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Abstract

Electrocardiograms (ECG) record the heart activity and are the most common and reliable method to detect cardiac arrhythmias,
such as atrial fibrillation (AFib). Lately, many commercially available devices such as smartwatches are offering ECG monitoring.
Therefore, there is increasing demand for designing deep learning models with the perspective to be physically implemented on
these small portable devices with limited energy supply. In this paper, a workflow for the design of small, energy-efficient recurrent
convolutional neural network (RCNN) architecture for AFib detection is proposed. However, the approach can be well generalized
to every type of long time series. In contrast to previous studies, that demand thousands of additional network neurons and millions
of extra model parameters, the logical steps for the generation of a CNN with only 114 trainable parameters are described. The
model consists of a small segmented CNN in combination with an optimal energy classifier. The architectural decisions are made
by using the energy consumption as a metric in an equally important way as the accuracy. The optimisation steps are focused on the
software which can be embedded afterwards on a physical chip. Finally, a comparison with some previous relevant studies suggests
that the widely used huge CNNss for similar tasks are mostly redundant and unessentially computationally expensive.

1. Introduction

Monitoring, analysis and classification of the heart electri-
cal activity have attracted the interest of the scientific commu-
nity and became a field with a variety of commercial appli-
cations [} 2]]. Small portable devices, such as smartwatches,
or implantable heart recorders [3] are capable of monitoring
a heart’s rhythm and activity. Their small size and their high
production and placement costs require hardware with low en-
ergy consumption. Consequently, the embedded software on
these devices, which is responsible for the detection of abnor-
mal heart thythm (arrhythmia), must have restricted computa-
tional requirements.

Atrial fibrillation (AFib) is a type of arrhythmia caused by
disorganised atrial functionality. It is the most common car-
diac arrhythmia with a rate of 1% in the general population [4].
AFib can be diagnosed by the electrocardiograph (ECG), as the
irregular, fast heartbeat leads to the absence of the P-wave, ir-
regularities of the R-peaks and quite often in narrow QRS com-
plexes. Although these fibrillatory waves are one of the major
causes of strokes, early diagnosis of AFib and prompt treatment
can inhibit the risk adequately [3]].

Artificial intelligence has permitted the design of models
which are able to address this issue instantly, by classifying
in real-time the ECGs, indicating different types of heart ar-
rhythmia and giving recommendations for further investigation
and treatment by a cardiologist. Before the extended usage of
deep learning, researchers alluded models for the automatic de-
tection of arrhythmia based on heavy feature extraction strate-
gies, which are application specific and require domain knowl-
edge. Nowadays, the Convolutional Neural Networks (CNNs)

and the Recurrent Neural Networks (RNNs) are the most com-
mon approaches used for the detection of miscellaneous types
of arrhythmias, with results that pledge high performances. The
success of CNNs is mainly due to their ability to "learn” all the
essential features and classify them accordingly.

Hannun et al. [6] proposed a 34-layer CNN for the detection
and categorisation to rhythm classes with higher accuracy than
trained cardiologists. Before this, other studies used CNNs to
develop accurate models for arrhythmia classification and Afib
detection [7, 8}, 19, [10]]. Furthermore, recurrent connections be-
tween the segments of ECG signals were used in [[11] and [[12].
In the former study the final dense layer , that is responsible
for the decision, was replaced by a Support Vector Machine
(SVM), while in the latter one additional attention layer was
included. Finally, skip connections were used by Xiong et al.
[13].

However none of the above mentioned studies, whose main
objective is to detect accurately these heart abnormalities, has
considered the resulting energy consumption of these models
which is an important aspect once they are placed on portable,
wearable devices. Specifically, when the only concern is the ac-
curacy of the CNN it is straightforward that deeper architectures
will perform better, given that more detailed features are de-
tected (certainly if overfitting is avoided). But when we are in-
terested in the implementation of the model on actual integrated
circuits this is a point that we should contemplate. Having en-
ergy efficient hardware components can obviously minimise the
need for energy supply but software-wise speaking implement-
ing huge models with hundreds of thousands of neurons and
millions of connections is almost certainly energy-inefficient.
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Some previous studies, in different domains of application,
have already addressed this issue by developing techniques that

simplify the CNN architecture and decrease the number of weights.

