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Abstract 

Motivation  

Protein-DNA binding sites of ChIP-seq experiments are identified where the binding affinity is 

significant based on a given threshold. The choice of the threshold is a trade-off between 

conservative region identification and discarding weak, but true binding sites. 

 

Results 

We argue the biological relevance of weak binding sites and the information they add when 

rescued. The sites are rescued using MSPC, which exploits replicates to lower the threshold 

required to identify a binding site while keeping a low false-positive rate. We extend MSPC to 

call consensus regions across any number of replicated samples, accounting for differences 

between biological and technical replicates. We observed several master transcription regulators 

(e.g., SP1 and GATA3) and HDAC2-GATA1 regulatory networks on rescued regions. 

 

Availability and implementation 

An implementation of the proposed method and the scripts to reproduce the performed 

analysis are freely available at https://genometric.github.io/MSPC/, MSPC is distributed as a 

command-line application, an R package available from Bioconductor 

(https://doi.org/doi:10.18129/B9.bioc.rmspc), and a C# library.  
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Introduction 

 

Chromatin immunoprecipitation (ChIP), followed by massively parallel DNA sequencing 

(ChIP-seq), has become the standard omics technique for the genome-wide localization of in 

vivo DNA-protein binding loci commonly known as “peaks”. A peak is generally inferred when 

the ChIP-seq read distribution differs significantly from the background signal, and its 

corresponding p-value is more stringent than a given threshold.  

 

In general, peak evaluation is intrinsically limited due to the lack of annotations for “true” 

binding sites, especially for experimental conditions in which biological signals might be 

shifted, changed, or depleted [1]. Additionally, peak evaluation is complex, as gene expression 

regulation involves interactions between combinatorial transcription factor binding sites and 

chromatin states. Additionally, given the intrinsic noise of the ChIP-seq protocol that leads to 

artifactual peaks and poor localization of binding loci, peak calling methods are susceptible to 

high false-positive rates [2–4]. Peak callers utilize various methods to lower the false-positive 

rate. For instance, MACS [2] uses negative controls such as IgG (non-specific antibody-targeted 

ChIP-seq), and Ritornello [3] uses peak shape to differentiate between artifactual and “true” 

binding sites. 

 

A common consensus suggests that “true” binding sites are reproducible across replicated 

samples (i.e., colocalized within a certain distance), whereas non-overlapping peaks are 

categorized as either of the following: (a) Characterizing “true” biological variability when 

studying biological replicates [5]; or (b) Artifactual binding or noise, particularly when studying 

technical replicates. Accordingly, replicated samples remain a reliable source of information to 

identify “true” binding sites. However, calling such binding sites across replicated samples 

lacks gold standards, and it is associated with several open challenges, in particular for 

studying samples with low variability and high signal-to-noise ratio (technical replicates) and 
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high variability with a low signal-to-noise ratio (biological replicates with heterogeneous cell 

populations) [6]. 

 

MSPC [7,8] and Irreproducible Discovery Rate (IDR [9]) are among the methods used to identify 

reproducible peaks across replicated samples. IDR uses a copula mixture model to estimate the 

reproducibility of each pair of peaks in two replicates and to compute the expected rate of 

irreproducible discoveries [9]. MSPC uses replicates to improve the sensitivity and specificity of 

peak calling on each sample. MSPC rescues weak peaks; in other words, it differentiates the 

weak binding sites which are reproducible across replicated samples from background signals 

(i.e., artifactual binding sites), exploiting the differences between biological and technical 

replicates. Importantly, it can work with any number of replicates.  

 

The binding sites that are reproducible across all the replicated samples are commonly referred 

to as consensus regions, and both MSPC and IDR can identify them. IDR ranks pairs of peaks in 

the two replicates based on their irreproducible discovery rate and combines those peaks with 

rates below a threshold. MSPC first improves the sensitivity and specificity of each replicate 

and identifies their true-positive peaks using the Benjamini-Hochberg procedure, then identifies 

consensus regions by merging the true-positive peaks and assigns each a combined stringency 

score (χ2 and right-tail probability).  

