 18]. However, the       |
| 73 | discovery of SAR11 viruses questions this prediction [19]. It is currently unclear whether  |
| 74 | K-strategists suffer from viral infection or viral infection is prevalent in abundant       |
| 75 | prokaryotes regardless of their growth strategies                                           |
| 76 | Previous monthly observations of microbial communities have revealed that                   |
| 77 | seasonal oceanographic features have a strong influence on the prokaryotic community        |
| 78 | [20, 21]. Seasonal variability of viral community also have been reported using PCR-        |
| 79 | based analysis [22, 23] and viral metagenomics (viromics) [24–26]. Although viruses are     |
|    |                                                                                             |

81 seasonality of their hosts except for few prokaryotic-virus pairs (e.g.

80

obligate parasites, viral seasonality was often discussed independently from the

82 Synechococcus/Prochlorococcus) [23, 27] because of the difficulty in connecting
83 uncultured viruses and their hosts [13, 28].

84 In this study, we aimed to solve the two fundamental questions whether viral 85 infection is prevalent among abundant prokaryotic populations or the way viruses infect 86 differs depending on the taxa and/or growth strategies of their hosts. For this purpose, we 87 monitored prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay, 88 monthly for two-years. We compare the community dynamics of viruses and that of their 89 putative hosts using the *in silico* host prediction analysis [29, 30] and prevalence of viral 90 infection is discussed based on the potential virus-host pairs determined through their co-91 occurrence dynamics.

#### 92 Materials and methods

#### 93 Sampling and processing

Seawater samples (4 1) were collected at a 5 m depth at the entrance of Osaka
Bay (34°19′28″N, 135°7′15″E), Japan, within 3 h before or after high tide, between March
2015 and November 2016, at monthly intervals. Seawater was filtered through a 142 mmdiameter (3.0 µm pore size) polycarbonate membrane (Millipore, Billerica, MA) and then
sequentially through 0.22 µm-pore Sterivex filtration units (SVGV010RS, EMD

| 99  | Millipore). After filtration, filtration units were directly stored at -80 °C for subsequent                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 100 | DNA extraction. The filtrates were stored at 4°C before treatments. Water temperature                                                  |
| 101 | and salinity were monitored using fixed water intake systems of the Research Institute of                                              |
| 102 | Environment, Agriculture and Fisheries, Osaka prefecture. Nutrient concentrations (NO <sub>3</sub> -                                   |
| 103 | N, NO <sub>2</sub> -N, NH <sub>4</sub> -N, PO <sub>4</sub> -P, and SiO <sub>2</sub> -Si) were measured by continuous flow analysis (BL |
| 104 | TEC K.K., Japan.).                                                                                                                     |

105 rRNA gene amplicon sequencing analysis

| 106 | For prokaryotic community analysis, DNA was extracted from the stored                      |
|-----|--------------------------------------------------------------------------------------------|
| 107 | filtration units as previously described [31, 32]. Total 16S rDNA was amplified using a    |
| 108 | primer set based on the V3-V4 hypervariable region of prokaryotic 16 S rRNA genes          |
| 109 | [33] with added overhang adapter sequences at each 5' end according to the sample          |
| 110 | preparation guide ( <u>https://support.illumina.com/content/dam/illumina-</u>              |
| 111 | support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-               |
| 112 | library-prep-guide-15044223-b.pdf). Amplicons were sequenced using MiSeq                   |
| 113 | sequencing system and MiSeq V3 (2 $\times$ 300 bp) reagent kits (Illumina, San Diego, CA). |
| 114 | Paired-end 16S rDNA amplicon sequences were merged using VSEARCH with                      |
| 115 | the "-M 1000" option [34]. Merged reads containing ambiguous nucleotides (i.e., "N")       |
| 116 | were discarded. The remaining merged reads were clustered using VSEARCH to form            |

| 117 | operational taxonomic units (OTUs) at a 99% sequence identity threshold. Singleton             |
|-----|------------------------------------------------------------------------------------------------|
| 118 | OTUs were discarded. The representative sequences of the remaining OTUs were                   |
| 119 | searched against the SILVA ribosomal RNA gene database (release 138) [35] to                   |
| 120 | taxonomically annotate OTUs using SINA [36] at a 99% sequence identity threshold.              |
| 121 | Abundant OTUs were defined as OTUs exceeding 1 % relative abundance by assuming                |
| 122 | the reported minimum host cell density for effective viral infection ( $= 10^4$ cells/ml) [37] |
| 123 | and typical coastal marine prokaryotic cell density ( $\doteqdot 10^6$ cells/ml) [38].         |
| 124 | To identify statistically relevant variants within abundant OTUs, we applied                   |
| 125 | minimum entropy decomposition (MED) [11] as previously reported [7]. All the                   |
| 126 | sequences from each 99% OTU were aligned using MAFFT v7.123b (-retree 1 -                      |
| 127 | maxiterate 0 -nofft -parttree) [39]. The alignment of sequences containing positions with      |
| 128 | entropy of $>0.25$ position was decomposed, and decomposition continued until all              |
| 129 | positions had entropy of <0.25. The minimum number of the most abundant sequence               |
| 130 | within each amplicon sequence variant (ASV) needed to exceed 50 and ASVs that did              |
| 131 | not exceed 1% of the parent OTU composition were discarded [7].                                |
| 132 | Virome sequencing, assembly, classification, and calculation of relative abundance             |
| 133 | The filtrate containing viruses was concentrated via FeCl <sub>3</sub> precipitation [40] and  |
| 134 | purified using DNase and a CsCl density centrifugation step [41]. The DNA was then             |

| 135 | extracted as previously described [42]. We failed to obtain enough amount of DNA for        |
|-----|---------------------------------------------------------------------------------------------|
| 136 | virome sequencing for one sample (February 2016), the sample was removed from the           |
| 137 | analysis. Libraries were prepared using a Nextera XT DNA sample preparation kit             |
| 138 | (Illumina, San Diego, CA) according to the manufacturer's protocol, using 0.25 ng viral     |
| 139 | DNA. Samples were sequenced using a MiSeq sequencing system and MiSeq V3 (2 $\times$        |
| 140 | 300 bp) reagent kits (Illumina, San Diego, CA).                                             |
| 141 | Viromes were individually assembled using SPAdes 3.9.1 with default k-mer                   |
| 142 | lengths [43]. Additionally, we used scaffolds of these assemblies (hereafter referred to as |
| 143 | contigs for simplicity). Circular contigs were determined as previously described [44].     |
| 144 | Contig sequences were clustered at 95% global average nucleotide identity with cd-hit-      |
| 145 | est (options: -c 0.95 -G 1 -n 10 -mask NX, 549 redundant contigs were discarded) [45].      |
| 146 | A total of 5 226 mts-OBV contigs (monthly time series Osaka Bay viral contigs, >10 kb,      |
| 147 | 62 - 926 contigs/samples, including 202 circular ones) were obtained. Genome                |
| 148 | completeness and quality of mts-OBV contigs were evaluated using checkV (v0.7.0) [46]       |
| 149 | In addition, this assembly generated 181 131 short contigs (i.e., from 1 kb up to           |
| 150 | 10 kb). The abundance of these contigs was assessed based on the relative abundance of      |
| 151 | terminase large subunit genes (terL) as previously described [32]. In total, 4 666 genes    |
| 152 | were detected as putative terL genes (i.e., genes with the best hit to PF03354.14,          |

PF04466.12, PF03237.14, and PF05876.11). Fragments per kilobase per mapped million

154 reads (FPKM) for putative *terL* genes were calculated using in-house ruby scripts. 155 The mts-OBV contigs with complete viral genomic sequence set collected in a 156 previous study [44] were used for viral abundance estimation based on read mapping. The 157 complete viral genomic sequence belonged to one of the following two categories: (i) 1 158 811 environmental viral genomes (EVGs; all are circularly assembled genomes, 45 were 159 assembled in Osaka Bay in a previous study [44]) derived from marine virome studies; 160 (ii) 2 429 reference viral genomes (RVGs) of cultured dsDNA viruses. Genus-level 161 genomic OTUs (gOTUs) were previously assigned for complete genomes based on 162 genomic similarity score (S<sub>G</sub>) using ViPTree [47]. For the mts-OBV contigs, if a sequence 163 showed a high similarity to one of the complete genomes (with  $S_G > 0.15$ ), the sequence 164 was assigned to the gOTU of the most similar genome as previously described [32, 44]. 165 Quality controlled virome reads were obtained through quality control steps as previously 166 described [44]. These reads were mapped against the viral genomic sequence set using 167 Bowtie2 software with the "--score-min L,0,-0.3" parameter [48]. FPKM values were 168 calculated using in-house ruby scripts.

