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 2 

Abstract 27 

Campylobacter is the most common cause of bacterial gastroenteritis worldwide and diarrheal disease 28 

is a major cause of child morbidity, growth faltering and mortality in low- and middle-income 29 

countries (LMICs). Despite evidence of high incidence and differences in disease epidemiology, there 30 

is limited genomic data from studies in developing countries. In this study, we characterised the 31 

genetic diversity and accessory genome content of a collection of Campylobacter isolates from Cairo, 32 

Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and 33 

dairy products (n=24) and patients (n=57) suffering from gastroenteritis. Among the most common 34 

sequence types (STs) we identified were the globally disseminated, host generalist ST-21 clonal 35 

complex (CC21) and the poultry specialist CC206, CC464 and CC48. Notably, CC45 and the cattle-36 

specialist CC42 were under-represented with a total absence of CC61. Comparative genomics were 37 

used to quantify core and accessory genome sharing among isolates from the same country compared 38 

to sharing between countries. Lineage-specific accessory genome sharing was significantly higher 39 

among isolates from the same country, particularly CC21 which demonstrated greater local 40 

geographical clustering. In contrast, no geographic clustering was noted in either the core or accessory 41 

genomes of the CC828, suggesting a highly admixed population. A greater proportion of C. coli 42 

isolates were multidrug resistant (MDR) compared to C. jejuni. This is a significant public health 43 

concern as MDR food chain pathogens are difficult to treat and often pose increased mortality risk 44 

demanding enhanced prevention strategies in the Egyptian market to combat such a threat.  45 

  46 
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Impact statement 47 

Campylobacter is the leading bacterial cause of gastroenteritis worldwide and despite high incidence 48 

in low- and middle-income countries, where infection can be fatal, culture-based isolation is rare and 49 

the genotypes responsible for disease are seldom identified. Here, we sequenced the genomes of a 50 

collection of isolates from clinical cases and potential infection reservoirs from Cairo in Egypt and 51 

characterised their genetic diversity. Among the most common genotypes we identified were globally 52 

disseminated lineages implicated in human disease worldwide, including the host generalist ST-21 53 

clonal complex (CC21) and the poultry specialist genotypes CC206, CC464 and CC48. Notably 54 

however, some other globally common genotypes were under-represented or entirely absent from our 55 

collection, including those from cattle-specialist lineages, CC42 and CC61. By focussing on specific 56 

lineages, we demonstrate that there is increased accessory genome sharing in specific clonal 57 

complexes. This increased local sharing of genes may have contributed to a greater proportion of C. 58 

coli isolates possessing antimicrobial resistance determinants that suggest they could be multidrug 59 

resistant (MDR). This is a significant public health concern as MDR food chain pathogens are 60 

difficult to treat and often pose increased mortality risk demanding enhanced prevention strategies.  61 

 62 

Data summary 63 

Short read data are available on the NCBI Sequence Read Archive, associated with BioProject 64 

PRJNA576513 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA576513). Assembled genomes, 65 

supplementary material and additional analysis files are available from FigShare: 66 

https://doi.org/10.6084/m9.figshare.9956597. Phylogenetic trees can be visualised and manipulated 67 

on Microreact for C. jejuni (https://next.microreact.org/project/Cjejuni_Egypt) and C. coli  68 

(https://next.microreact.org/project/Ccoli_Egypt) separately, or combined Cairo and Oxford data with 69 

additional PopPunk network clustering (https://microreact.org/project/Campy-Egypt). 70 

  71 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.24.461243doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 72 

Diarrheal disease is a major cause of child morbidity, growth faltering and mortality in low- and 73 

middle-income countries (LMICs) (McCormick and Lang, 2016; Platts-Mills and Kosek, 2014). 74 

Campylobacter is the most common cause of bacterial gastroenteritis worldwide (Kaakoush et al., 75 

2015) and typically human campylobacteriosis is commonly diagnosed as a disease associated with 76 

consumption of contaminated food, especially poultry (Nichols et al., 2012; Sheppard et al., 2009). 77 

Extremely high incidence in LMICs, high exposure rates (Lee et al., 2013) and endemism among 78 

young children suggests a different epidemiology (Kaakoush et al., 2015; Lanata et al., 2013; J. Liu et 79 

al., 2016). Frequent or chronic (re)infection is allied to significant morbidity, cognitive development 80 

impairment, and even death (Coker, 2002; Crofts et al., 2018; Kirk et al., 2018; Reed et al., 1996). In 81 