 

The present study assesses the biological validity of the peaks MSPC and IDR identify as “true 

binding sites” and the consensus regions they yield. Accordingly, we developed a feature 

enrichment test. Our results suggest that MSPC identifies more true binding sites and consensus 

regions than IDR, encompassing the IDR-identified regions in large. Additionally, our results 

show that the identified regions are enriched in biologically meaningful annotations and fully 

encompass essential information needed to understand genomic regulatory networks. For 

instance, we show the recovery of a large-scale enhancer regulatory network, depending on 

HDAC2 and GATA1 rescued peaks, whose components are involved in Chronic Myeloid 

Leukemia (CML) and several cancer-associated processes [10–15]. 
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Identifying “true” binding sites (in noisy samples in particular) and consensus regions have a 

significant impact on studying high-throughput sequencing data [16,17] with numerous 

applications spanning from improving sensitivity and specificity of peak callers to studying 

spatial dependency regulations and combinatorial transcription factor binding in different 

chromatin states [18,19]. The high-throughput sequencing data are available from public 

repositories such as ENCODE [20], Roadmap Epigenomics [21], and GEO [22], and are widely 

adopted for numerous biomedical studies. The quantity and quality of the reproducible regions 

identified in these samples can profoundly affect any downstream inferences. For instance, the 

high throughput sequencing data have been used for studying transcription factor regulatory 

networks [23–27], where identified peaks can vastly influence the topology and connectivity of 

the regulatory networks, including the inferred causal relationships [1]. Therefore, the results of 

the present study motivate utilizing methods such as MSPC and IDR to increase the specificity 

and sensitivity of peak callers and identify consensus regions.  

 

 

Materials and methods 

In the following, we first provide a brief literature review on the peak callers, we then discuss 

the characteristics of MSPC and IDR, and finally we define a functional enrichment test to 

assess the biological validity of the MSPC- and IDR-identified peaks.  

 

Characteristics of peak callers 

A plethora of peak calling methods has been developed (reviewed in [1,28–30]). In general, they 

differ in their statistical model and the number of input signals they operate on.  
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Statistical model  

Peak callers identify binding affinities by either scanning the entire genome using a sliding 

window and test for differential binding between ChIP and control samples at each window 

based on the Poisson model or its extensions (e.g., MACS [2], PePr [31], and csaw [32]), or using 

a Hidden Markov Model approach (HMM, e.g., HPeak [33], ODIN [34], histoneHMM [35], and 

THOR [6]). The sliding window-based methods are sensitive to the window size, where large 

windows may fail to detect putative peaks (e.g., transcription factor binding sites) while narrow 

windows may generate severely fragmented peaks on wider binding sites (e.g., histone 

modifications). In general, methods using HMM can better detect subtle changes as they 

partition the signal into windows of varying sizes [6].  

 

Number of input samples  

Concerning the number of input samples, peak callers are generally divided into two groups. 

First group models binding affinity based on the signal of a single ChIP-seq assay (e.g., MACS). 

The second group jointly models binding affinities across replicated samples to identify 

combinatorial enrichment patterns (e.g., [18,19,31,36–38]), they do so either by building models 

based on single samples then combine them (e.g., jMOSAiCS relies on MOSAiCS [36]), or based 

on HMM (e.g., [6,35,39]), or sliding window-based approaches (e.g, [31,40–42]). In general, most 

differential peak calling methods are implemented using the sliding window approach, while a 

very few HMM-based approaches support replicated samples (e.g., THOR [6]). A possible 

shortcoming of the HMM-based approaches is that they model a ChIP-seq signal using a limited 

number of hidden states, which may result in less sensitivity to quantitative changes in signals 

of closely related conditions [43].  
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Characteristics of MSPC and IDR 

MSPC [7,8] and IDR [9] are among the methods used to lower false-positive rates and identify 

consensus regions between replicated samples (see Table 1). IDR measures consistency between 

two replicates in high-throughput experiments. This quantitative irreproducibility score can 

then be used to rank pairs of peaks in the two replicates, determine a cutoff for irreproducibility 

and combine the two replicates. IDR uses a copula mixture model for estimating the expected 

irreproducible discovery rate of each pair of peaks in two replicates, yielding the expected rate 

of irreproducible discoveries [9].  

 

Calling consensus regions using IDR falls short in two areas. First, IDR is developed for 

conservative peak detection, where only highly reproducible peaks across samples are called. 