Structured sparsity is first mentioned at the early years of neu-
ral networks [14]. Since then, multiple works have used it to
compress the network’s architecture. Han et al. [[15] proposed
a pruning strategy with quantisation of the trained weights in
order to enable weight sharing and Huffman encoding. They
achieved four times layerwise speedup and seven times more
energy efficiency. A structured pruning method by particle fil-
tering on kernels and feature maps was introduced by Anwar et
al. [[16]. The different structures were evaluated by the classifi-
cation accuracy with proved good performance on small CNNs.
The not important parameters were excluded in the studies of
Alvarez et al. [17]] and Zhou et al.[18]] taking advantage also of
the structured sparsity. Another approach for generating simpli-
fied versions of neural networks while maintaining all the pre-
dicting capabilities of the bigger ones is the Knowledge Dis-
tillation(KD). In the works of Bucila et al. [19] and [20] KD
was applied and a smaller student network was trained simul-
taneously with a much bigger feacher network by optimising
the loss function between them, proving the satisfactory perfor-
mance of the student network although its much smaller, com-
pressed architecture.

These methods propose a lightweight version of the initial
network. Despite the benefits they may have by reducing the
network size, they are mainly considering the efficiency of the
network only after training. Supposing we care about a future
implementation on hardware, we are interested on a stable ar-
chitecture that can be updated by changing the model param-
eters, while maintaining the basic structure. By pruning the
network weights and architecture in a second step, the gener-
alisability of the network is affected and a future update will
demand drastic intervention on the network design. And this is
a condition that results to additional time and financial burdens
for the hardware producers. Therefore, we deem it necessary
to consider the energy efficiency while designing the models.
An attempt in this direction was done by Amirshahi et al. in
[21]], where an ECG classification algorithm was developed for
energy efficient wearable devices with the use of spiking neu-
ral networks. They suggested the transformation to the spike
domain by encoding the heartbeat signals into spikes and us-
ing the spike-timing dependent plasticity to train the weights
of the layers according to the spike timings. They show that,
since the calculations are done in the spike domain, the energy
consumption is significantly reduced.

In this study we are presenting an accurate energy-efficient
architecture to detect arrhythmia with minimised number of
nodes and connections in a way that a possible implementa-
tion of the model on physical chips can benefit low energy con-
straints and actual area. For the purpose of the paper we apply
our method on the detection and classification of atrial fibril-
lation. The input ECG signals are segmented to non-labeled
windows of equal length. Although the labels of our dataset
are provided per signal, the networks are generated in such a
way that can detect Afib per segment. The models can lead to
devices with more durability, less charge cycles and reduced

computation power while at the same time the high detection
capabilities are preserved. Our method is not scenario specific.
It can be applied on every kind of time series, generalised to
more classes, different kinds of inputs and addresses the as-
pect of energy-efficient neural networks assessing that large ar-
chitectures are mostly redundant. In the context of this paper,
we are focusing on the software implementation with features
that will allow us to embed it later on a physical chip. In the
next sections the exact workflow for energy-optimised models
is described. The performances are analysed and compared to
other relevant recently published studies, which suggest net-
works with thousands of extra nodes and millions of additional
trainable parameters.

2. Materials and method

2.1. Overview

In the following subsections, the workflow for the design
of energy-efficient CNNs is presented. Our method suggests a
pipeline for the construction of CNNs for time series that has
as guideline not only the precision in the detection but also the
energy efficiency. The energy consumption, defined here by the
network size, number of computations and amount of trainable
parameters, contributes to the choice of the final model archi-
tecture and it is coupled with the training of the network. The
network optimisation consists of a grid search in thousands of
models, network segmentation and application of the optimal
energy classifier. An overview is shown in Figure[I] The exact
steps are the following:

1. preprocessing of the input signal for noise reduction,

2. construction of multiple model architectures with a grid
search for different number of filters, filter kernels, layers
and pooling sizes.

3. training of the models

4. comparison of the candidate models using as a metric the
accuracy and the energy consumption. The choice of the
candidate models is done by setting an accuracy thresh-
old and searching for the ones that minimise the energy
consumption.

5. model segmentation to enable predictions per segment

6. find best parameter values for the optimal energy classi-
fier

After the last steps of energy optimisation (model segmen-
tation, optimal energy classifier) the optimal model which has
the fewest trainable parameters while preserving high accuracy
can be selected.