Egypt, campylobacteriosis is common and a leading cause of paediatric diarrhoea, with an incidence 82 

of 1.2 episodes per year (ElGendy et al., 2018; Rao, 2001) with up to 85% of children infected in their 83 

first year (Liu et al., 2012). Despite the high frequency of reported cases of Campylobacter-associated 84 

diarrhoea in Egypt (ElGendy et al., 2018), there are no detailed surveillance studies on the dominant 85 

sequence types and proliferation of genotypes associated with the onset of post-infectious sequelae, 86 

such as irritable bowel syndrome (PI-IBS), Guillain-Barré syndrome (GBS) or Miller 87 

Fisher syndrome (Wierzba et al., 2008).  88 

 89 

Campylobacter species are often part of the gut microbiota of various wild and farmed animals 90 

leading to frequent contamination of human food products (Asuming-Bediako et al., 2019; Waite and 91 

Taylor, 2015). In Egypt, farming practices can lack adequate biosecurity and regulation. Only limited 92 

studies have reported the prevalence and distribution of Campylobacter in Egyptian 93 

campylobacteriosis cases (Kaakoush et al., 2015) and little is known of the dominant source reservoirs 94 

driving infection and transmission. In Europe, potential source reservoirs have been identified through 95 

source attribution studies, with poultry products regarded as the primary source of infection (Facciolà 96 

et al., 2017; Mossong et al., 2016; Sheppard et al., 2009; Thépault et al., 2018). Host-adaptation of 97 

Campylobacter to a wide-range of hosts is reflected in its population structure (Colles and Maiden, 98 
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2012; Dearlove et al., 2016; Griekspoor et al., 2013; Méric et al., 2018; Sheppard et al., 2014), with 99 

many lineages common in human infection able to infect multiple host species. These host generalist 100 

lineages include C. jejuni ST-21, ST-45 clonal complexes and the C. coli ST-828 complex (Dearlove 101 

et al., 2016; Mossong et al., 2016). Other genotypes are only found in a single reservoir species, often 102 

associated with global poultry or cattle production. Host specialist clonal complexes common in 103 

human disease includes the poultry-associated ST-353, ST354 and ST257 (Berthenet et al., 2019; 104 

Sheppard et al., 2009) and cattle specialist ST-61 (French et al., 2005; Mourkas et al., 2019). 105 

 106 

Human infection in developed countries is usually sporadic and self-limiting, not requiring treatment 107 

with antibiotics. However global rates of antimicrobial resistance are rising (Mourkas et al., 2019; 108 

Zhao et al., 2016) in line with other Gram negative gastrointestinal pathogens (Tam et al., 2012; CDC, 109 

2020). Widespread agricultural usage has driven the proliferation of tetracycline resistance through its 110 

use as a growth promoter (Abdi Hachesoo et al., 2014; Inglis et al., 2019). In particular, C. coli has 111 

shown an ability to acquire erythromycin resistance genes from other species (Mourkas et al., 2019). 112 

This has not been explored for Egyptian Campylobacter isolates, where agricultural antibiotic usage is 113 

poorly regulated (Dahshan et al., 2015) and self-medication for gastrointestinal disease is common 114 

(Abd El-Tawab et al., 2018; Sabry et al., 2014). Global differences in the use of quinolones is likely 115 

responsible for the geographical differences observed in quinolone resistance (Luangtongkum et al., 116 

2009; Pascoe et al., 2017; Zollner-Schwetz and Krause, 2015).  117 

 118 

We have sequenced 112 Campylobacter isolates collected from patients and food of animal source 119 

(i.e., broiler chicken carcasses and dairy products) in Cairo over a year to determine the most 120 

prevalent Campylobacter genotypes causing disease in Egypt. By screening the genome content, 121 

including known AMR determinants we provide a better understanding of the local population 122 

structure to guide disease intervention in Egypt. This study provides a basis for considering complex 123 

transmission networks in LMICs and highlights the role of globally transmitted Campylobacter 124 

lineages and the emergence of (horizontally acquired) antimicrobial resistance.  125 
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Methods 126 

Ethical approval 127 

The study represents a retrospective study that involved sequencing the genomes of a historical strain 128 

collection and no patient data collection was involved in this study. Ethical approval was granted from 129 

the respective ethics committee in the Egyptian central directorate of research and health development 130 

before conducting the study. 131 

 132 

Isolate collection 133 

In total, 112 Campylobacter isolates were collected in Cairo, Egypt from September 2017 to 134 

December 2018, including 31 isolates from broiler carcasses, 24 isolates from milk and dairy 135 

products, and 57 clinical isolates. Clinical isolates were recovered from stool samples of patients 136 

admitted to hospitals in downtown Cairo suffering from gastroenteritis symptoms. A questionnaire 137 

was distributed to all admitted patients requesting details on clinical presentation (e.g., duration of 138 

illness, symptoms, medication prescribed), dietary record of the previous 2 weeks, including 139 

consumption of specific or undercooked meats, unpasteurized milk, exposure to animal manure or 140 

faeces, and any retail outlets commonly used by patients for food consumption prior to the onset of 141 

illness. A random sampling approach was then used to include food samples from stores in the study 142 

region that were commonly listed in the questionnaire. 143 

 144 

Sample culturing and whole genome sequencing 145 

The isolation and enumeration of Campylobacter strains from different food matrices was performed 146 

according to the ISO 10272-1 (Enrichment Method; Detection of Campylobacter spp. after Selective 147 