Hence, it fails to call peaks in samples with large variance such as biological replicates, where 

strong peaks on one replicate do not colocalize with peaks from other replicates with a low 

signal-to-noise ratio (SNR) [1,6]. Low SNR may not only arise due to poor sample quality, rather 

it can be reflective of true variability between biological replicates, low quantities of starting 

biological material, or antibody deficiency [44,45]. Second, similar to other methods in this 

category, it relies on the candidate regions called by the peak caller, hence it may fail to detect 

subtle changes [17]. 

 

MSPC rescues weak peaks and identifies consensus regions across any number of replicates; it is 

perceived to address the aforementioned shortcomings of IDR. MSPC processes biological and 

technical replicates differently, hence it differentiates between true variability between 

biological replicates and artifactual binding sites. Therefore, it lowers the false-negative rate 

between samples with large variance (expected in biological replicates) while preserving a low 

false-positive rate. To alleviate dependence on the peak caller’s candidate regions, it is 

suggested to run MSPC on peaks called with a permissive p-value threshold (e.g., 1e-4)[7]. Such 

a setting would lead to calling a large number of false-positives and a very small number of 
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false-negatives, hence minimizing the probability of missing a true, yet weak binding site. 

MSPC uses combined stringency of peaks colocalized across replicated samples to differentiate 

between artifactual and weak binding sites, hence decreasing the number of false-negatives 

with least false-positives.  

 

For each peak on a sample, MSPC finds the peaks in the other samples overlapping with it. If 

the number of overlapping peaks is more than a user-defined threshold, it then combines their 

p-values using Fisher’s combined probability test, yielding a combined stringency, χ2, and the 

corresponding combined p-value. MSPC confirms the overlapping peaks if the combined χ2 is 

larger than a user-defined threshold, and discards if otherwise. A peak might be tested multiple 

times if it overlaps with multiple peaks on another sample. Therefore, a peak might be confirmed 

based on one test and discarded based on another. When samples are biological replicates, MSPC 

confirms a peak if it passes at least one test (heterogeneity may reflect true biological variability), 

and with technical replicates, MSPC discards a peak if it does not pass all the tests (since more 

homogeneity is expected in this case). The confirmed peaks are then corrected for false-

discovery rate using the Benjamini–Hochberg procedure.  

 

MSPC calls  a consensus region where true-positive peaks on either of the replicates suggest 

binding loci. The coordinates of a consensus region are the union of overlapping true-positive 

peaks across all the samples, and its stringency is determined by combining the p-values of the 

overlapping peaks using the Fisher’s combined probability test (see Supplementary Figure 1).   
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Table 1. Characteristics of MSPC and IDR.  

 Model Multiple Hypothesis Testing 

Correction 

Replicate 

Count 

Output Score 

MSPC Fisher’s combined 

probability test 

False Discovery Rate (FDR, 

Benjamini-Hochberg 

procedure) 

Unlimited N2, combined p-

value  

IDR Gaussian copula 

mixture model 

Local irreproducible 

discovery rate (idr) 

2 Expected 

irreproducible 

discovery rate 

 

Data pre-processing 

ENCODE data preprocessing 

ChIP-seq raw data were downloaded from ENCODE (see Supplementary Table 1), peaks on 

each sample were called using MACS2 with the following options: --mfold 5, --bw 300 --pvalue 

0.0001. For each sample we used control samples as linked on ENCODE for each experiment; 

some experiments use a common control between multiple replicates (e.g., 

https://www.encodeproject.org/experiments/ENCSR532KTI/), some experiments use different 

control samples for each replicate (e.g., 

https://www.encodeproject.org/experiments/ENCSR121PFY/), or use two controls for each 

sample (e.g., https://www.encodeproject.org/experiments/ENCSR574XEO/).  