169 Viral host prediction

153

| 170 | First, we assigned putative host groups based on the genomic similarity with                |
|-----|---------------------------------------------------------------------------------------------|
| 171 | viral genomic sequence set collected in a previous study [44]. If mts-OBV contigs were      |
| 172 | classified into the same gOTU with the viruses with a known (via cultivation) or predicted  |
| 173 | (by genomic content [44]) host group, the host group was assigned to the contigs. We also   |
| 174 | compared similarity with mts-OBV contigs, the viral genomes deposited in a virus-host       |
| 175 | database (as of October 2018), and recently reported isolates [49, 50].                     |
| 176 | In addition, for the viruses without assigned host groups via genomic similarity,           |
| 177 | we performed in silico host prediction based on the nucleotide sequence similarity          |
| 178 | between viruses and prokaryotes as previously described [30, 51, 52]. First, a total of 220 |
| 179 | 103 viral genomes/contigs derived from marine viromes were collected and used for the       |
| 180 | analysis [24, 44, 53–55] (Supplementary Table 1). For the putative host genomes, we         |
| 181 | collected a total of 8 016 MAGs/SAGs from marine metagenomic or single cell genomic         |
| 182 | studies [56–60]. From Pachiadaki et al, we only used 1 040 high quality SAG assemblies      |
| 183 | with $\ge$ 80% completion [60]. To remove the contamination of virus-like contigs from the  |
| 184 | MAGs/SAGs, 14 967 contigs classified as viral-like sequences using VirSorter (category      |
| 185 | 1, 2, and 3) [61] were discarded (Supplementary Table 1). Details of each prediction        |
| 186 | method were reviewed previously [29].                                                       |
|     |                                                                                             |

187 CRISPR-spacer matching

| 188 | CRISPR-spacer sequences were predicted using the CRISPR Recognition Tool                  |
|-----|-------------------------------------------------------------------------------------------|
| 189 | [62], and then a total of 13 305 sequences were extracted. Detected spacer sequences and  |
| 190 | spacer sequences deposited in CIRSPRdb [63] were queried against viral genomes using      |
| 191 | the BLASTn-short function [64] with the following parameters: At least 95% identity       |
| 192 | over the whole spacer length and only 1–2 SNPs at the 5'-end of the sequence was allowed. |
| 193 | tRNA matching                                                                             |
| 194 | tRNAs were recovered from MAGs/SAGs and viral genomes using ARAGORN                       |
| 195 | with the '-t' option [65]. A total of 213 939 and 31 439 tRNAs were recovered from        |
| 196 | MAGs/SAGs and viral genomes, respectively. The recovered prokaryotic and viral            |
| 197 | tRNAs with 111 385 tRNAs deposited in GtRNAdb [66] were compared using BLASTn             |
| 198 | [64] and only a perfect match (100% length and 100% sequence identity) was considered     |
| 199 | as indicative of putative host-virus pairs.                                               |
| 200 | Nucleotide sequence homology of prokaryotic and viral genomes                             |
| 201 | Viral genomes/contigs were queried against prokaryotic MAGs/SAGs and                      |
| 202 | prokaryotic genomes in NCBI RefSeq (as of December 2019) using BLASTn [64]. Only          |
| 203 | the best hits above 80% of identity across alignment with a length of $\geq 1500$ bp were |
| 204 | considered as indicative of host-virus pairs. For the prediction based on MAG/SAGs        |

| 205 | contigs, we performed taxonomic validation of the matching contigs in MAG/SAGs as        |
|-----|------------------------------------------------------------------------------------------|
| 206 | previously described [30]. Viruses belonging to the same gOTU were assigned consistent   |
| 207 | host groups according to a previous study [44], with three exceptional gOTUs (G404,      |
| 208 | G405, and G495), which annotated multiple host lineages. For the contigs assigned to the |
| 209 | three gOTUs, genomic similarity among the same gOTU members were calculated and          |
| 210 | the potential host of each contig was assigned based on the most similar genomes/contigs |
| 211 | which was annotated via host prediction                                                  |

#### 212 Statistical analyses

213 Before statistical analyses, 16S rRNA amplicon reads were rarefied using the 214 "vegan" package in R (20 803 reads per sample, based on minimum sample size) [67]. 215 To examine within-sample alpha-diversity (Shannon diversity, evenness, and richness) 216 and beta-diversity (Bray-Curtis similarity: 1 - Bray-Curtis dissimilarity, for all of the 217 possible pairwise combinations among all of the sampling points), we used the vegan 218 package in R [68]. Mantel tests were performed using R and the vegan package [68] only 219 on fully overlapping sets of data. Pairwise correlations between estimated abundance of 220 prokaryotic ASVs and viral contigs (having putative host information and exceeding 221 FPKM >10 at least a month, 2 735 contigs ) on fully overlapping sets of data were then 222 determined via Spearman correlation (P<0.01, Q<0.05) as implemented in the local

#### similarity analysis program. [69, 70]. Network visualizations of correlation matrices were

generated using Cytoscape\_v3.8.0 [71].

#### 225 Estimation of the growth strategy of ASVs

We established indexes for the approximation of the *r* (intrinsic rate of natural
increase) and *K* (carrying capacity) of each ASV by monitoring their monthly dynamics.
For the approximation of the *r* of each ASV, the maximum increase of the normalized
relative rank (0-1) per month was applied. Similarly, for the approximation of *K* for each
ASV, the length of continuously dominant month (>0.1% relative abundance, 1-18
months) of each ASV was applied.

#### 232 Detection of SNPs

233 Reads were mapped to the viral contigs using Bowtie2 with a "--score-min L,0,-234 0.3" [48] and the resulting alignment files were converted to BAM format and sorted 235 using samtools [72]. The average genome entropy of the contigs which exceeded more 236 than 10 coverage computed using the DiversiTools each month was 237 (http://josephhughes.github.io/DiversiTools/).

#### 238 Data availability

239 Sequences obtained from the observations were deposited at the DNA Data Bank
240 of Japan (DDBJ) under project number PRJDB10879. Raw sequence reads can be found
241 under accession numbers DRX260081 to DRX260115 and assemblies of viromes can be
242 found under BioSample SAMD00279559.

#### 243 **Results and discussion**

#### 244 Overview of prokaryotic and viral communities in Osaka Bay

We obtained 2.8 M paired-end reads (24 168 to 846 565 reads per sample) from
the 16S rRNA gene V3-V4 region amplicon sequencing libraries derived from 18
collected samples and these sequences were clustered into 35 191 OTUs (1 462 to 18 268
OTUs per month) with a sequence identity threshold of 99% (species-level populations,
Supplementary Table S2). The prokaryotic community was dominated by αProteobacteria (41%), γ-Proteobacteria (21%), Bacteroidetes (19%), and Cyanobacteria
(7%) at the phylum level (class level for Proteobacteria).

To explore viral community composition, we obtained 60 M paired-end reads of viromes (929 884 to 8 124 354 sequences per sample), which were generated from the virus size fraction of 17 samples that were concomitantly collected with the prokaryotic size fractions (**Supplementary Table S2**). After decontamination of prokaryotic sequences, 5 226 virus-like large contigs (> 10 kb, monthly time series Osaka Bay viral

| 257 | contigs: mts-OBV contigs) were obtained, including 202 circularly assembled viral                    |
|-----|------------------------------------------------------------------------------------------------------|
| 258 | genomes (Supplementary Table S2). In this study, we refer to these contigs                           |
| 259 | operationally as species-level viral populations, according to the previous proposal in              |
| 260 | viral ecology [73]. The majority (~75%) of mts-OBV contigs showed high genomic                       |
| 261 | similarity (genomic similarity score; $S_G > 0.15$ ; see [44] for the definition of $S_G$ ) with one |
| 262 | of the previously reported viral complete genomes [44] and the 202 circular genomes                  |
| 263 | assembled in this study. Based on the $S_{G}$ , these mts-OBV contigs were classified into 314       |
| 264 | gOTUs (Supplementary Table 2). On average, 40% of virome reads (29 to 53% per                        |
| 265 | sample) were mapped on the mts-OBV contigs or previously reported viral genomes [44].                |
| 266 | The mts-OBV contigs occupied 96% relative abundance on average for individual                        |
| 267 | samples (based on the FPKM values calculated from read counts). Relative abundance of                |
| 268 | terminase large subunit genes (terL) of the whole set of contigs (>1 kb) indicates that all          |
| 269 | mts-OBV contigs (>10 kb) were ranked at the top (>30%) of the whole community in at                  |
| 270 | least one sample (the lowest of maximum relative abundance was 0.0115%,                              |
| 271 | 16Jan_NODE_472, Supplementary Figure S1).                                                            |
| 272 | Alpha diversity (Shannon index) of the viral community was significantly higher                      |