Enrichment). All isolates were sub-cultured from −80°C frozen stocks onto Mueller-Hinton agar 148 

(Oxoid, United Kingdom). Plates were incubated at 42 ± 1°C under anaerobic conditions using 149 

AnaeroGen™ 2.5L Sachets (Oxoid, United Kingdom). Genomic DNA was extracted from 112 150 

Egyptian isolates using the QIAamp DNA Mini Kit (QIAGEN, Crawley, UK), according to 151 

manufacturer’s instructions and DNA concentrations were quantified using a Nanodrop 152 
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spectrophotometer before genome sequencing using an Illumina MiSeq (California, USA). Nextera 153 

XT libraries (Illumina, California, USA) were prepared following manufacturer’s protocols and short 154 

paired-end reads were sequenced using 2�×�300�bp paired end v3 reagent kit (Illumina).  155 

 156 

Genome datasets 157 

Genomes were assembled de novo using SPAdes (version 3.8.0; Bankevich et al. 2012). The average 158 

number of contigs was 72 (range: 12–471) for an average total assembled sequence size of 1.70 Mbp 159 

(range: 1.56–1.86). The average N50 contig length (L50) was 14,577 (range: 3,794-55,912) and the 160 

average GC content was 30.8 % (range: 30.5-31.6). Short read data are available on the NCBI short 161 

read archive (SRA), associated with BioProject PRJNA576513. Assembled genomes and 162 

supplementary material are available from FigShare (doi:10.6084/m9.figshare.9956597; individual 163 

accession numbers and assembled genome statistics in Supplementary Table S1). We augmented 164 

our collection by assembling a context dataset of previously published isolates (n=204) to represent 165 

the known diversity of C. jejuni and C. coli (Calland et al., 2020; Sheppard et al., 2010, 2013, 2014). 166 

In addition, we also compared our single city survey with a previously published survey from Oxford 167 

in the UK (n=874 isolates collected over 1 year; Cody et al. 2012). Isolate genomes were archived in 168 

BIGSdb and MLST sequence types (STs) derived through BLAST comparison with the pubMLST 169 

database (Dingle et al., 2001; Jolley et al., 2018; Jolley and Maiden, 2010; Sheppard et al., 2012). 170 

Simpson’s index of ST diversity was calculated for the Cairo and Oxford datasets using the equation:  171 

D � 1�
∑n�n � 1�

N�N � 1�
 

Where n is the number of isolates of each sequence type and N is the total number of isolates 172 

(Grundmann et al., 2001). 173 

 174 

Core and accessory genome characterisation 175 

Alignments were made from concatenated gene sequences of all core genes (found in ≥95% isolates) 176 

using MAFFT (version 7; Katoh and Standley 2013) on a gene-by-gene basis. Separate maximum-177 

likelihood phylogenies were constructed with a GTR+I+G substitution model and ultra-fast 178 
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bootstrapping (1000 bootstraps) (Hoang et al., 2018) implemented in IQ-TREE (version 1.6.8; 179 

Nguyen et al. 2015) for C. jejuni (n=1,048) and C. coli (n=132) and visualized on Microreact 180 

(https://next.microreact.org/project/Cjejuni_Egypt; https://next.microreact.org/project/Ccoli_Egypt) 181 

(Argimón et al., 2016).  182 

 183 

All unique genes present in at least one isolate (the pangenome) were identified by automated 184 

annotation using PROKKA (version 1.13; Seemann 2014) followed by PIRATE, a pangenomics tool 185 

that allows for orthologue gene clustering in bacteria (Bayliss et al., 2019). We defined genes in 186 

PIRATE using a wide range of amino acid percentage sequence identity thresholds for Markov 187 

Cluster algorithm (MCL) clustering (45, 50, 60, 70, 80, 90, 95, 98). Genes in the pangenome were 188 

ordered initially using the NCTC 11168 reference followed by the order defined in PIRATE based on 189 

gene synteny and frequency (Gundogdu et al., 2007; Pascoe et al., 2019). As described previously, a 190 

matrix was produced summarizing the presence/absence and allelic diversity of every gene in the 191 

pangenome list, with core genes defined as present in 95% of the genomes and accessory genes as 192 

present in at least one isolate (Supplementary table S2) (Méric et al., 2014). Pairwise core and 193 

accessory genome distances were compared using PopPunk (version 2.2.0; Lees et al. 2019) which 194 

uses pairwise nucleotide k-mer comparisons to distinguish shared sequence and gene content to 195 

identify divergence of the accessory genome in relation to the core genome. A two-component 196 