 

Genomic annotations and optimal MSPC threshold set 

Our functional enrichment procedure was applied to a set of 50 randomly chosen ENCODE 

transcription factors (TFs) as listed in the Supplementary Table 1. For each TF, the procedure 

was repeated using 28 different sets of MSPC thresholds (see Supplementary Table 2). The 
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threshold sets were chosen from conservative to highly permissive, in order to cover a broad 

number of possible pools of rescued peaks. The best thresholds were defined as the ones 

producing the highest enrichment score (i.e., the highest z-score of the enrichment test, see 

details in the next Section) for each TF. The threshold set -w 1E-04 (weak significance threshold), 

-s 1E-08 (stringent significance threshold), and -g 1E-06 (combined significance threshold), was 

the one yielding the best enrichment score for every TF. To evaluate the enrichment for each TF, 

we selected 9 genomic annotations (genome assembly hg38), whose loci were downloaded from 

the UCSC Genome Browser database ([46] accessed on 2020-01-31): CpG islands, DNase 

clusters, enhancers, exons, introns, promoters, coding RefSeq genes, noncoding RefSeq genes, 

and non-RefSeq transcripts. We chose these annotations to have a straightforward measure of 

peak enrichment at open chromatin regions (DNase clusters), transcripts (exons, introns, coding 

RefSeq, noncoding RefSeq, and non-RefSeq transcripts), and both proximal and distal 

regulatory elements (promoters, CpG islands, enhancers). 

 

Functional enrichment test 

The objective of the validation procedure is to assert if MSPC-rescued peaks are enriched in 

biologically meaningful loci. Accordingly, we defined three types of genomic regions: peaks, 

annotations, and regions not covered by any of them; where the first two may overlap to some 

extent. The higher the overlap between peaks and annotations, the higher the ability of the peak 

caller/rescuer to recall functional genomic regions. Since the number and coverage of a specific 

annotation is fixed for a given database, the only variables we need to consider are the number 

and position of called peaks. In particular, we define the conditional probability   of a nucleotide 

overlapping a peak to contain an annotation, and the conditional probability   of a nucleotide 

non-overlapping a peak to contain an annotation (see Supplementary Material for details). The 

difference � �  �   measures the ability of the peak caller/rescuer to recall functional 

annotations, such that if � > 0 (i.e.,   >  ), there is a higher probability of observing a peak at a 

random position within an annotated region. Therefore, the greater the � value, the higher the 
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genome-wide proportion of annotated nucleotides within peaks. Our objective is to assert if the 

MSPC-rescued peaks on a given sample are strongly enriched in functional annotations w.r.t a 

standard baseline peak set given by IDR consensus on the same sample. 

 

For both MSPC-rescued and IDR consensus peaks, we computed the enrichment score as the 

ratio   � � �  0�/ , where �0 � 0 (i.e.,  �  ) is the � value under the null hypothesis, and   is the 

standard error, that is the standard deviation of the sampling distribution of �, assuming that 

the underlying distribution of   under the null hypothesis is well approximated by a gaussian 

distribution with mean 0 and standard deviation equal to 1 (see Supplementary Material for 

further details). In this way, we can both assess the significance of annotation enrichment and 

directly compare the enrichment scores for MSPC-rescued peaks against IDR consensus, for 

each annotation and sample (i.e., transcription factor). The scripts for the functional enrichment 

test are freely available from https://github.com/Genometric/MSPC/tree/dev/ValidationScripts. 

 

Overrepresentation analysis and motif search 

TF binding motif enrichment was performed using MEME-ChIP with default settings [47] 

available at   https://web.mit.edu/meme_v4.11.4/share/doc/meme-chip.html. Motif enrichment 

was evaluated using the threshold E-value < 1E-10.  

Overrepresentation analysis against the KEGG pathways and ChEA TF databases was done 

using the Enrichr online tool [48] available at https://maayanlab.cloud/Enrichr. 

 

HDAC2-GATA1 enhancer regulatory network reconstruction 

For each of the 48 TFs considered in this study, we obtained the list of TFB motifs enriched at 

MSPC rescued enhancers (enrichment E-value < 1E-10; Supplementary Table 1). HDAC2 was 

the TF showing the strongest motif enrichment for another TF in the set of 48: GATA1. This 

means that HDAC2 rescued peaks at known enhancers are enriched in GATA1 binding motifs 
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and, therefore, these enhancers are common HDAC2-GATA1 targets. Moreover, since the 

enrichment in GATA1 motifs is exactly at HDAC2 rescued peaks, common target enhancers 

should bind HDAC2-GATA1 simultaneously. 

To further investigate the impact of this rescued regulatory network, we considered HDAC2 

rescued enhancer peaks overlapping GATA1 rescued enhancer peaks, and considered the set of 

closest TSS within 100 kb from these peaks, referred to as the HDAC2-GATA1 target gene set. 