272 Alpha-diversity (Shannon index) of the viral community was significantly higher 273 than that of the prokaryotic community (p < 0.001, **Supplementary Figures S2A-B**). 274 Both richness and evenness were also significantly higher in the viral community than in

| 275 | the prokaryotic community (Supplementary Figure S2C-F, $p < 0.001$ ). It should be        |
|-----|-------------------------------------------------------------------------------------------|
| 276 | noted that prokaryotic diversity was evaluated via single marker gene analysis (i.e., 16S |
| 277 | rRNA) but viral diversity was evaluated via whole genome sequencing. Thus, the            |
| 278 | methodological difference could have caused the relatively higher diversity of the viral  |
| 279 | community. Another possible explanation for the higher viral diversity is that a          |
| 280 | prokaryotic species can be infected by more than one viral species at each time point     |
| 281 | (discussed below).                                                                        |

#### 282 Seasonal dynamics of prokaryotic and viral communities

283 We investigated seasonal dynamics of prokaryotic and viral communities using 284 the Bray-Curtis similarity index between all possible pairs of samples (136 pairs, 1- to 285 17-month intervals). Both prokaryotic and viral communities showed clear seasonal 286 patterns, with a peak of average similarity at an interval of about 12 months, representing 287 the same seasons, and the bottom of average similarity at an interval of 6 months, 288 representing opposite seasons (Figure 1). Prokaryotic community dynamics were 289 concordant with seasonal environmental variables, such as water temperature and 290 inorganic nutrients, which increased in summer (June to September) presumably because 291 of the increasing river inflow during the rainy season (Supplementary Table S3, 292 Supplementary Figure S3). The similarity between samples was systematically lower

293 for the viral community than that for the prokaryotic community (Figure 1, discussed 294 below). The viral community composition was significantly correlated with the 295 prokaryotic community composition, as well as the seasonal environmental variables

296 (Mantel rho = 0.504, p < 0.01, Supplementally Table S3).

297 Given that each virus can only propagate in its specific host, and thereby the viral 298 community composition is shaped by prokaryotic community composition, abundance of 299 each virus might reflect the abundance of its host. To test this hypothesis, compositions 300 of prokaryotic and viral communities were compared using the information of predicted 301 viral hosts (mostly host phylum- or class level composition). Putative host groups of 302 viruses were predicted using four commonly used genome-based in silico prediction 303 methods (similarity with known viruses, CRISPR-spacer match, tRNA match, and 304 genome homology). First, based on the similarity with cultured viruses, putative host 305 groups of 951 mts-OBV contigs (22) gOTUs) predicted were 306 (Synechococcus/Prochlorococcus, 182 contigs; SAR11, 501 contigs; SAR116, 214 307 contigs; Roseobacter, 31 contigs; others, 23 contigs, Supplementally Table S4). 308 Similarly, putative host groups of 504 mts-OBV contigs (39 gOTUs) were predicted 309 based on the similarity with uncultured viral genomes considering previous assignment 310 of putative hosts (Bacteroidetes, 468 contigs; MGII, 36 contigs [30, 44], Supplementally

| 311 | <b>Table S4</b> ). For other 1 460 mts-OBV contigs ( $\alpha$ -Proteobacteria, 35 gOTUs, 621 contigs;   |
|-----|---------------------------------------------------------------------------------------------------------|
| 312 | Bacteroidetes, 80 contigs; $\gamma$ -Proteobacteria, 236 contigs; $\delta$ -Proteobacteria 326 contigs; |
| 313 | others, 53 contigs, Supplementally Table S4-5), putative host groups were predicted via                 |
| 314 | the sequence similarity (i.e. CRISPR-spacer matching, tRNA matching, and genome                         |
| 315 | homology) between viral (mts-OBVs with previously reported >200,000 marine viral                        |
| 316 | genomes [24, 44, 53–55]) and prokaryotic genomic data sets (>8 000 marine prokaryotic                   |
| 317 | metagenome-assembled genomes in previous studies [56-60] and the genomes in the                         |
| 318 | NCBI RefSeq database). Altogether, we assigned potential host groups for 2 844 mts-                     |
| 319 | OBV contigs ( $\alpha$ -Proteobacteria, 1 375 contigs; Bacteroidetes, 548 contigs; $\delta$ -           |
| 320 | Proteobacteria, 326 contigs; γ-Proteobacteria, 250 contigs; Cyanobacteria 190 contigs,                  |
| 321 | Supplementally Table 4).                                                                                |
| 322 | Major phyla (or classes for Proteobacteria) in the prokaryotic community did not                        |
| 323 | change drastically but the relative abundance of several phyla (classes) exhibited                      |
| 324 | remarkable seasonal dynamics (Figure 2). The seasonal dynamics of the predicted viral                   |
| 325 | hosts resembled the seasonal dynamics of prokaryotes (Figure 2). For example,                           |
| 326 | Cyanobacteria (79% of reads were assigned to OTU_8, Synechococcus) dominated in                         |
| 327 | summer (up to 9.6% and 22.6% of the community in June 2015 and July 2016,                               |
| 328 | respectively, Figure 2) and Synechococcus virus abundance also increased in summer (up                  |

| 329 | to 5.3 and 12.1% of the community in August 2015 and August 2016, respectively,        |
|-----|----------------------------------------------------------------------------------------|
| 330 | Figure 2). Similarly, the relative abundance of Bacteroidetes increased from winter to |
| 331 | spring (up to 33.7% of the community in May 2016, Figure 2) and Bacteroidetes virus    |
| 332 | abundance also increased during spring (up to 30.2% of the community in May 2016,      |
| 333 | Figure 2). Relative abundances of both SAR11 (from 5 to 47% of the community, Figure   |
| 334 | 2) and SAR11 viruses (from 9 to 22% of the community, Figure 2) showed changes over    |
| 335 | time but they were always abundant throughout the observed period. Therefore, virally  |
| 336 | community appear to generally follow the dynamics of their host.                       |

337 However, viral abundance did not always match with their putative host 338 abundance (Supplementally Figure S4). For example, the proportion of putative  $\gamma$ -339 Proteobacteria viruses was lower compared with that of  $\gamma$ -Proteobacteria and the 340 proportion of putative  $\delta$ -Proteobacteria viruses was much higher compared with that of 341  $\delta$ -Proteobacteria (Figure 2). The lack of a tight correlation between viral and host 342 abundance may not be surprising. The host prediction based on genome analysis in this 343 study was mostly at the phylum or class level except for contigs showing similarity with 344 cultured viruses, such as Synechococcus/Prochlorococcus cyanoviruses, while typical 345 prokaryotic viruses could only infect specific host species or strains. Further, although 346 our analysis annotated putative hosts at nearly 60% of the viral community, remaining

| 347 | populations without host prediction may lead to the underestimation of viruses infecting |
|-----|------------------------------------------------------------------------------------------|
| 348 | some taxa. The difference in burst sizes among viruses, which have been estimated to     |
| 349 | range from 6 to 300 in the marine environment [74], can also influence the estimation of |
| 350 | viral abundance. Next, to investigate whether viral abundance increased according to     |
| 351 | specific host abundance, we statistically examined associations (i.e. co-occurrence)     |
| 352 | between the viruses and ASVs extracted from the abundant 73 prokaryotic OTUs .           |
| 353 | Co-occurrence network analysis between the abundant prokaryotes and viruses              |
| 354 | To examine the dynamics of closely related (nearly strain-level) variants within         |
| 355 | each OTU, 114 ASVs (1~4 ASVs per OTU, Supplementally Figure S5) were extracted           |
| 356 | from the abundant 74 OTUs via minimum entropy decomposition [7, 10, 11]. Then,           |
| 357 | pairwise correlations (co-occurrence network) between the 114 prokaryotic ASVs and the   |
| 358 | viral species, which were predicted to infect the prokaryotic ASVs via host prediction   |
| 359 | (e.g. 37 Bacteroidetes ASVs and 548 mts-OBV contigs predicted as Bacteroidetes virus),   |
| 360 | were determined via Spearman's correlations. In total, 6 423 significant correlations    |
| 361 | between 104 prokaryotic ASVs and 1 366 viral species were detected (Figure 3,            |
| 362 | Supplementary Figure S6). The majority (88.6%) of prokaryotic ASVs correlated with       |
| 363 | at least one viral species. In contrast, only 34% and 31% of prokaryotic ASVs positively |
| 364 | and negatively correlated with environmental variables, respectively (Spearman           |

correlations (r>|0.6|, P<0.01, Q<0.05, Supplementary Table S6). The number of co-

365

366 occurring viral species ranged from 0 (13 ASVs) to 359 (ASV6-1, classified into Planktomarina) and the median value was 16. 367 368 Using the detected 6 423 putative virus-host pairs, we examined whether the 369 viruses were abundant when their putative host was abundant. First, four cyanobacterial 370 ASVs and co-occurring 130 cyanovirus species were examined. Since substantial 371 numbers of Synechococcus/Prochlorococcus-virus pairs have been reported in culture-372 based studies [75–78], host prediction for cyanoviruses is likely to be reliable. These 373 cyanoviral species were more dominated in the viral community when their co-occurring 374 ASVs exceeded predicted minimum host cell density for effective propagation of 375 prokaryotic viruses (10<sup>3</sup> cells/ml [79] or 10<sup>4</sup> cells/ml [37], Figure 4, Supplementary 376 Figure S7, S8). Thus, cyanobacterial viral species were not abundant or often 377 undetectable when their putative hosts were less abundant, but they became dominant 378 when putative host abundance increased. This viral increase with host abundance was 379 also observed in 98 other prokaryotic ASVs and their co-occurring viral species (Figure 380 4, Supplementary Figure S7, S8). This result clearly indicates that frequency-dependent 381 viral infection is prevalent in abundant prokaryotes at least between the detected virus-

382 host pairs.