Gaussian mixture model was used to construct a network to define clusters, comparable to other 197 

Campylobacter studies (Components: 41; density 0.0579; transitivity: 0.9518; score: 0.8907) (Pascoe 198 

et al. 2020). 199 

 200 

Core genome variation between isolates was quantified by calculating the pairwise average nucleotide 201 

identity (ANI) of all (n=112+874) Campylobacter genomes using FastANI v.1.058 (Jain et al., 2018). 202 

The gene presence matrix produced by PIRATE was used to generate a heatmap of shared pairwise 203 

accessory genome genes. Averages were calculated for within and between country comparisons in 204 

addition to focussed analysis on the ST21 (C. jejuni) and ST828 (C. coli) clonal complexes. 205 

Antimicrobial resistance genes and putative virulence genes were detected through comparison with 206 
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 9 

reference nucleotide sequences using ABRicate (version 0.8)  (https://github.com/tseemann/abricate)  207 

and the NCBI database (Chen et al., 2005; NCBI Resource Coordinators, 2013). Point mutations 208 

related to antibiotic resistance genes were identified by PointFinder (Zankari et al., 2017) using the 209 

STAR-AMR software package (https://github.com/phac-nml/staramr) (Supplementary table S3).  210 

  211 
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 10

Results 212 

Globally circulating genotypes among Egyptian Campylobacter isolates 213 

We sequenced and characterized a collection of Campylobacter spp. isolates (n=112) from clinical 214 

cases, broiler carcasses and dairy products collected over a 14-month sampling period in Cairo, Egypt 215 

(Figure 1A; Supplementary table S1). Isolate genotypes were compared with all genomes deposited 216 

in the pubMLST database (97,012 profiles, data accessed 17th February 2020) and ranked according to 217 

how frequently they were found associated with human disease (Figure 1B). Egyptian C. jejuni 218 

isolates belonged to 15 clonal complexes (CCs) with a diverse assemblage of STs. Nearly half of the 219 

isolates (n = 29, 47%) were from common lineages, isolated many times before and recorded in 220 

pubMLST (>50 MLST profiles; Figure 1B), including the globally disseminated lineages of ST-221 

21CC (n=37; 41%), ST-206 CC (n=10; 11%) and ST-464CC (n=7; 8%) the most abundant. Several 222 

other poultry-associated clonal complexes, which are common in human disease (Berthenet et al., 223 

2019; Sheppard et al., 2009), including ST-353 (n�=3,�3.2%,), ST-354 (n�=�4, 4.3%) and ST-257 224 

(n�=�4, 4.3%) were identified. Other globally disseminated lineages were found less often in Egypt 225 

(n<=2) i.e., ST�460 (n�=�2), ST�1034 (n�=�2), ST�42 (n�=�1), ST-45 CC (n=1), ST�573 226 

(n�=�1), ST�574 (n=1) and ST�658 (n=1) (Colles et al., 2010; Olkkola et al., 2016).  227 

 228 
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Local sequence types 229 

Comparison with a collection representing the known genetic diversity of C. jejuni and C. coli 230 

identified some common STs (>1,000 profiles in pubMLST) that were completely absent in our 231 

Egyptian collection, i.e., ST-53, ST-829 (C. coli), ST-22, ST-61, ST-51, ST-1068 (C. jejuni) (Figure 232 

1CD). Two isolates belonging to ST-1287CC, a genotype that has previously been isolated from 233 

poultry and the environment (Magnússon et al., 2011), was observed exclusively among our Egyptian 234 

isolates, yet absent in UK and genetic context datasets. Furthermore, there were also some STs 235 

belonging to ST-21CC that were found in Egyptian isolate collection (n=>3) that are rare in global 236 

collections (<100 profiles in pubMLST), i.e., ST-1519 (n=4), ST-3769 (n=3). It was also observed 237 

that more C. coli was found among Egyptian clinical isolates than is typically observed, specifically 238 

the C. coli lineage ST-828 CC 90.4% C. coli isolates (19/21) belonged to the ST-828 CC within the 239 

Egyptian dataset and two C. coli isolates with unassigned CC of sequence types, ST-7951 and ST-240 