2.2. ECG dataset

The data used for this study was provided by the Bundesmin-
isterium fiir Bildung und Forschung(BMBFﬂ in the context of

1 https://www.bmbf.de/
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Figure 1: Workflow for the generation of energy-efficient models for time series.

the project "Energieeffizientes KI-System". The dataset con-
sists of 16.000 ECG signals, 8.000 with AFib and 8.000 con-
trol cases of sinus thythm. The signals were measured by a
portable device PM1000, GETEMED AG and the two channel
ECGs (leads I and II) were provided. Each of them has a dura-
tion of approximately 120 seconds with sampling rate 512 Hz.
Examples of the signal data are shown in Fig. 2]

2.3. Dataset with ECG signals

For the purpose of our approach the 2 minutes were sec-
tioned into 17 segments with equal duration of 7 seconds. The
7 seconds duration for the windows was selected after trials,
where we searched for the minimum necessary duration which
can lead to accurate Afib detection. Though, the labels are as-
signed to the whole signal and not to each segment. The AFib
signals have not only persistent fibrillatory waves in the entire
duration but also paroxysmal events, where AFib can be de-
tected only for some seconds and then the normal rhythm re-
curs. It is observed that at the beginning of the ECGs, a noisy,
not periodical wave is appearing as a results of the placement
and initial calibration of the device. Thus, the first segment of
each of the ECGs was excluded by the training process. The
rest of the noise that arises by the hardware measurement de-
vice or by the human movement was handled partially by the
preprocessing step and by our proposed model that is robust to
disturbed signals.

2.4. Band-pass filter for ECG signal preprocessing

One of the main difficulties that we should overcome when
monitoring continuous ECG signals is the noise by muscle stim-
ulators, magnetic fields, corrupted signal caused by electrode
misplacement, baseline wander or even noise generated by the
respiration of the individuals. In order to distinguish the main
artifacts of the ECG from the noise a band-pass Butterworth
filter was applied on the raw signal.

In order to enable the transfer of our architecture design on a
physical hardware, the preprocessing strategy was chosen prop-
erly. A 14th order Infinite Impulse Response (IIR) filter was
used, which could be energy efficiently implemented in analog
or digital hardware. The parameters of the 7 biquad blocks of
the second order stage (SOS) architecture can be determined
to achieve the wanted transfer function of the bandpass filter.
The high order of the filter enables a very good suppression of
baseline errors and noise. The future hardware implementation
will of course need a proper rearrangement of the second order
stages to keep the amplitude in between the filter stages in a
reasonable range.

The application of the filter was done on the frequency do-
main by eliminating all the frequencies smaller than 5 and big-
ger than 30 Hz. In figure[3|one ECG signal is plotted before and
after the denoising by the bandpass filter. By doing so, the CNN
is capable of finding optimal patterns in both of the classes and
extract features that differentiate them. The bandpass filter has
not only a smoothing effect on the signal but also centers the
signal around zero.

2.5. Convolutional neural networks (CNNs)

CNNss are a popular type of deep learning models that have
huge potential in a variety of disciplines. Many studies have
used them for image and signal classification, object detection,
signal denoising and many others. They are mainly consisting
of three different operations constructed as layers. The convo-
lutional layer, the activation function and the pooling layer. A
CNN’s ability to extract highly complex and data-driven fea-
tures for all the above mentioned scenarios is mainly due to
the convolution operations. More precisely, each convolutional
layer applies a cascade of filters, commonly known as kernels,
on the input signal and is arranged in feature maps, each of
which extracts different kinds of features.

Considering the complexity of the input signals, the linear
nature of the convolution cannot capture all the underlying in-
formation. Therefore, the activation functions serve as a map-
ping of the previous layer to the next one in a non-linear man-
ner. However, the application of multiple filters on the same
input often dramatically increases the dimensions of the feature
maps, thus the pooling operation is responsible of condensing
the complexity of the CNN simply by down-sampling informa-
tion. Commonly, the generated features of the CNN are fed into
fully connected layers with dense connections between them.
The number of the layers, the kernel, pooling size and the num-
ber of nodes in the fully connected layers are some of the hyper-
parameters, that define the structure of the CNN and should be
chosen appropriately with regard to network performance and
learning ability.

Nevertheless, when there is a need of energy efficiency and
limited network size, it is recommended to minimise the num-
ber of nodes, edges and the overall computations, while pre-
serving high accuracy. The property of CNNs to apply the same
kernel along the whole signal without changing its weights is
called weight sharing. This attribute can scale down exces-
sively the number of trainable parameters that should be calcu-
lated during learning and also limit the memory requirements
for the weight storage.
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Figure 2: Two example ECG signals of the dataset, one of each class, are illustrated. The subfigure (a) is a control case that corresponds to the sinus rhythm and the
subfigure (b) is an example of atrial fibrillation. In both of the cases one segment of 7 seconds is depicted.
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Figure 3: ECG signal before and after the application of the bandpass filter. The red line is the signal before the preprocessing. After the elimination of the
frequencies smaller than 5 Hz and bigger than 30 Hz the "clean" signal is centered and shown in blue color.