#### 383 Characterization of the virus-host interaction by host taxa

384 The community of viruses showed a higher alpha-diversity that the community 385 of prokaryotes (Supplementary Figure S2), and the co-occurrence analysis indicated 386 one-to-many associations between the host and viral populations (median 16 viral species 387 per a prokaryotic ASV). This suggests that one abundant prokaryotic ASV can interact 388 with multiple viral species. Note that the numbers of co-occurring viral species were 389 overestimated since each contig could be a partial genome fragment derived from the 390 same viral genome (average completeness of mts-OBV contigs was 39%, 391 Supplementary Table S4). However, the contigs classified into different genera (average 392 8 gOTUs) often co-occurred with an ASV. Next, we characterized the "one to many" 393 virus-host interaction network (i.e. how many viruses co-occurred with each ASV) with 394 respect to their host taxa and host growth strategy.

The number of co-occurring viral species for prokaryotic ASVs was generally dependent on the predicted number of their viruses determined via host prediction (**Supplementary Figure S9**). For example, Bacteroidetes viruses (548 viruses) were the second most frequently observed ones and an average of 71.5 viruses co-occurred with Bacteroidetes ASVs (1–208 viruses per ASV, between 37 Bacteroidetes ASVs and 339

| 400                                           | Bacteroidetes viruses). The number of co-occurring viruses could be overestimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 401                                           | because of the double count of co-occurring viruses between two co-occurring ASVs (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 402                                           | ASV-A and ASV-B co-occurred, the viruses co-occurring with ASV-A also can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 403                                           | included in the viruses co-occurring with ASV-B and vice versa. In fact, up to 16 ASV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 404                                           | ASV co-occurring pairs were detected for Bacteroidetes). In contrast, the taxa with less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 405                                           | frequently detected viruses (e.g. MGII, 38 viruses) had a smaller number of co-occurring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 406                                           | populations (0–3 viruses per ASV, Supplementary Figure S9). Thus, the number of co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 407                                           | occurring viral species might be underestimated in these taxa because of host prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 408                                           | limitations. Exceptionally, SAR11 had relatively few co-occurring viral species even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 409                                           | though there were more than 500 putative SAR11 viral species (Supplementary Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409<br>410                                    | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 409<br>410<br>411                             | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral infection [4], and the growth strategy may influence the co-occurrence dynamics with                                                                                                                                                                                                                                                                                                                                                              |
| 409<br>410<br>411<br>412                      | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral infection [4], and the growth strategy may influence the co-occurrence dynamics with viruses. Next, we examined the number of co-occurring viruses among prokaryotic ASVs                                                                                                                                                                                                                                                                         |
| 409<br>410<br>411<br>412<br>413               | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral infection [4], and the growth strategy may influence the co-occurrence dynamics with viruses. Next, we examined the number of co-occurring viruses among prokaryotic ASVs classified in the same taxa depending on the growth strategy to solve this issue.                                                                                                                                                                                       |
| 409<br>410<br>411<br>412<br>413<br>414        | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure</b><br><b>S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral<br>infection [4], and the growth strategy may influence the co-occurrence dynamics with<br>viruses. Next, we examined the number of co-occurring viruses among prokaryotic ASVs<br>classified in the same taxa depending on the growth strategy to solve this issue.<br><b>Characterization of the virus-host interaction by host growth strategy</b>                                                                                   |
| 409<br>410<br>411<br>412<br>413<br>414<br>415 | though there were more than 500 putative SAR11 viral species ( <b>Supplementary Figure S9</b> ). SAR11 is often regarded as a <i>K</i> -strategist, which is believed to be resistant to viral infection [4], and the growth strategy may influence the co-occurrence dynamics with viruses. Next, we examined the number of co-occurring viruses among prokaryotic ASVs classified in the same taxa depending on the growth strategy to solve this issue. <b>Characterization of the virus-host interaction by host growth strategy</b> The growth strategy ( <i>r</i> or <i>K</i> ) of each prokaryotic ASV was defined by the indexes that we |

417 like ASVs (i.e. K-index>12, r-index< 0.1). Among the 13 ASVs, seven were classified

| 418 | into SAR11 (Supplementally Figure S10). Twenty two of 57 ASVs belonging to the                                    |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 419 | taxa previously predicted as r-strategist (i.e. Flavobacteriaceae, Rhodobacteraceae,                              |
| 420 | <i>Vibrio</i> , and Marine Group II) were classified into the <i>r</i> -strategist-like ASVs ( <i>K</i> -index<3, |
| 421 | <i>r</i> -index>0.5, total 33 ASVs) (Supplementally Figure S10). Generally, <i>r</i> -strategist-like             |
| 422 | ASVs, such as members of Bacteroidetes, showed a large number of co-occurring viral                               |
| 423 | species (Supplementally Figure S10). In contrast, K-strategist-like ASVs of                                       |
| 424 | Synechococcus and SAR11 showed relatively few co-occurring viral species                                          |
| 425 | (Supplementally Figure S10). The most abundant ASV of Synechococcus (ASV8-1,                                      |
| 426 | making up 76.7% of the whole cyanobacterial reads) and SAR11 (ASV1-1, occupied 7-                                 |
| 427 | 64% of whole SAR11 reads of each month) showed 7 and 16 co-occurring viruses,                                     |
| 428 | respectively, even though 183 cyanoviruses and 500 SAR11 viruses were detected during                             |
| 429 | the observation (Supplementally Figure S10).                                                                      |
| 400 |                                                                                                                   |

If a temporal switch of virus-host pairs occurred, co-occurrence analysis may fail
to detect virus-host associations.. Therefore, we compared dynamics of the two dominant
prokaryotic ASVs and viral species that did not co-occur with their predicted hosts.
Representative sequence of ASV8-1 matched with the members of *Synechococcus*subcluster 5.1a at 100% of identity. Among the 53 cyanoviral species that did not co-occur with any cyanobacterial ASV, 41 species were classified into two gOTUs (G14,

25

| 436 | T7-like cyanosiphovirus, and G386, T4-like cyanomyovirus), which are known to infect        |
|-----|---------------------------------------------------------------------------------------------|
| 437 | subcluster 5.1a (e.g. Synechococcus sp. WH 8103, clade II), suggesting plausible            |
| 438 | interaction between ASV8-1 and these viruses. ASV8-1 especially dominated during            |
| 439 | summer (maximum 8% and 21% of prokaryotic community in June 2015 and July 2016,             |
| 440 | respectively, Figure 5A). Of these 53 viral species, abundances of which also increased     |
| 441 | in summer, four were only abundant in 2015 (from five to > 170 times abundant in 2015       |
| 442 | than 2016) and other 38 species were more abundant in 2016 (from five to >300 times         |
| 443 | more abundant in 2016 than 2015) (Figure 5A). Similarly, ASV1-1 of SAR11 was always         |
| 444 | abundant (Figure 5B) and SAR11 viruses occupied a major fraction of the viral               |
| 445 | community. However, abundant members of SAR11 viruses (309 contigs) were replaced           |
| 446 | in a relatively short time (a few months) (Figure 5B). These results suggest that the host- |
| 447 | virus interaction might have been underestimated in the co-occurrence analysis and K-       |
| 448 | strategists also interact with multiple viruses based on their cell density.                |
| 449 | Finally, we investigated whether the observed viruses, including those not                  |
| 450 | statistically detected as co-occurring viruses with hosts (e.g., 53 cyanoviruses and 309    |

451 SAR11 viruses in Figure 5), were also produced via increased contact frequency with
452 hosts. To infer the contact frequency, we focused on single-nucleotide polymorphisms
453 (SNPs) in viral genomes. SNPs of closely related viral populations were previously

26

454 observed in abundant viral populations, such as freshwater cyanoviruses [80] and marine 455 viruses in other coastal areas [24]. Since a recent study suggested that the majority of 456 viruses observed in the virome were produced via diel and local viral-host interactions 457 [32], it likely indicates that multiple infection events may lead to the generation of 458 mutations through DNA replications. We thus hypothesized a frequent reproduction and 459 mutations for abundant viruses with an increased contact frequency with their hosts. Therefore, SNPs from mts-OBV contigs with more than ten coverages (2 356 contigs) 460 461 were calculated. We observed an increase of intrapopulation genetic diversity (SNPs 462 quantified by average genomic entropy) as a function of overall population abundance 463 regardless of their host taxa (Supplementary Figure S11). This result corroborates the 464 notion that contact-rate is the key parameter for the viral reproduction regardless of 465 whether they show a long term co-occurrence pattern with their hosts.