1681. Three rare STs belonging to ST-828 CC were exclusively found in Egypt dataset which are ST-241 

1058 (n=1), ST-1059 (n=1), and ST-7950 (n=1).  242 

 243 

Increased sharing of accessory genes contributes to a local gene pool 244 

Our Egyptian dataset was compared directly with a previously published study of a single city, ~1-245 

year survey from Oxford in the UK (Cody et al., 2012). Both populations were similarly diverse, 246 

specifically there were 50 STs (16 CCs) among the Egyptian isolate collection, with a Simpson’s 247 

diversity index of 0.817, compared to 205 STs (32 CCs) among the Oxford collection of genomes 248 

(Simpson’s diversity index = 0.895; Figure 1CD). We used PIRATE to construct a pan-genome of all 249 

Egyptian and Oxford isolates (n=986). Consistent with other studies, we identified an open 250 

pangenome, meaning that the number of genes in the pangenome continues to increase with each 251 

additionally sequenced isolate. Accessory genes represented nearly three-quarters of the pangenome 252 

(3,410 genes; 74% of pangenome) with a quarter of the genes identified (1,225, 26%) considered core 253 

genes present in 95% or more of the isolates. Pairwise comparison of the core nucleotide sequence 254 

(%ANI) and accessory genome sharing of all isolates reflected the clonal frame, with clusters of 255 

closely related isolates sharing a large percentage of ANI (Figure 2AB). Direct comparison between 256 
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the Oxford and Cairo datasets suggested an increase in within-country, local accessory gene sharing 257 

(Figure 2CD). The structured clustering of pairwise comparisons of shared accessory genes 258 

suggested that this may vary between lineages and visualization of the differences in the distribution 259 

of pairwise genomic distances with PopPUNK also pointed towards lineage-specific shared gene 260 

pools (Figure 2E). Host generalist clonal complex isolates clustered closer together than the more 261 

isolated host-specific isolates. This included the two most common clonal complexes identified in our 262 

Cairo collection, ST-21CC and ST-828CC, which were investigated further (Figure 2F).  263 

 264 

Locally diverged sequence types within the globally disseminated ST-21 clonal complexes 265 

As one might expect of within lineage (clonal complex) comparisons, all ST-21CC isolates shared 266 

more than 99% core genome nucleotide identity and shared more accessory genes than the population 267 

average (852 genes; Figure 2CF) and significantly more genes were shared between isolates from the 268 

same country (t-test with Welch correction; p<0.0001). A maximum-likelihood phylogeny of all 269 

CC21 isolates (n=251), the most common clonal complex identified in our collection from Cairo, 270 

identified geography-specific clusters of isolates (Figure 3A). These clones also clustered together 271 

when visualizing the distribution of pairwise genomic distances with PopPUNK (Figure 3B). While 272 

some specific STs were common in both Oxford and Cairo (ST21 and ST50), others were much more 273 

common in one specific location, e.g., ST-53 in Oxford, and ST-1519 and ST-3769 in Cairo (Figure 274 

3C). There was also evidence that some lineages had enhanced AMR (Figure 3D). While the ST-50 275 

genotype is very common and has been reported more than 3,900 times in pubMLST from 40 276 

countries, this among the first reports from Africa. In both Oxford and Cairo datasets, ST-50 was 277 

often predicted to be MDR. ST-21 is also very common, with more than 4,000 reports from 33 278 

countries in pubMLST but was much less likely to be MDR. Four isolates of the Cairo specific ST-279 

3769 also represented a high proportion of MDR (Figure 3E). 280 

 281 

Extensive multi-drug resistance in local C. coli sequence types 282 

Greater admixture was noted between UK and Egyptian ST-828CC isolates than for ST-21CC – no 283 

geographic clustering was observed in either the core or accessory genomes (Figure 4AB). However, 284 
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only ST-827 was common in both datasets (Figure 4C). Several STs were found in the Oxford 285 

dataset that were not identified in Cairo, including the frequently isolated STs -829, -828, -855, 962, -286 

1145 and -5734. Several lineages were highly resistant to lincosamides, with more than half the 287 

isolates from ST-828, ST-830 and ST-872 predicted to be resistant (Figure 4D). All isolates from 288 

ST828 and ST-872 were also predicted to be resistant to chloramphenicol. Overall, C. coli isolates (6 289 

of 105, 5.7%) were far more likely to be considered MDR than C. jejuni isolates (6 of 876, 0.68%) 290 

and ST-828 complex isolates from Cairo (2 of 19, 10.5%) demonstrated much higher rates of MDR 291 

than in Oxford (3 of 77, 3.8%; Figure 4E).  292 

 293 

Antimicrobial resistance genes are distributed across isolates 294 

In characterization of the resistome, each isolate genome was screened for the presence of genes 295 

associated with AMR. In Egypt, for C. jejuni, the average number of AMR genes per isolate was 6.66, 296 

comparable to 6.52 for C. coli.  In Egypt, the presence of the tet(O) gene, conferring tetracycline 297 

resistance, was higher in C. coli than C. jejuni (76% and 43% respectively). This pattern contrasts 298 

with Oxford where 41.7% of C. jejuni but only 35.3% of C. coli isolates were found to harbor tet(O). 299 