2.6. Initial CNN architecture

The first training of the candidate networks was done as fol-
lows. All the 16 segments of each signal are passed through the
feature extractor of the CNNs. The output of the last pooling
layer is flattened and fully connected to 4 nodes. At the end
4 % 16 = 64 nodes were saved for the whole approximately 2
minutes signal and were fully connected to the output node us-
ing the sigmoid activation function. By doing so, we are forcing
the CNN to learn general representations based on the whole
signal, reducing the risk of filters which are performing well
only locally (for example at the beginning or at the end of the
signal).

2.7. CNN Learning

The initial CNNs were trained with the adaptive moment
(Adam) optimizer [22]. For the convergence of the CNN to
an optimal value, the binary cross entropy loss function was
applied:

out_size

Loss = — D, vilogdi+(1-y)logl =3, (1)
i=1

out_size

where y is the ground truth and y the predicted class.

Also, a dropout layer with parameter 0.5 is implemented be-
fore the fully connected layer to avoid overfitting. This means
that during the training only 50% of all the weights are updated
at each iteration.

We used the following procedure to assess the performance
of the models: The training set was randomly split into 80%
for training, 20% for testing and 10% of the training subset was
used for validation (see Tab. [I). Parameter optimization was

done only on the validation set, whereas performance compu-
tation was done on the test set. By design it cannot happen that
a full ECG, or a segment of it, from the same person is part of
the training and test set. All ECGs which are part of the test or
validation set, are independent of the ones used for training in
order to avoid an overoptimistic performance assessment of the
models.

2.8. CNN architecture comparison

Choosing the right CNN architecture can be quite challeng-
ing, because many hyperparameters need to be learned as men-
tioned above. In our application, the accuracy is not the only
metric that we want to optimise. Although a model can be
accurate enough for AFib detection, if its complexity is quite
high and with many nodes and connections, then the energy
consumption for the prediction of one ECG signal will be very
large if the model will be integrated on a hardware with limited

energy supply.

We conducted a grid search over number of filters, kernel
size and pooling size to find the optimal architecture. By set-
ting an accuracy threshold, we can pick models that are less
complex but well performing. The complexity of the models is
calculated in terms of neurons by the following equations:
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Figure 4: Model for segmented signal classification. In this architecture the input signal is segmented into windows of predefined length. The whole 2 minutes
signal is fed into the same CNN in segments. For each segment a number of nodes is stored. Once all the segments are passed and their outputs are concatenated,
the final classification is performed. As we do not have labels for each of the segments, this architecture allows us to train the network using only one label per
signal while training the same network to extract the important features, using the information of all the segments.
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Figure 5: Recurrent CNN architecture with energy optimisation. The decision of our model is now done per signal segment, by considering recurrently the outputs
of the previous segments. This recurrent flow of information is achieved by using the optimal energy classifier and transforms the network to a recurrent CNN. The
recurrent module of the CNN has parameters that need to be optimised, as it is described in the Optimal energy classification subsection.
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where N is the total amount of neurons of the CNN, segms
denotes the number of segments for the signal, layers the num-
ber of layers (convolution, pooling), filters the number of filters,
pool the pooling size and fc the nodes in the fully connected
layer. The addition of 1 at the end of the equation corresponds
to the output node. Concerning the calculation of the output
for each convolution conv_output the n denotes the input to be
convolved, p is the padding, kernel the size of the filters and

s the stride for the application of the convolution. Finally the
pool_size is the window size of the pooling operation.

By following this strategy, the CNNs with the higher accu-
racy and less complexity are selected. However, these are not
the final architectures. Further optimisations are done in the
next steps as described afterwards.

2.9. Recurrent CNN and energy optimisation

The model as it is described in the previous section requires
the whole 2 minutes ECG signal in order to make the final de-
cision. Howbeit, in cases of paroxysmal AFib the fibrillatory
waves can be spotted only in some parts of the ECG. Assuming
that the AFib is detected at the early seconds, it is straightfor-
ward that the process of the rest of the signal is meaningless
and it should be classified as AFib. Feeding the whole ECG in
the CNN needs extra computation power that in some cases is
unnecessary. With regard to this fact, we developed a fully seg-
mented model which is capable of making a decision for each
of the 7sec windows (Figure [5). The new architecture is com-
bining the output of the current segment with information by
the previous segments to make decisions. Using segments in
such a recurrent manner allows us to have a temporal dynamic
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behavior. At the end, although each segment is treated individu-
ally by the recurrent CNN (RCNN), the decision is made based
on all the previous observations.