#### 466 Ecological interpretation inferred from virus-host dynamics

There are at least three possible mechanisms of the above-mentioned virus-host
pair switch (Figure 5). First, more closely related prokaryotic populations that cannot be
differentiated by the 16S rRNA gene polymorphism could co-occur with viruses.
Previous studies focusing on the polymorphism of ITS sequences (ITS-ASV) in SAR11
and Cyanobacteria reported that ITS-ASV dynamics correlate more with viral dynamics,

472 inferred from T4-like viral marker genes, than 16S-ASV dynamics of these taxa [7, 27]. 473 Therefore, dynamics of more highly resolved populations (e.g. ITS-ASVs or whole 474 genome sequence based-populations) might have synchronized with observed viral 475 dynamics. Second, the temporal acquisition of host resistance or viral counter-resistance 476 as often observed in culture model systems [83] may cause a switch of the dominant viral 477 species. Third, it can be interpreted as a result of the founder effect, following host 478 fluctuation via genetic drift [81]. Seasonal fluctuating of host population cause bottleneck 479 effect, and therefore, the founder effect following the bottleneck effect enables the 480 abundance of several viral species to equally increase. This was suggested as a 481 mechanism of an incomplete selective sweep in the freshwater Cyanobacteria populations 482 having different CRISPR-spacer genotypes [82]. The scenario is more plausible between 483 ASV8-1 and their viruses because ASV8-1 experienced clear seasonal fluctuation 484 (Figure 5A).

Altogether, we revealed that the frequency-dependent infection occurred in abundant prokaryotic populations according to the cell density via "one to many" hostvirus correspondences regardless of the host growth strategy. One to many host-virus correspondences may suggest a prokaryotic species attacked by multiple viruses having a different infection strategy (e.g. different cell surface targets). This can cause difficulties

in establish complete resistance toward multiple co-existing viruses and sustain
continuous virus-host interaction in the environment. The difficulty of the emergence of
"virus-free" species may be a potential mechanism for the prevailed frequency-dependent
selection of abundant marine prokaryotes.

#### 494 **Conclusion**

495 Comparison of monthly dynamics between prokaryotic and viral communities 496 indicated concurrent seasonal shifts at the whole community level. Concurrent seasonal 497 shifts were also broadly observed between the corresponding virus and host pairs at the 498 phylum or class level based on the host prediction analysis. We further statistically 499 confirmed their co-occurrence via network analysis among abundant prokaryotic 500 populations and their viruses regardless of the host taxa or growth strategies. These results 501 suggested that abundant prokaryotes were exposed to frequent viral infection regardless 502 of their taxa or growth strategy. It indicates that lysis of the abundant prokaryotes via viral 503 infection have a considerable contribution to the biogeochemical cycling and 504 maintenance of prokaryotic community diversity. Further, these abundant prokaryotic 505 populations should reflect actively growing members of the community since they 506 became dominant even though they suffered frequent loss by viral lysis.

507

29

#### 508 Acknowledgments

| 509 | KT would like to thank Ryoma Kamikawa, Shigeki Sawayama, and Daichi                      |
|-----|------------------------------------------------------------------------------------------|
| 510 | Morimoto at the Kyoto University for technical comments and preparation of this          |
| 511 | manuscript. KT would also like to thank Hisashi Endo, Florian Prodinger, Hiroaki Takebe, |
| 512 | Kentaro Fujiwara, and Tatsuhiro Isozaki at Kyoto University and Keizo Nagasaki at        |
| 513 | Kochi University for useful discussions. Computational work was supported by the Super   |
| 514 | Computer System, Institute for Chemical Research, Kyoto University. This study was       |
| 515 | supported by Grants-in Aids for Scientific Research KAKENHI (No. 17H03850 and No.        |
| 516 | 21H05057), and Challenging Exploratory Research (No. 26660171) from the Japan            |
| 517 | Society for the Promotion of Science (JSPS), Canon Foundation (No. 203143100025),        |
| 518 | JSPS Scientific Research on Innovative Areas (No. 16H06437), and the Bilateral Open      |
| 519 | Partnership Joint Research Project (Japan-Lithuania Research Cooperative Program)        |
| 520 | "Research on prediction of environmental change in Baltic Sea based on comprehensive     |
| 521 | metagenomic analysis of microbial viruses".                                              |
|     |                                                                                          |

522

#### 523 Conflict of interest

524 The authors declare that the research was conducted in the absence of any commercial

525 or financial relationships that could be constructed as a potential conflict of interest.

| 526 |     |                                                                                               |
|-----|-----|-----------------------------------------------------------------------------------------------|
| 527 | Ref | ferences                                                                                      |
| 528 | 1.  | Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's                  |
| 529 |     | biogeochemical cycles. Science 2008; 320: 1034–9.                                             |
| 530 | 2.  | Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.                   |
| 531 |     | Structure and function of the global ocean microbiome. Science 2015; 348:                     |
| 532 |     | 1261359.                                                                                      |
| 533 | 3.  | Pommier T, Canbäck B, LR-M, 2007 U. Global patterns of diversity and                          |
| 534 |     | community structure in marine bacterioplankton. Molecular Ecology 2006; 16:                   |
| 535 |     | 867–880.                                                                                      |
| 536 | 4.  | Suttle CA. Marine viruses - major players in the global ecosystem. Nature reviews             |
| 537 |     | Microbiology 2007; <b>5</b> : 801–812.                                                        |
| 538 | 5.  | Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al.                    |
| 539 |     | Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced                |
| 540 |     | by a Phytoplankton Bloom. Science 2012; <b>336</b> : 608–611.                                 |
| 541 | 6.  | Needham DM, Fuhrman JA, Cram JA, Fuhrman JA, Sun F. Pronounced daily                          |
| 542 |     | succession of phytoplankton, archaea and bacteria following a spring bloom.                   |
| 543 |     | Nature Microbiology 2016; 1: 16005.                                                           |
| 544 | 7.  | Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence                     |
| 545 |     | among marine phytoplankton, bacteria and myoviruses shows microdiversity                      |
| 546 |     | matters. The ISME Journal 2017; 11: 1614–1629.                                                |
| 547 | 8.  | Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et                  |
| 548 |     | al. Recurrent patterns of microdiversity in a temperate coastal marine environment.           |
| 549 |     | <i>ISME Journal</i> 2018; <b>12</b> : 237–252.                                                |
| 550 | 9.  | Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data                          |
| 551 |     | without clustering to achieve sub-OTU resolution. <i>ISME Journal</i> 2015; <b>9</b> : 68–80. |
| 552 | 10. | Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al.                          |
| 553 |     | Oligotyping: Differentiating between closely related microbial taxa using 16S                 |
| 554 |     | rRNA gene data. <i>Methods in Ecology and Evolution</i> 2013; <b>4</b> : 1111–1119.           |
| 555 | 11. | Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML.                         |
| 556 |     | Minimum entropy decomposition: Unsupervised oligotyping for sensitive                         |
| 557 |     | partitioning of high-throughput marker gene sequences. ISME Journal 2015; 9:                  |
| 558 |     | 968–979.                                                                                      |
| 559 | 12. | Suttle CA. Viruses in the sea. <i>Nature</i> 2005; <b>437</b> : 356–361.                      |