Whilst a low proportion of Egyptian isolates (6.7%) contained the blaOXA-61 gene, associated with 300 

β-lactam resistance, alternative alleles including blaOXA-450 and blaOXA-605 were abundant. In 301 

respect to lineage association with genes, in Egypt the ST-21 clonal complex had a high prevalence of 302 

genes associated with β-lactam resistance (particularly the blaOXA-193, blaOXA-450 and blaOXA-303 

605 alleles). The blaOXA-465 allele was closely related to ST-1034. Furthermore, blaOXA-61 was 304 

closely associated with ST-48 (Figure 3D). All of these patterns were reflected amongst the Oxford 305 

isolates. However, numerous genes (including aadE, Ant6-la and blaOXA-451) were found amongst 306 

distant lineages. The multi-drug efflux pump encoded by a three-gene operon (cmeABC) was 307 

abundant amongst isolates (n=87,74%) – although an absence of the repressor gene cmeR in C. coli 308 

was observed. 309 

 310 

Whilst the average number of resistance genes per isolate was comparable for C. jejuni in Egypt, this 311 

analysis indicated that C. coli held a greater breadth of genes across classes of antimicrobials. Hence, 312 
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the proportion of MDR isolates, considered when an isolate is resistant to at least three classes, was 313 

28% for C. coli compared to 1% for C. jejuni (EFSA, 2021). The majority (88%) of MDR isolates in 314 

Egypt were C. coli, despite C. coli representing about a fifth of the dataset. In other words, a greater 315 

proportion of C. coli isolates were MDR. In Oxford, half of MDR isolates were C. coli, whilst in this 316 

case representing less than one tenth of the dataset. The C. jejuni isolates that were MDR, were all 317 

host generalists – ST-21, ST-48 or ST-206.  Amongst Egyptian isolates, genes including aad9, aadE, 318 

aadE-Cc, ant(6)-Ia, aph(2'')-If, aph(3')-III and aph(3')-IIIa associated with aminoglycoside resistance, 319 

were almost exclusively associated with C. coli, particularly MDR C. coli. This association was not as 320 

strong in Oxford. Regarding specific genes and host associations, aminoglycoside resistance-321 

associated genes were infrequent amongst isolates from chicken or dairy products. ant(6)-Ia for 322 

example, was solely found in human samples. In turn, few isolates from chicken and dairy products 323 

were MDR (only 12.5% of MDR isolates was from chicken). 324 

  325 
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Discussion  326 

Diarrheal disease is a major threat to human health and the second leading cause of death in children 327 

under five years’ old LMICs (Lanata et al., 2013). Campylobacteriosis is a major cause of diarrheal 328 

disease worldwide (Amour et al., 2016; ElGendy et al., 2018; Lee et al., 2013) but, despite the 329 

potential importance, little is known about Campylobacter in countries where it potentially poses the 330 

greatest health risk. As studies begin to take a worldview of Campylobacter epidemiology and 331 

transmission (Mottet and Tempio, 2017), we describe globally disseminated agriculture-associated 332 

disease-causing lineages based on core and accessory genome content, with evidence that local 333 

accessory genome sharing driving acquisition of AMR genes in specific lineages.  334 

 335 

The Egyptian Campylobacter isolates included a diverse set of STs, including common disease-336 

causing lineages and regional STs, that have rarely been reported from other parts of the world. 337 

Industrialized agriculture globalization has dispersed livestock worldwide (Mottet and Tempio, 2017), 338 

expanding the geographical range of C. jejuni. This is evident in the Egyptian collection as two of the 339 

most predominant genotypes belonged to the ST-21 and ST-206 clonal complexes (Figure 1D). These 340 

two host generalist clonal complexes have been extensively reported worldwide and frequently 341 

isolated from various reservoir hosts, including human clinical samples (Berthenet et al., 2019; Dingle 342 

et al., 2001; Grove-White et al., 2011; Mossong et al., 2016; Sheppard et al., 2009; Suerbaum et al., 343 

2001). The ST21-CC exhibits considerable genome plasticity with a clear association with several 344 

virulence genes and resistance to various antimicrobial agents (Aksomaitiene et al., 2019; Gripp et al., 345 

2011; Habib et al., 2010; Wieczorek et al., 2017; T. Zhang et al., 2016). Poultry-associated clonal 346 

complexes, ST-206, ST-464, ST-48, ST-257 and ST-354 were also common among the Egyptian 347 

isolates, all of which are among the most prevalent clonal complexes isolated in Europe (Colles et al., 348 