In more details, we are using transfer learning to train the
RCNN. The nodes with their weights of the feature extractor
part of the model are preserved and the part of the models until
the last pooling is frozen. The flattened output is now fully con-
nected to one output with the use of the sigmoid activation func-
tion. The output of the sigmoid though, is not the prediction of
the model. The final decision is made by using the optimal en-
ergy classification approach (Figure [5), which is the memory
and decision unit of our RCNN.

2.10. Optimal energy classification

In order to build a simplified small RCNN, we used the
optimal energy classifier. The memory and decision unit of
the RCNN has three additional parameters that need to be op-
timised. The detailed algorithm, presented in pseudocode [I]
takes as input the down limit D , upper limit U and the num-
ber of successive segments S of the same class that should be
detected in order to have a decision. These three values are set
by a grid search on the training set. For example, let us assume
that these three values are set to 0.47, 0.53, and 5. If the output
of each segment after the application of the activation function
is smaller than 0.47 the whole signal is classified immediately
as sinus rhythm and no more segments are streamed into the
network. If it is bigger than 0.53 the whole signal is classified
as arrhythmia. In the case that the output of the current segment
is between these two values, then the next 7 seconds segment is
fed into the network until we get an output smaller than 0.47,
bigger than 0.53 or 5 successive segments of possible arrhyth-
mia (> 0.50) or 5 successive segments of possible no arrhythmia
(< 0.50) (Alg. [I).

By doing so, we are permitting the RCNN to make a de-
cision faster and shut it down. Even though our hybrid model
does not contain any kind of complex modules for recurrent
connection between the segments, like long short-term memory
(LSTM) [23], we have managed to have a temporal dynamic
behavior.

Results

In order to test our method, a dataset of 16.000 ECGs mea-
sured by a portable device was used. The dataset was balanced
for both cases and controls randomly split for training and test-
ing. The ECG signals were divided into 80% for training, 20%
for testing. Also, a 10% subset of the training set was used for
validation. A more detailed description of the numbers can be
seen in Table[I] The noise generated by the device, the move-
ment of the patients and the respiration was eliminated by the
application of a band-pass filter in the range of 5-30 Hz. The
lengths of the signals were approximately 2 minutes with a sam-
pling frequency of 512 Hz. After downsampling, the remained
signals have a sampling rate of 128 Hz. The ECGs were seg-
mented in 7 seconds windows. In total 16 segments per signal
were acquired.

Algorithm 1 Optimal energy classification

Energy_Optim(SuccessiveSet S, upper limit U, down limit D)

arrhythmia < 0
sinus < 0
for all <segments> do
if segmOutput < 0.5 then
sinus «— sinus + 1
arrhythmia < 0
if segments == total_amount_of_segments then
decision < SINUS
break
end if
if sinus == S or
segmOutput < D then
decision «— SINUS
break
else
continue
end if
else
sinus < 0
arrhythmia « arrhythmia + 1
if segments == total_amount_of_segments then
decision — ARRHYTHMIA
break
end if
if arrhythmia == S or
segmOutput > U then
decision — ARRHYTHMIA
break
else
continue
end if
end if
end for

After denoising and normalising the signals, a grid search of
multiple CNN architectures is performed to compare their per-
formance. As the strategy is to keep the models small enough
to allow low energy needs, we restricted the search on 3 lay-
ers. However the number of filters varied in the range of 1-5 for
each of the layers, different kernel sizes between 4 and 11 were
tested and pooling sizes between 2 and 6 were examined.

Due to absence of labels for each individual segment, the
decision for each of the signal was made after passing all the
16 segments into the network. More precisely, each of the 16
segments was fed into the network successively. The output of
the last convolutional-pooling layer is flattened, fully connected
and stored to a predefined amount of nodes. These nodes of
the fully connected layer were restricted in the range 2 to 5
for the grid search. These nodes are concatenated for all the
segments and fully connected to the output (Fig. [). In this
way we allow the feature extraction to be learned on features
by the whole signal and capture the important ones. In Fig. [6]a
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Training | Validation | Testing
Atrial fibrillation 4994 554 2452
Sinus rhythm 5086 566 2348
Total 10080 1120 4800

Table 1: Split of raw ECG signals.

comparison between model accuracy and model complexity is
depicted. The complexity of the models denotes the sum of a
model’s nodes, see equation (2).

Setting a threshold of 94% for the test set, which renders
applicability in practice, the models with the least complexity
are chosen. As depicted in Fig. [6] there are five models that
have the fewest number of nodes, while preserving the accuracy
above the threshold. These models are the candidates, which
are selected to undergo the further energy optimisation steps
when included into the RCNN, such that classification can be
done potentially without reading all segments.