| 560 | 13. | Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the           |
|-----|-----|-----------------------------------------------------------------------------------|
| 561 |     | marine microbial realm. Nature Microbiology 2018; 3: 754–766.                     |
| 562 | 14. | Fuhrman J, Suttle C. Viruses in Marine Planktonic Systems. Oceanography 1993;     |
| 563 |     | <b>6</b> : 51–63.                                                                 |
| 564 | 15. | Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between               |
| 565 |     | Competition and Defense Specialists among Unicellular Planktonic Organisms: the   |
| 566 |     | "Killing the Winner" Hypothesis Revisited. Microbiology and Molecular Biology     |
| 567 |     | <i>Reviews</i> 2010; <b>74</b> : 42–57.                                           |
| 568 | 16. | Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasić L, Thingstad    |
| 569 |     | TF, Rohwer F, et al. Explaining microbial population genomics through phage       |
| 570 |     | predation. Nature reviews Microbiology 2009; 7: 828–36.                           |
| 571 | 17. | Thingstad TF. Elements of a theory for the mechanisms controlling abundance,      |
| 572 |     | diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. |
| 573 |     | Limnology and Oceanography 2000; 45: 1320–1328.                                   |
| 574 | 18. | Våge S, Storesund JE, Thingstad TF. Adding a cost of resistance description       |
| 575 |     | extends the ability of virus-host model to explain observed patterns in structure |
| 576 |     | and function of pelagic microbial communities. Environmental Microbiology         |
| 577 |     | 2013; <b>15</b> : 1842–1852.                                                      |
| 578 | 19. | Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al.       |
| 579 |     | Abundant SAR11 viruses in the ocean. Nature 2013; 494: 357-360.                   |
| 580 | 20. | Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and          |
| 581 |     | their ecological interpretation. Nature Reviews Microbiology 2015; 13: 133-146.   |
| 582 | 21. | Bunse C, Pinhassi J. Marine Bacterioplankton Seasonal Succession Dynamics.        |
| 583 |     | <i>Trends in Microbiology</i> 2017; <b>25</b> : 494–505.                          |
| 584 | 22. | Pagarete A, Chow C-ET, Johannessen T, Fuhrman JA, Thingstad TF, Sandaa RA.        |
| 585 |     | Strong seasonality and interannual recurrence in marine myovirus communities.     |
| 586 |     | Applied and environmental microbiology 2013; <b>79</b> : 6253–9.                  |
| 587 | 23. | Chow CET, Fuhrman JA. Seasonality and monthly dynamics of marine myovirus         |
| 588 |     | communities. Environmental Microbiology 2012; 14: 2171-2183.                      |
| 589 | 24. | Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red          |
| 590 |     | Queen-like strain dynamics in marine viruses. Nature Microbiology . 2020. Nature  |
| 591 |     | Research. , <b>5</b> : 265–271                                                    |
| 592 | 25. | Hwang J, Park SY, Park M, Lee S, Lee T-K. Seasonal Dynamics and                   |
| 593 |     | Metagenomic Characterization of Marine Viruses in Goseong Bay, Korea. PLOS        |
| 594 |     | ONE 2017; <b>12</b> : e0169841.                                                   |

| 595 | 26. | Hevroni G, Flores-Uribe J, Béjà O, Philosof A. Seasonal and diel patterns of        |
|-----|-----|-------------------------------------------------------------------------------------|
| 596 |     | abundance and activity of viruses in the Red Sea. Proceedings of the National       |
| 597 |     | Academy of Sciences of the United States of America 2020; 117: 29738–29747.         |
| 598 | 27. | Ahlgren NA, Perelman JN, Yeh Y, Fuhrman JA. Multi-year dynamics of fine-scale       |
| 599 |     | marine cyanobacterial populations are more strongly explained by phage              |
| 600 |     | interactions than abiotic, bottom-up factors. Environmental Microbiology 2019;      |
| 601 |     | <b>21</b> : 2948–2963.                                                              |
| 602 | 28. | Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery        |
| 603 |     | transforms marine virology. Nature Reviews Microbiology 2015; 13: 147-159.          |
| 604 | 29. | Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to       |
| 605 |     | predict bacteriophage-host relationships. FEMS Microbiology Reviews 2016; 40:       |
| 606 |     | 258–272.                                                                            |
| 607 | 30. | Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico Prediction       |
| 608 |     | of Virus-Host Interactions for Marine Bacteroidetes With the Use of Metagenome-     |
| 609 |     | Assembled Genomes. Frontiers in Microbiology 2020; 11: 738.                         |
| 610 | 31. | Takebe H, Tominaga K, Fujiwara K, Yamamoto K, Yoshida T. Differential               |
| 611 |     | Responses of a Coastal Prokaryotic Community to Phytoplanktonic Organic             |
| 612 |     | Matter Derived from Cellular Components and Exudates. Microbes and                  |
| 613 |     | <i>Environments</i> 2020; <b>35</b> : n/a.                                          |
| 614 | 32. | Yoshida T, Nishimura Y, Watai H, Haruki N, Morimoto D, Kaneko H, et al.             |
| 615 |     | Locality and diel cycling of viral production revealed by a 24 h time course cross- |
| 616 |     | omics analysis in a coastal region of Japan. ISME Journal 2018; 12: 1287–1295.      |
| 617 | 33. | Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a          |
| 618 |     | prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea      |
| 619 |     | using next-generation sequencing. PLoS ONE 2014; 9: e105592.                        |
| 620 | 34. | Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open          |
| 621 |     | source tool for metagenomics. PeerJ 2016; 4: e2584.                                 |
| 622 | 35. | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA        |
| 623 |     | ribosomal RNA gene database project: Improved data processing and web-based         |
| 624 |     | tools. Nucleic Acids Research 2013; 41: D590–D596.                                  |
| 625 | 36. | Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple          |
| 626 |     | sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823-           |
| 627 |     | 1829.                                                                               |
| 628 | 37. | Wiggins BA, Alexander M. Minimum bacterial density for bacteriophage                |
| 629 |     | replication: implications for significance of bacteriophages in natural ecosystems. |
| 630 |     | Applied and environmental microbiology 1985; 49: 19–23.                             |
|     |     |                                                                                     |

631 38. Whitman WB, Coleman DC, Wiebe WJ, Schwalbach MS, Brown M V., Green JL,

- et al. Prokaryotes: the unseen majority. *Proceedings of the National Academy of Sciences of the United States of America* 1998; **95**: 6578–83.
- 634 39. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid
  635 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids*636 *Research* 2002; 30: 3059–3066.
- 40. John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple
  and efficient method for concentration of ocean viruses by chemical flocculation. *Environmental Microbiology Reports* 2011; 3: 195–202.
- 640 41. Hurwitz BL, Deng L, Poulos BT, Sullivan MB. Evaluation of methods to
  641 concentrate and purify ocean virus communities through comparative, replicated
  642 metagenomics. *Environmental microbiology* 2013; 15: 1428–40.
- 643 42. Kimura S, Yoshida T, Hosoda N, Honda T, Kuno S, Kamiji R, et al. Diurnal
  644 infection patterns and impact of Microcystis cyanophages in a Japanese pond.
  645 *Applied and Environmental Microbiology* 2012; **78**: 5805–5811.
- 646 43. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
  647 SPAdes: A new genome assembly algorithm and its applications to single-cell
  648 sequencing. *Journal of Computational Biology* 2012; 19: 455–477.
- 649 44. Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, et al. Environmental
  650 Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. *mSphere*651 2017; 2: e00359-16.
- 45. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of
  protein or nucleotide sequences. *Bioinformatics* 2006; 22: 1658–1659.
- 46. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC.
  655 CheckV assesses the quality and completeness of metagenome-assembled viral
  656 genomes. *Nature Biotechnology* 2020; 1–8.
- 47. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the
  viral proteomic tree server. *Bioinformatics* 2017; 33: 2379–2380.
- 48. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 2012; 9: 357–359.
- 49. Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, et al.
  Linking Virus Genomes with Host Taxonomy. *Viruses* 2016; 8: 66.
- 50. Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and
  abundant pelagiphages in the ocean. *Environmental Microbiology* 2020; 14622920.15272.