2011; Elhadidy et al., 2018; Fiedoruk et al., 2019).  349 

 350 

Further comparison of isolate genotypes collected in Cairo with a large global collection revealed the 351 

absence of certain lineages, most notably the lack of the cattle-associated genotype, ST-61 (Dingle et 352 
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al., 2002; Mourkas et al., 2020).  There was only one isolate, of dairy product origin, that could be 353 

attributed to a cattle-specialist clonal complex (ST-42), which is unexpected as several (n=24) isolates 354 

were sampled from dairy products. Campylobacter isolates from cattle have predominantly been 355 

sampled from meat, milk products and fecal sources (n=2,726 in pubMLST; Kwan et al., 2008; 356 

Mourkas et al., 2020; Epping et al., 2021). Suggesting that dairy products isolates might represent a 357 

different source population in Egypt.   358 

 359 

There were also no isolates belonging to the ST-22 CC, a particularly high risk lineage which is 360 

commonly found among patients with post-infectious complications of campylobacteriosis, such as 361 

GBS and IBS (Revez et al., 2011; Peters et al., 2021). Although one isolate in our collection was from 362 

ST-45 CC, this host generalist clonal complex is often one of the most commonly isolates lineages in 363 

clinical surveillance studies worldwide (De Haan et al., 2010; Sheppard et al., 2009; Shin et al., 2013; 364 

Sopwith et al., 2008). Notably however, it is often absent (or under-represented) in studies conducted 365 

in LMICs (Pascoe et al., 2020; Sarhangi et al., 2021). This is consistent with observations from other 366 

LMICs, where local differences in disease epidemiology are reflected by the absence of common 367 

Campylobacter lineages, and the presence of rare or unique sequence types (Graham et al., 2016; 368 

Pascoe et al., 2020; Prachantasena et al., 2016; P. Zhang et al., 2020). Among our Egyptian isolates 369 

the ST-1287 clonal complex (n=2) has been reported less than 4 times from other parts of the world 370 

(Colles et al., 2011; de Haan et al., 2010; Ramonaite et al., 2014; P. Zhang et al., 2020).  371 

 372 

Geographical differences have been noted in ST-21CC (Kärenlampi et al., 2007; Kovanen et al., 373 

2014; Olkkola et al., 2016; Pascoe et al., 2017; Wallace et al., 2021). ST-21 CC isolates are among 374 

the most common C. jejuni genotypes isolated worldwide, with one quarter of C. jejuni isolates 375 

recorded in the pubMLST database are ST21 CC. Isolates of the ST-50 sequence type (n= 3,915) 376 

alone have been sampled from 6 continents and 44 countries, although this will be their first report 377 

from Africa (Jolley et al., 2018). Our Egyptian ST-50 isolates do cluster together on a ML phylogeny 378 

of ST-21 CC isolates and away from the Oxford ST-21 CC when grouped by PopPunk. Two sequence 379 

types were unique to Egypt, ST-1519 and ST-3769, with nearly 10% of the ST-3769 isolates were 380 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.24.461243doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461243
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

MDR. A slightly greater proportion of the Egyptian ST-50 isolates were also MDR, although this 381 

sequence type has been observed to be MDR in other parts of the world (Elhadidy et al., 2020).  382 

 383 

The C. coli ST-828 clonal complex did not show as much geographical segregation, and when 384 

grouping our Egyptian isolates by core and accessory genome distances they clustered with the UK 385 

isolates, despite several STs being isolated in only one of the datasets. STs found in the Egyptian 386 

dataset were more often MDR than UK isolates, and overall C. coli from Cairo were far more MDR 387 

than C. coli isolates from developed countries (Du et al., 2018; Gharbi et al., 2018; Mourkas et al., 388 

2019). The most compelling clarification for such abundance could be that C. coli of ST-828 CC have 389 

a great recombination potential besides the accumulation of C. jejuni DNA throughout the genome of 390 

this lineage which could have led to the acquisition of multiple AMR genes (Sheppard et al., 2008, 391 

2013).  392 

 393 

Overall, there is a clear evidence of local sharing and recent acquisition of accessory gene content of 394 

AMR genes within the Egyptian isolates. Specifically, pairwise clustering of isolates by core and 395 

accessory genome distances recapitulated clusters according to ST and clonal complex (Figure 2), 396 

however most Egyptian isolates were more tightly clustered than the Oxford dataset, consistent with 397 

shared acquisition of accessory genes. Overall, ANI and shared accessory genes were similar between 398 

Oxford and Egyptian isolates (per isolate), however the two most common clonal complexes found in 399 

our Cairo dataset demonstrated greater sharing of accessory genes, indicative of a shared gene pool. 400 