We chose a 100 kb maximum distance to reduce enhancer-TSS false-positive associations, in 

accordance with recent literature [27,55]. To evaluate the importance of the rescued HDAC2-

GATA1 targets, we performed overrepresentation analysis (ORA) with three goals: (i) assess 

disease and pathway enrichment of the HDAC2-GATA1 target genes through the KEGG 

database (Supplementary Table 2; [51]); (ii) check if HDAC2-GATA1 target genes are enriched 

in transcriptional master regulators, and (iii) evaluate if these genes are regulatory targets in 

specific cell lines [52,57]. We performed ORA using the online enrichment analysis tool Enrichr 

[58]. 

 

Results and discussion 

MSPC enrichment-based assessment 

To have a reference set of reproducible peaks for each transcription factor (TF), we run IDR  

2.0.4 (available at https://github.com/nboley/idr) with a global IDR threshold of 0.05 from the 

output consensus regions. This assessment has two goals: (i) Verify the number of reference IDR 

peaks that are also detected by MSPC, and (ii) Assert if those MSPC-rescued peaks that are not 

in the IDR set are enriched in functionally important genomic regions (i.e., annotations). 

Notably, for every TF, MSPC was able to find all the reproducible IDR peaks; we name them as 

the “common” set of peaks. The scripts to reproduce the performed analysis are available from 

https://github.com/Genometric/MSPC/tree/dev/ValidationScripts.  
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Rescued MSPC peaks not present in the common peak set are referred to as MSPC-specific peaks 

set. To assess the biological relevance of specific peaks, we compared their functional 

enrichment score (i.e., the z score of the enrichment test) to the score of the common set of peaks 

(Supplementary Figure 2). For every annotation, MSPC-specific peaks showed higher 

enrichment than common ones (Figure 1). Accordingly, MSPC confirms reproducible peaks and 

rescues peaks whose functional role is not negligible. Notably, the most significant MSPC 

enrichments against common peaks were at enhancers, promoters, and DNase clusters, 

denoting MSPC’s best performances in rescuing critical regulatory and accessible chromatin 

regions. At the TF level, MSPC showed higher enrichment in 45/48 TFs with respect to common 

peaks, meaning that it rescues critical genome-wide TF enrichments that would be lost 

otherwise.  

 

Motif enrichment at rescued enhancers 

MEME ChIP transcription factor binding (TFB) motif enrichment at rescued enhancers shows 

the presence of several transcription master regulators. The most frequent enriched motif is 

GATA3 (20/48 TFs), which has been recently described as a key factor in enhancer-dependent 

cell reprogramming [11] and T-cell differentiation [12]. The second most frequent motif (19/48 

TFs) is SP1, known for binding enhancers, regulating chromatin looping [49] and playing a key 

role in malignant hematopoiesis, through its interaction with GATA1 [10]. The critical role of 

chromatin looping is also demonstrated by the occurrence of CTCF binding site enrichments 

(the third-most enriched motif, with 18/48 TFs). CTCF is a widely studied insulator which is 

recognized as one of the main designers of topologically associated domains (TADs). TADs 

insulate portions of active chromatin, determining how and when genomic DNA is processed 

(e.g., transcribed and/or replicated). Although TADs are conserved among evolutionary-related 

species, cancer-associated cell fate reprogramming is often associated with mutated TAD 

boundaries [50]. Other cancer-associated TFB motif enrichments have been found as well, 

including RUNX1-RUNX3 involved in lymphoid cell differentiation [13,14], and ETV6, involved 
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in lymphoid malignant transformation [15]. The complete table of TFB motif enrichments at 

rescued enhancers is reported in Supplementary Table 3. 

 

HDAC2-GATA1 rescued regulatory network 

We identified 26,514 HDAC2 and 2,513 GATA1 enhancers (see Methods and the Supplementary 

methods section: “TFB motif enrichment at enhancers”) at MSPC-rescued binding loci (after 

removing peaks shorter than 200 bp); among them, 1,627 peaks are in the common set. Over-

representation analysis against the KEGG database (see Supplementary Table 4; [51]) confirmed 

Chronic Myeloid Leukemia (CML) as the most enriched pathway (adjusted p-value = 1.37E-03), 

with 25 CML genes as targets of rescued enhancers. Other leukemia-related pathways were 

significantly enriched, including: VEGF signaling (19 target genes; adjusted p-value = 5.19E-03), 