A more detailed description of the chosen models’ archi-
tectures can be found in Table 2} Specifically, all the models
have three layers of convolutions with 1, 2 and 2 filters respec-
tively. Each convolutional layer is followed by a ReLU activa-
tion function and a pooling layer for dimensionality reduction
of size 3, 6 and 6. However, the kernel sizes of the convolu-
tions are varying in the range of 7 to 11. The sizes of the filters
are affecting the number of trainable parameters and compu-
tations in the network. Namely, by increasing the kernel size,
an increased number of neighbour nodes will contribute to the
current calculation.

2.11. Energy optimization for reduced energy consumption

Using one of the CNN architectures for the classification
of arrhythmia in a continuous fashion, for example 12 hours
while wearing a smart watch, would be very energy inefficient.
In practice, it makes sense to limit the detection of arrhythmia
to short repeated intervals, here we are using 7 seconds inter-
vals, but this may differ. Ideally, the classifier can decide about
arrhythmia or non-arrhythmia, without exploring the whole 2
minutes.

As the CNN’s feature extraction part has been trained on
the whole 2 minutes signal, it has the ability to extract the nec-
essary features for the detection of Afib. Having created an ac-
curate classifier we need to force the model to make decisions
independently per segment. Since the features of all the seg-
ments are extracted in the same way, we assume that if the flat-
tened output of the last convolution-pooling is fully connected
to one node then the weight of this node will reveal the de-
cision of the segment. Therefore, by freezing the weights of
all the convolutional layers (feature extractor), flatten the last
convolution-pooling layer’s output, connect it to only one node
(output-decision) and retrain only the last classification layer,
we have a fully segmented model. The restriction of the ab-
sence of labels per segments can now be overcome by using the
addition of all the segments’ outputs as a final decision (after
the application of the sigmoid to restrict the values in the range
of [0-1].

The integration of the optimal energy classifier into the CNN
permits the judgement for each signal without processing all
the 2 minutes. Using the signal segments in a recurrent way we
can make decisions per signal window while considering at the
same time the previous signal segments. The final RCNN archi-
tecture that is the combination of the previously described CNN
and the optimal energy classifier is generated as following: For
the training set the outputs after application of sigmoid for all
the segments are saved. For multiple combinations of upper
limit, down limit and number of successive segments (see Al-
gorithm [T) the average number of needed segments per signal
and the accuracy of all the candidates are computed. If the out-
put of the segment is smaller than the down limit, or bigger than
the upper limit the decision is immediately defined as Afib and
no arrhythmia, respectively. Otherwise, the rest segments of
possible Afib or no arrhythmia are needed. After testing all the
combinations for the algorithm, we choose the best performing.
For our models of interest the chosen parameters can be found
in Table[3] The tested values for the down limit were set in the
range 0.20 till 0.48 with step size 0.02 and for the upper limit
in the range 0.52 till 0.80 with the same step size. The number
of tested succesive segments was set in the interval of 2 till 8.
One of the combinations that minimises the number of needed
segments while retaining high accuracy is selected. The deci-
sion for the final model is done after all the optimisation steps
are completed.

The average number of segments, presented in Table[3] cor-
responds to the average number of 7 seconds segments needed
by each of the models for the correct classification of the whole
approximately 2 minutes ECG signals. Although the parame-
ters of the algorithm for the optimal energy classification are
calculated for each of the models on the training set, the aver-
age number of needed segments is estimated on the test set for
an unbiased evaluation.

The most energy efficient RCNN was model 4 that has over-
all 114 distinct variable parameters (weights, biases and 3 pa-
rameters for the classifier), resulting to a very small architecture
with the potential to classify long ECG signals. Also, in cases
of continuous monitoring and classification, without shutting
down the whole system after the decision, it can be a powerful,
lightweight model for uninterrupted AFib detection. Using this
architecture and the optimal energy classifier in the model, the
RCNN’s classification decision on the test set was made only
by streaming 3.092 segments on average. Instead of feeding
the whole 2 minutes ECG in the model we can get an accurate
prediction only by testing 27.44 sec. This can reduce the com-
putational cost to almost % while preserving 95.3% accuracy.

Before the energy optimisation step, the model 5 seems to
be the more efficient option, as it has a smaller kernel and con-
sequently less operations are needed at each application of the
filters. Howbeit, after the conversion to RCNN, with the use
of the optimal energy classifier we need on average 5.702 seg-
ments for the classification, in contrast to model 4 that needs
only 3.092. Hence, the use of 26 extra trainable parameters is
an acceptable trade-off while considering the reduced number
of segments needed.