Our study suggested that while geographical partitioning doesn’t impact the composition of the core 401 

genome, represented by the shared STs and CCs, the accessory genome is influenced. Within the 402 

Egyptian isolates, the most prevalent C. jejuni genotypes (ST-21CC and ST-206CC) showed clear 403 

evidence of transmission of MDR determinants among lineages. Multiple factors could influence this, 404 

such as livestock and food production practices and the segregation of MDR isoaltes. However, 405 

selective pressure for MDR is clearly attributable to antibiotic usage and potentially zoonotic 406 

transmissions as well as the rate of horizontal gene transfer (Fiedoruk et al., 2019). Our study 407 

provides evidence to support programs aimed at improved antibiotic stewardship in clinical and 408 
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veterinary settings. With strict control measures, and an understanding of transmission of strains from 409 

animal reservoirs through the food production chain, it may be possible to reduce contamination with 410 

MDR Campylobacter in Egypt. 411 

  412 
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Tables and Figures 854 

Figure 1: (A) Demographic data for Cairo, Egypt from which we collected Campylobacter spp. 855 

isolates (n=112; red circles) from clinical cases, broiler carcasses and dairy products collected over a 856 

14-month sampling period. Our collection was compared to a similar published survey from Oxford, 857 

UK (n=874; green circles; Cody et al. 2012) and isolates from pubMLST.org (n=204; grey circles) for 858 

additional genetic context. (B) Clonal complexes (CCs) of isolates collected from Cairo were ranked 859 

according to the frequency in our local dataset and how often they have been sampled from human 860 

disease isolates (data from pubMLST; https://pubmlst.org/). Alignments were made from 861 

concatenated gene sequences of all core genes (found in ≥95% isolates) using MAFFT (version 7; 862 

Katoh and Standley 2013) on a gene-by-gene basis. Separate maximum-likelihood phylogenies were 863 

constructed with a GTR+I+G substitution model and ultra-fast bootstrapping (1000 bootstraps) 864 

(Hoang et al., 2018) implemented in IQ-TREE (version 1.6.8; Nguyen et al. 2015) for (C) C. jejuni 865 

(n=1,048) and (D) C. coli (n=132) and visualized on Microreact 866 

(https://next.microreact.org/project/Cjejuni_Egypt; https://next.microreact.org/project/Ccoli_Egypt) 867 

(Argimón et al., 2016).   868 

 869 

Figure 2: (A) Core genome variation between isolates was quantified by calculating the pairwise 870 

average nucleotide identity (ANI) of all UK and Oxford Campylobacter genomes (n=112+874) using 871 

FastANI v.1.058 (Jain et al., 2018). (B) The ANI for each isolate was estimated and averages 872 

compared within and between countries. (C) The gene presence matrix produced by PIRATE was 873 

used to generate a heatmap of shared pairwise accessory genome genes. (D) Averages were calculated 874 

for within and between country. (E) Clustering of pairwise core and accessory genome distances were 875 

compared using PopPunk. Interactive visualisation on Microreact: 876 

https://microreact.org/project/Campy-Egypt. (F) Comparisons of within and between country ANI 877 

and accessory gene sharing were also analysed for our two most common Egyptian lineages, ST21 (C. 878 

jejuni) and ST828 (C. coli) clonal complexes. 879 
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Figure 3: (A) Sub-tree of all Egyptian and UK ST21 clonal complex (CC21) isolates (n=251). 881 

Common sequence types are annotated and ST50 (yellow) and ST21 (green) are highlighted. (B) 882 

Within clonal complex clustering of pairwise core and accessory genome distances with PopPunk. (C) 883 

Prevalence of the most common sequence types found within CC21. (D) Prevalence of AMR 884 

determinants grouped by antibiotic class for each CC21 ST. (E) Prevalence of MDR isolates (AMR 885 

determinants for three or more antibiotic classes) in CC21 STs.  886 

 887 

 Figure 4: (A) Sub-tree of all Egyptian and UK ST828 clonal complex (CC828) isolates (n=94). 888 

Common sequence types are annotated and ST827 (orange) is highlighted. (B) Within clonal complex 889 

clustering of pairwise core and accessory genome distances with PopPunk. (C) Prevalence of the most 890 

common sequence types found within CC828. (D) Prevalence of AMR determinants grouped by 891 

antibiotic class for each CC828 ST. (E) Prevalence of MDR isolates (AMR determinants for three or 892 

more antibiotic classes) in CC828 STs. 893 

 894 

Supplementary information 895 

Supplementary table 1: Summary of isolate collection data and genome statistics 896 

Supplementary table 2: Summary PIRATE core and accessory genome statistics.  897 

Supplementary table 3: Summary of AMR genes identified by comparison with the NCBI database 898 

and pointfinder. 899 
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