| 666 | 51. | Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M,              |
|-----|-----|--------------------------------------------------------------------------------------|
| 667 |     | Mikhailova N, et al. Uncovering Earth's virome. Nature 2016; 536: 425-430.           |
| 668 | 52. | Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al.                    |
| 669 |     | Ecogenomics and potential biogeochemical impacts of globally abundant ocean          |
| 670 |     | viruses. Nature 2016; 537: 689–693.                                                  |
| 671 | 53. | Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et         |
| 672 |     | al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 2019;         |
| 673 |     | <b>177</b> : 1109-1123.e14.                                                          |
| 674 | 54. | Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valeraa F. Genomes            |
| 675 |     | of abundant and widespread viruses from the deep ocean. <i>mBio</i> 2016; <b>7</b> . |
| 676 | 55. | Luo E, Aylward FO, Mende DR, DeLong EF. Bacteriophage Distributions and              |
| 677 |     | Temporal Variability in the Ocean's Interior. mBio 2017; 8: e01903-17.               |
| 678 | 56. | Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft                |
| 679 |     | metagenome-assembled genomes from the global oceans. <i>Scientific Data</i> 2018; 5: |
| 680 |     | 170203.                                                                              |
| 681 | 57. | Tully BJ, Sachdeva R, Graham ED, Heidelberg JF. 290 metagenome-assembled             |
| 682 |     | genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ        |
| 683 |     | 2017; <b>5</b> : e3558.                                                              |
| 684 | 58. | Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-         |
| 685 |     | fixing populations of Planctomycetes and Proteobacteria are abundant in surface      |
| 686 |     | ocean metagenomes. Nature Microbiology 2018; 3: 804-813.                             |
| 687 | 59. | Krüger K, Chafee M, Ben Francis T, Glavina del Rio T, Becher D, Schweder T, et       |
| 688 |     | al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is    |
| 689 |     | mediated by few clades using a restricted set of genes. ISME Journal 2019; 13:       |
| 690 |     | 2800–2816.                                                                           |
| 691 | 60. | Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al.            |
| 692 |     | Charting the Complexity of the Marine Microbiome through Single-Cell                 |
| 693 |     | Genomics. Cell 2019; 179: 1623-1635.e11.                                             |
| 694 | 61. | Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from       |
| 695 |     | microbial genomic data. PeerJ 2015; 3: e985.                                         |
| 696 | 62. | Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR            |
| 697 |     | Recognition Tool (CRT): a tool for automatic detection of clustered regularly        |
| 698 |     | interspaced palindromic repeats. BMC Bioinformatics 2007; 8: 209.                    |
| 699 | 63. | Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display          |
| 700 |     | CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics      |
| 701 |     | 2007; <b>8</b> : 172.                                                                |
|     |     |                                                                                      |

| 64. | Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | BLAST+: architecture and applications. <i>BMC Bioinformatics</i> 2009; <b>10</b> : 421.                                                                                             |
| 65. | Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA                                                                                                             |
|     | genes in nucleotide sequences. Nucleic Acids Research 2004; 32: 11–16.                                                                                                              |
| 66. | Chan PP, Lowe TM. GtRNAdb 2.0: An expanded database of transfer RNA genes                                                                                                           |
|     | identified in complete and draft genomes. Nucleic Acids Research 2016; 44:                                                                                                          |
|     | D184–D189.                                                                                                                                                                          |
| 67. | Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al.                                                                                                          |
|     | vegan: Community Ecology Package. 2020.                                                                                                                                             |
| 68. | Dixon P. VEGAN, a package of R functions for community ecology. Journal of                                                                                                          |
|     | <i>Vegetation Science</i> 2003; <b>14</b> : 927–930.                                                                                                                                |
| 69. | Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, et al. Extended                                                                                                      |
|     | local similarity analysis (eLSA) of microbial community and other time series data                                                                                                  |
|     | with replicates. BMC Systems Biology 2011; 5: S15.                                                                                                                                  |
| 70. | Xia LC, Ai D, Cram J, Fuhrman JA, Sun F. Efficient statistical significance                                                                                                         |
|     | approximation for local similarity analysis of high-throughput time series data.                                                                                                    |
|     | Bioinformatics 2013; 29: 230–237.                                                                                                                                                   |
| 71. | Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:                                                                                                      |
|     | A software Environment for integrated models of biomolecular interaction                                                                                                            |
|     | networks. Genome Research 2003; 13: 2498–2504.                                                                                                                                      |
| 72. | Li H. A statistical framework for SNP calling, mutation discovery, association                                                                                                      |
|     | mapping and population genetical parameter estimation from sequencing data.                                                                                                         |
|     | <i>Bioinformatics</i> 2011; <b>27</b> : 2987–2993.                                                                                                                                  |
| 73. | Roux S, Adriaenssens EM, Dutilh BE, Koonin E V., Kropinski AM, Krupovic M,                                                                                                          |
|     | et al. Minimum information about an uncultivated virus genome (MIUVIG).                                                                                                             |
|     | Nature Biotechnology 2019; <b>37</b> : 29–37.                                                                                                                                       |
| 74. | Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes                                                                                                    |
|     | in aquatic systems. Journal of the Marine Biological Association of the United                                                                                                      |
|     | Kingdom . 2006. Cambridge University Press., 86: 613–621                                                                                                                            |
| 75. | Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic                                                                                                           |
|     | cyanobacterium Prochlorococcus. Nature 2003; 424: 1047-1051.                                                                                                                        |
| 76. | Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine                                                                                                           |
|     |                                                                                                                                                                                     |
|     | Synechococcus communities to coexist with cyanophages abundant in seawater.                                                                                                         |
|     | <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> <li>71.</li> <li>72.</li> <li>73.</li> <li>74.</li> <li>75.</li> <li>76.</li> </ul> |

| 736 | 77.                                                                                 | Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three                          |
|-----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 737 |                                                                                     | Prochlorococcus Cyanophage Genomes: Signature Features and Ecological                     |
| 738 |                                                                                     | Interpretations. <i>PLoS Biology</i> 2005; <b>3</b> : e144.                               |
| 739 | 78.                                                                                 | Suttle CA, Chan AM. Marine cyanophages infecting oceanic and coastal strains of           |
| 740 |                                                                                     | Synechococcus: abundance, morphology, cross-infectivity and growth                        |
| 741 |                                                                                     | characteristics. <i>Marine Ecology Progress Series</i> 1993; <b>92</b> : 99–109.          |
| 742 | 79.                                                                                 | Suttle CA, Chan AM. Dynamics and distribution of cyanophages and their effect             |
| 743 |                                                                                     | on marine Synechococcus spp. <i>Applied and Environmental Microbiology</i> 1994;          |
| 744 |                                                                                     | <b>60</b> : 3167–3174.                                                                    |
| 745 | 80.                                                                                 | Kimura S, Sako Y, Yoshida T. Rapid Microcystis Cyanophage Gene                            |
| 746 |                                                                                     | Diversification Revealed by Long- and Short-Term Genetic Analyses of the Tail             |
| 747 |                                                                                     | Sheath Gene in a Natural Pond. <i>Appl Environ Microbiol</i> 2013; <b>79</b> : 2789–2795. |
| 748 | 81.                                                                                 | Cohan FM, Perry EB. A Systematics for Discovering the Fundamental Units of                |
| 749 |                                                                                     | Bacterial Diversity. <i>Current Biology</i> . 2007. Cell Press. , <b>17</b> : R373–R386   |
| 750 | 82.                                                                                 | Kimura S, Uehara M, Morimoto D, Yamanaka M, Sako Y, Yoshida T. Incomplete                 |
| 751 |                                                                                     | selective sweeps of Microcystis population detected by the leader-end CRISPR              |
| 752 |                                                                                     | fragment analysis in a natural pond. Frontiers in Microbiology 2018; 9: 425.              |
| 753 | 83.                                                                                 | Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological           |
| 754 |                                                                                     | and evolutionary processes in microbial communities. FEMS Microbiology                    |
| 755 |                                                                                     | <i>Reviews</i> 2014; <b>38</b> : 916–931.                                                 |
| 756 | 84.                                                                                 | Thingstad TF, Vage S, Storesund JE, Sandaa RA, Giske J. A theoretical analysis of         |
| 757 |                                                                                     | how strain-specific viruses can control microbial species diversity. Proceedings of       |
| 758 |                                                                                     | the National Academy of Sciences of the United States of America 2014; <b>111</b> :       |
| 759 |                                                                                     | 7813–7818.                                                                                |
| 760 |                                                                                     |                                                                                           |
| 761 | Fig                                                                                 | ure legends                                                                               |
| 762 |                                                                                     |                                                                                           |
| 763 | Fig                                                                                 | ures                                                                                      |
| 764 | Figu                                                                                | re 1. Seasonality of the prokaryotes and viruses at the Osaka Bay (OB) during             |
| 765 | obse                                                                                | ervation.                                                                                 |
| 766 | The Bray-Curtis community similarity index was calculated among all of the possible |                                                                                           |
| 767 | sample pairs from normalized abundances of prokaryotic OTUs and OBV contigs and     |                                                                                           |
| 768 | plot                                                                                | ted as a function of the number of months separating their sampling.                      |
| 769 | Figu                                                                                | re 2. Comparison of prokaryotic and viral taxonomic community composition                 |
| 770 | base                                                                                | ed on the host prediction.                                                                |

- 771 (A) Relative abundance of phylogenetic groups of prokaryotic communities. Quality-
- 772 controlled reads were clustered into OTUs with sequence identity of 99% using
- 773 VSEARCH (Rognes et al., 2016). These OTUs were classified at the phylum level (class
- 1774 level for Proteobacteria) using SINA (Pruesse et al., 2012).
- 775 (B) Relative abundance of viruses based on their putative hosts assigned by host
- 776 prediction. Normalized abundances of viral contigs were calculated from fragments per
- kilobase of per million reads mapped (FPKM) value.
- 778

# Figure 3. Broad overview of detected positive correlations between prokaryotic ASVs and viral populations which potentially infect each prokaryotic taxa based on host prediction analysis.