The proposed RCNN architecture consists of 3 layers of
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Figure 6: CNN model architecture comparison. A subset of the tested models is di

splayed. Each dot in the scatter plot is one distinct model with its architecture.

By setting a threshold of 94% for the accuracy, the model with the smallest complexity above this threshold is considered to be the most energy-efficient. The red
dashed line represents this threshold and the selected dots are the chosen candidate models that fulfill the requirements

Table 2: Network architectures of 5 most energy-efficient candidate models. All the models consist of 3 1D convolutional layers followed by pooling operations.
The number of filters, the kernel and pooling sizes are displayed in the table. All the convolutional layers have ReLU as activation function and the dense layer a

sigmoid.
Parameters
Model Layer 1 Layer 2 Layer 3 Dense layer
ConvlD | ConvlD | Pooling | ConvlD | ConvlD | Pooling | ConvlD | ConvlD | Pooling Nodes
filters kernel size filters kernel size filters kernel size
1 1 8 3 2 8 3 2 8 6 1
2 1 9 3 2 9 3 2 9 6 1
3 1 10 3 2 10 3 2 10 6 1
4 1 11 3 2 11 3 2 11 6 1
5 1 7 3 2 7 3 2 7 6 1
Performance before energy Performance after segmentation
Model optimisation and energy optimisation
Training set Test set Training set | Test set | Down limit | Upper limit Successive Average number of segments | Energy reduction | Parameters
number of segments
1 0.951 0.943 0.926 0.918 0.30 0.80 4 4.798 70% 93
2 0.952 0.949 0.914 0.920 0.40 0.60 6 3.844 76% 100
3 0.974 0.968 0.934 0.946 0.40 0.60 6 3.276 80% 107
4 0.974 0.966 0.956 0.953 0.40 0.60 6 3.092 81% 114
5 0.960 0.949 0.936 0.942 0.42 0.58 4 5.702 64% 88

Table 3: Performance and size of the most energy-efficient RCNN models before and after optimisation. The accuracies for all the models before and after energy

optimisation are presented for the training and test set. Also, the average number of
is provided. The average number of segments in this table corresponds to the results

convolutions with 1,2 and 2 filters followed by average pooling
of size 3,3 and 6 and one output node with sigmoid activation
function. The upper and down limits of the optimal energy clas-
sification are set to 0.60 and 0.40 and the parameter for the suc-
cessive segments is chosen to be 4. It should be mentioned that
the selection of these parameters is not absolute but they must
be adjusted according to the predefined accuracy and energy re-
strictions for each application. Yet, it was a proper decision for

7 seconds segments that are needed for the whole 2 minutes ECG classification
on the test set.

our case study.

2.12. Comparison with recently published architectures
The main advantage of the proposed models through our
workflow is their small size, not only in terms of their ability
to classify long time series, but also in comparison with other
recently published architectures in the same field of application.
Chaur et al. [24] generated similarly an 1D CNN for the de-
tection of atrial fibrillation. The CNN architecture consists of
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10 layers of convolutions followed by pooling operations and
2 fully connected layers followed by one softmax layer output.
The number of filters at each convolutional layer varies in the
range of 32 to 512, which results in 3,933,634 trainable pa-
rameters. This denotes 34,505 times more parameters than our
proposed model 4.

For a fair comparison with our approach, we reproduced the
network architecture and trained it on our dataset with the sug-
gested parameters. The network was trained using the Adam
optimisation algorithm and cross-entropy as loss function. The
batch size was fixed to 50 and the network was trained for 100
epochs. Due to absence of labels for each of the segments
we cannot perform segment-wise training and therefore the full
length signal is inserted as input. Anyhow this is not affect-
ing the final number of parameters and network size, as all the
segments had to be fed. We calculated the test set accuracy for
comparison, where Chaur’s model achieved an accuracy of 98.8
%. This performance is 3,5 % higher than our model’s accu-
racy. Though, when the energy efficiency is equally important
as an accurate detection rate, our model overpowers Chaur’s
approach by a factor of 34,505 when it comes to trainable pa-
rameters. Considering these results, one must decide if the 3,5
% is a reasonable compromise for such a huge energy saving.

Additionally, we tried to generate the 1D-CNN as it is de-
scribed in [25]] and [26] for atrial fibrillation and trained it on
our data. However, it was not feasible to achieve model con-
vergence and produce a stable accurate solution. Their model
comprises a total of 232,214,329 parameters, 13 layers of con-
volutions 2 fully connected and one sigmoid output layer. As
this model has 2,036,967 more trainable parameters than our
model, it is likely that the amount of training data was not suf-
ficient for a model of this complexity.