Calcium reabsorption (17 target genes; adjusted p-value = 5.23E-03), Cell cycle (31 target genes; 

adjusted p-value = 5.26E-03), Rap1 signaling (43 target genes; adjusted p-value = 0.0186), 

Cellular senescence (35 target genes; adjusted p-value = 0.0201), Platelet activation (28 target 

genes; adjusted p-value = 0.0313), Leukocyte transendothelial migration (26 target genes; 

adjusted p-value = 0.0314). In addition, GATA1 and GATA2 binding in K562 cells were the top 

overrepresented terms (adjusted p-value: 9.04E-97 and 1.61E-86, respectively; Supplementary 

Table 5) among target genes, against the ChEA TF database [52], indicating how both rescued 

enhancers and their associated genes are targets of GATA1 regulatory network. Collectively, 

these results show how MSPC may successfully recover genome-wide enrichments (i.e., peaks) 

that are part of the K562 CML regulatory networks, coherently with the sample cell line and 

phenotype. 
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Figure 1. Enrichment score distribution (x axis) for MSPC discarded peaks (cyan box), MSPC 

rescued peaks discarded by IDR (i.e., MSPC-specific peaks set; yellow box), and peaks retained 

by both MSPC and IDR (i.e., common peaks; green box), aggregated by 9 hg38 annotations (y 

axis). For each of the 48 TFs analyzed, there were no peaks retained by IDR and discarded by 

MSPC (i.e., MSPC always included IDR results). The 9 hg38 annotations include: CpG islands (n 

= 31,144), Enhancers (n = 393,964), DNase clusters (n = 2,107,358), Promoters (n = 34,996), Exons 

(n = 313,276), RefSeq coding transcripts (n = 67,635), RefSeq non-coding transcripts (n = 17,271), 

Introns (n = 172,751). Coordinates for hg38 annotations were downloaded from the UCSC 

Genome Browser (accessed on: 2020-01-31) [46]. 

 

Conclusion 

We argue the significant impact of improving the sensitivity and specificity while identifying 

binding affinities on high-throughput sequencing data by discussing the biological 

characteristics unveiled using weak but reproducible binding sites. Specifically we show how 

these rescued peaks are enriched in biologically meaningful information. This information 
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emerges from the overrepresentation of genomic elements, including promoters, CpG islands, 

enhancers, and DNase clusters (regions of open chromatin), suggesting that these weak but 

reproducible elements are part of large-scale active chromatin networks (e.g., active enhancers 

and transcribed genes). We showed how one of these largest rescued regulatory networks is 

represented by the enhancers enriched in HDAC2-GATA1 peaks, which neighbouring genes are 

involved in chronic myeloid leukemia-associated processes and K562-specific regulation. 

 

We discuss two methods for differentiating between weak and artifactual binding sites and 

calling consensus regions across replicated samples: MSPC and IDR. Our analysis over K562 

ENCODE data showed that MSPC contains all IDR-identified reproducible regions, in addition 

to “rescuing” many other biologically relevant weak regions. Additionally, MSPC consensus 

regions that are not common to IDR show a larger enrichment by annotation (8/8 genomic 

annotations; Figure 1) and by TF (45/48 TFs; Supplementary Figure 2). Accordingly, the 

consensus regions identified by MSPC provide a more appropriate set of informative genomic 

regions, favouring discovery over conservativeness, while controlling false positives. Since 

MSPC is applied at post-peak calling, it can be used to produce a single set of peaks from 

multiple replicates, as well as from multiple sets of peaks obtained by applying different peak 

calling methods [53]. 

 

Both MSPC and IDR operate on regions called using peak callers. Hence, their candidate sites 

are limited to the regions identified by the peak caller. To alleviate this limitation, a 

recommended practice for MSPC is to call peaks using a permissive p-value threshold to 

minimize the probability of missing weak binding sites at the cost of increasing false-positive 

rate; our assessment shows that MSPC can distinguish between true weak binding sites and 

artifactual regions in an input with a high false-positive rate. Additionally, given that the 

statistical model of both methods rely on regions binding affinity, they have limited application 

in sequencing protocols where there is not sufficient evidence to reason about the statistical 

significance of binding affinity (e.g., single-cell protocols such as ATAC-seq).  
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