- 782 (A) Flavobacteria and their viruses. (B)  $\alpha$ -proteobacteria and viruses. (C)  $\gamma$ -
- 783 proteobacteria and their viruses. (D) Cyanobacteria and their viruses. (E) Other major
- groups (SAR324, Marine group II, and Actinobacteria) and their viruses. Prokaryotic
- nodes are circles and viral node are v-shapes. Node color indicates prokaryotic taxa.
- 786 Solid lines are positive correlations.
- 787

### Figure 4. Increase of viral abundance according to the host cell density between cooccurring host-virus pairs.

- Normalized relative rank of each virus in community  $(0 \sim 1)$  were plotted when their putative host relative abundance exceeding 1% ( $\Rightarrow 10^4$  cells/ml, vellow), 0.1% ( $\Rightarrow 10^3$
- rells/ml, green), and below 0.1% (blue). Boxplots are constructed with the upper and

793 lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as794 points.

795

## Figure 5. Dynamics of the most dominant prokaryotic population (ASV1-1 and ASV8-1) with viruses which predicted to infect these host taxa by host prediction

#### analysis but did not co-occurred with any ASV.

799 (A) Dynamics of ASV8-1 which classified into Synechococcus and 53 cyanoviruses 800 which did not co-occurred with cyanobacterial ASVs. (B) Area chart represents relative 801 abundance of the ASV8-1 and lines represents viral contigs over time. The panels were 802 separated by viral annual pattern (2015 type, 2016 type, and both years, if the virus was 803 more than five times abundant in one year comparing with another year, the virus was 804 defined as year-specific virus). Colors represent gOTU (genus) of the virus. (B) Dynamics 805 of ASV1-1 which classified into SAR11 clade and 309 putative SAR11 viruses which did 806 not co-occurred with any SAR11 ASVs. Area chart represents relative abundance of the

ASV1-1 and lines represents viral contigs over time. The panel were separated based onthe classified gOTUs of each virus.

809

#### 810 Supplementary Figure/Tables

811

### 812 Supplementary Figure S1. Virome abundance of OBV long contigs as assessed by 813 putative *terL* genes.

Abundance of 1,078 mts-OBV long contigs (indicated by red) was assessed by the
abundance of putative *terL* genes (from 4,666 contigs in total). y-axis represents the *terL*FPKM of each virus. Contigs (x-axis) are lined in order of the assembled month (from
2015 May to 2016 Nov ).

818

### 819 Supplementary Figure S2. Alpha diversity profiles of prokaryotic and viral820 communities in Osaka bay during observation.

- 821 Average of Shannon H' (A), richness (number of OTUs or contigs, C), and evenness
- 822 (Pielou's j: Shannon diversity divided by log richness, E) were calculated from
- 823 normalized abundances of prokaryotic OTUs based on rarefied reads and viral contigs
- 824 from fragments per kilobase of per million reads mapped (FPKM) value. The boxes
- 825 represent the first quartile, median, and third quartile. Asterisks denote significance
- 826 (Student's t-test adjusted by Bonferroni correction., \*\*\*p < 0.001). The change of
- 827 Shannon H' (B), richness (D), and evenness (F) of prokaryotic and viral communities of828 the time-series were plotted.
- 829

### 830 Supplementary Figure S3. Changes in environmental parameters at the Osaka Bay831 (OB).

- 832 Heatmap represents z-score transformed value of measured environmental parameters.
- 833

### 834 Supplementary Figure S4. Relationship of relative abundance of prokaryotic taxa 835 and viruses predicted to infect the corresponding prokaryotic taxa.

- 836 x-axis indicate relative abundance of viruses at each month. y-axis indicate relative
- abundance of prokaryotes at corresponding month. Pro indicate the prokaryotic taxa and
- 838 Vir indicate putative host of the viruses.
- 839 Supplementary Figure S5. Dynamics of abundant prokaryotic OTUs and its840 decomposed ASVs.

841 The yellow area-graph represents the relative abundance over time of each abundant OTU

- 842 as a proportion of the whole community. The colored lines are the estimated relative
- abundance of each ASV (only >0.1% in abundance among whole community are shown)
- as a proportion of the whole community of prokaryotic sequences.
- 845

#### 846 Supplementary Figure S6. Dynamics of ASVs and their co-occurring viruses

- 847 The yellow area-graph represents the normalized relative abundance (0 to 1) over time of
  848 each ASV. The dashed lines represents the normalized relative abundance (0 to 1) over
  849 time of each viruses which co-occurred with the ASVs. Only up to top 30 most abundant
  850 co-occurred viruses were show for each ASV.
- 851

### 852 Supplementary Figure S7. Plots of relative abundance of co-occurring host-virus853 pairs.

- Relative abundance of each prokaryotic ASV and their co-occurring viruses at each
  month were shown. Black and red dot-lines represents 10<sup>3</sup> cells/ml and 10<sup>4</sup> cells/ml of
  host abundance, respectively.
- 857

### 858 Supplementary Figure S8. Comparison of relative rank of viruses and host ASVs 859 abundance among co-occurring host-virus pairs.

- 860 Normalized relative rank of each virus in community  $(0 \sim 1)$  were plotted when their 861 putative host ASV relative abundance exceeding 1% ( $\doteq 10^4$  cells/ml, yellow), 0.1% ( $\doteq$ 862  $10^3$  cells/ml, green), and below 0.1% (blue). Boxplots are constructed with the upper and 863 lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as points. 864
- 865 Supplementary Figure S9. Number of virus-host co-occurring pairs by taxa.
- Number of detected viruses by host prediction of each host taxa were shown as blue (first
  y-axis) and number of co-occurring viruses per an ASV (on average) by host taxa were
  show as yellow (second y-axis).
- 869

# 870 Supplementary Figure S10. Distribution of the number of co-occurring viruses 871 among prokaryotic ASVs based on their growth strategy inferred from 872 approximated index of carrying capacity (K) and intrinsic rate of natural increase 873 (r) based on their dynamics.

- 874 x-axis indicates approximation index of *r* and y-axis indicates approximation index of *K*.
  875 Size of the circles represents the number of co-occurring viruses with each ASV. Color
- 876 of the circles indicate the taxa of each ASV.

#### 877

| 878 | Figure S11. Correlation of genome average entropy and abundance of OBV                      |
|-----|---------------------------------------------------------------------------------------------|
| 879 | contigs calculated from SNP profiles.                                                       |
| 880 | The graphs show the average genomic entropy of mts-OBV contigs and read coverage            |
| 881 | of the mts-OBV contigs at given time-series samples. The panel were separated based         |
| 882 | on the predicted hosts of the mts-OBV contigs.                                              |
| 883 |                                                                                             |
| 884 | Supplementary Table S1. Basic statistics of microbial and viral genomes used for            |
| 885 | the host prediction analysis.                                                               |
|     |                                                                                             |
| 886 | Supplementary Table S2. 16S rRNA amplicon and virome read sequences in each                 |
| 887 | time series samples.                                                                        |
| 888 | Supplementary Table S3. Rho values of Partial Mantel tests for prokarvotic and              |
| 889 | viral communities and environmental parameters. The value in each box is the Rho            |
| 890 | value and data with $p < 0.005$ are indicated with * and with $p < 0.01$ are indicated with |
| 891 | **                                                                                          |
|     |                                                                                             |
| 892 | Supplementary Table S4. General genomic features and putative hosts of 5,226                |
| 893 | mts-OBV contigs.                                                                            |
| 004 | Supplementary Table 65 Dutative views hast pairs predicted in this study by                 |
| 094 | Supplementary Table S5. Futative virus-nost pairs predicted in this study by                |
| 895 | methods based on CRISPR-spacers, tRNA, and nost-virus genomic similarity.                   |
| 896 |                                                                                             |
| 897 | Supplementary Table S6. Detected significant Spearman's correlations $(r> 0.6 ,$            |
| 898 | p < 0.01, q < 0.05) between environmental variables and dynamics of ASVs.                   |
| 899 |                                                                                             |
|     |                                                                                             |



Figure 1. Seasonality of the prokaryotes and viruses at the Osaka Bay (OB) during observation.





Figure 2. Comparison of prokaryotic and viral taxonomic community composition based on the host prediction.

(B)



Figure 3. Broad overview of detected positive correlations between prokaryotic ASVs and viral populations which potentially infect each prokaryotic taxa based on host prediction analysis.



Figure 4. Increase of viral abundance according to the host cell density between co-occurring host-virus pairs.



Figure 5. Dynamics of the most dominant prokaryotic population (ASV1-1 and ASV8-1) with viruses which predicted to infect these host taxa by host prediction analysis but did not co-occurred with any ASV.