Let us assume now that we want to generate a model with
accuracy as high as Chaur’s model. In that case, a model with
higher classification performance from Figure[f|can be selected.
For this purpose we chose the model with 6, 6 and 7 filters, ker-
nel size of 9 and pooling sizes equal to 3, 3 and 6 and named it
as model 6. After the energy optimisation steps, this model has
98.2% on our test set and on average 2.47 segments are needed
for the classification of one ECG signal. The final model has a
total of 2,347 parameters. Although the accuracy is almost sim-
ilar to Chaur’s proposed architecture, they used 3,931,287 more
trainable parameters. This suggests that Chaur’s model archi-
tecture is highly redundant at least for the variations observed in
our data. The architectures for comparison of Chaur’s model,
our most energy efficient Model 4, and our Model 6 with the
highest performance can be found in Table ff]and Figure[7}

Model Layers | Filters | Parameters | Accuracy

energy-efficient 3 5 114 95.2%
model ’

best performing | 5 19 2,347 98.2%
model

Chaur et al.[24] 10 1,984 | 3,933,634 98.8%

Table 4: Architectures and performances of Chaur’s model and our proposed
energy efficient Model 4 and the best performing Model 6.
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Figure 7: Comparison of the most energy efficient model using the pro-
posed workflow (Model 4), the best performing model (Model 6) and Chaur’s
model [24]]. The numbers on top of the bars indicate the size of the model with
respect to the trainable parameters.

3. Conclusion and Discussion

In the present study, we are proposing energy efficient recur-
rent CNN architectures for long time series and our approach
is tested on the detection of atrial fibrillation on ECG signals.
Our workflow suggests the development of lightweight, fully-
segmented models with drastically fewer model parameters than
previous studies. The inclusion of the energy consumption as
an additional metric for the evaluation of the performance, al-
lows us to generate architectures that can be easily embedded
on physical small hardware devices.

Developing light-weight neural networks that can be incor-
porated on tiny chips and placed on wearable devices is a chal-
lenge, as we want to keep restricted energy requirements and
high performance. In our method, the choice of the model ar-
chitecture is not absolute. It can be done, by taking into consid-
eration the accuracy and energy restrictions. In other words, it
is a trade-off between accuracy and energy consumption. One
should define these limitations beforehand. Afterwards, the ar-
chitecture that better meets the current needs is selected.

The choice of the preprocessing method varies per task and
nature of signals. For the current task of Afib detection, band-
pass filtering was applied in the range of 5-30 Hz for signal de-
noising and normalization. The filtering step could be replaced
by some extra layers of convolutions, but as the main idea of our
implementation is to maintain a small network with as few neu-
rons and parameters as possible, the band-pass filter was essen-
tial for noise canceling. While some previous works apply in a
similar manner filtering of small and high frequencies [26], the
transformation to the frequency domain by a Fourier or wavelet
transform is also used [10]]. With the intention of incorporating
our designed model on a physical chip, the band-pass filter can
offer an "inexpensive" solution, given that it can be applied di-
rectly in time domain, avoiding this way extra transformations
and it is a well established method for analog and digital chips.
Furthermore, a variety of papers are focusing on the detection of
R-peaks [7]. We considered this approach as energy inefficient,
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in a way as the detection of spikes, demands many additional
computations and it is difficult to be generalised to general time
series.

The optimal architecture for our application consists of 3
convolutional layers with 1, 2 and 2 filters respectively and 1
fully connected layer. The total number of parameters of the
model is 114, which is millions of times smaller than model
sizes that others have suggested. After energy optimisation our
model achieved an accuracy of 95.3% on our test set of 4800
ECGs. The use of the optimal energy classifier permitted us
to reduce the energy by 81% for the classification of 2 minute
signals. Specifically, only an average of 3.09 signal segments
of 7 seconds, or approximately 21 seconds, were needed for
the classification of the whole 112 seconds. Mistakes due to
wrong segment-wise decisions are avoided by recurrently using
the information of previous segments. Also, another architec-
ture with

The focus of the paper is on the model generation in means
of software. Itis describing a succession of steps that need to be
followed, in order to facilitate the future mitigation of the model
on a chip. As future work, we are concentrated on the transfer
of the model on a simulated chip. This of course requires some
additional optimizations such as weight quantization to fit the
requirements of the chip technology, quantization of the filter
coeflicients to avoid numerical instabilities and an iterative ap-
proach for the correction of inaccuracies between the software
and hardware implementation.
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