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ABSTRACT38

Gene expression at the individual cell-level resolution, as quantified by single-cell RNA-sequencing (scRNA-seq), can provide

unique insights into the pathology and cellular origin of diseases and complex traits. Here, we introduce single-cell Disease

Relevance Score (scDRS), an approach that links scRNA-seq with polygenic risk of disease at individual cell resolution;

scDRS identifies individual cells that show excess expression levels for genes in a disease-specific gene set constructed

from GWAS data. We determined via simulations that scDRS is well-calibrated and powerful in identifying individual cells

associated to disease. We applied scDRS to GWAS data from 74 diseases and complex traits (average N =341K) in conjunction

with 16 scRNA-seq data sets spanning 1.3 million cells from 31 tissues and organs. At the cell type level, scDRS broadly

recapitulated known links between classical cell types and disease, and also produced novel biologically plausible findings.

At the individual cell level, scDRS identified subpopulations of disease-associated cells that are not captured by existing cell

type labels, including subpopulations of CD4+ T cells associated with inflammatory bowel disease, partially characterized

by their effector-like states; subpopulations of hippocampal CA1 pyramidal neurons associated with schizophrenia, partially

characterized by their spatial location at the proximal part of the hippocampal CA1 region; and subpopulations of hepatocytes

associated with triglyceride levels, partially characterized by their higher ploidy levels. At the gene level, we determined that

genes whose expression across individual cells was correlated with the scDRS score (thus reflecting co-expression with GWAS

disease genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.

39

Introduction40

The mechanisms through which risk variants identified by genome-wide association studies (GWASs) impact critical tissues and41

cell types are largely unknown1, 2; identifying these tissues and cell types is central to our understanding of disease etiologies42

and will inform efforts to develop therapeutic treatments3. Single-cell RNA sequencing (scRNA-seq) has emerged as the tool43

of choice for measuring gene abundances at single-cell resolution4, 5, providing an increasingly clear picture of which genes are44

active in which cell types and also being able to identify novel cell populations within classically defined cell types. Integrating45

scRNA-seq with GWAS data offers the potential to identify critical tissues, cell types, and cell populations through which46

GWAS risk variants impact disease6–8, thus providing finer resolution than studies using bulk transcriptomic data9–12.47

Previous studies integrating scRNA-seq with GWAS have largely focused on predefined cell type annotations (e.g., classical48

cell types defined using known marker genes), aggregating cells from the same cell type followed by evaluating overlap of the49

cell type-level information with GWAS6–8. However, this approach overlooks the considerable heterogeneity within cell types50

that has been reported in studies of scRNA-seq data alone13–18; the underlying methods (e.g., Seurat cell-scoring function15,51

Vision16, and VAM18) have sought to explain transcriptional heterogeneity in scRNA-seq data by scoring cells based on52

predefined gene sets such as pathway gene sets, but do not consider polygenic disease risk from GWAS and generally do not53

provide individual cell-level association p-values. Integrating information from scRNA-seq data at fine-grained resolution (e.g.,54

individual cells) with polygenic signals from disease GWAS has considerable potential to produce new biological insights.55

Here, we introduce single-cell Disease Relevance Score (scDRS), a method to evaluate polygenic disease enrichment of56

individual cells in scRNA-seq data. scDRS assesses whether a given cell has excess expression levels across a set of putative57

disease genes derived from GWAS, using an appropriately matched empirical null distribution to estimate well-calibrated58

p-values. To our knowledge, scDRS is the first method to associate individual cells in scRNA-seq data to disease GWAS. We59

performed extensive simulations to assess the calibration and power of scDRS. We then applied scDRS to 74 diseases and60

complex traits (average GWAS N =341K) in conjunction with 16 scRNA-seq data sets (including the Tabula Muris Senis61

(TMS) mouse cell atlas19), assessing cell type-disease associations and within-cell type association heterogeneity, including62

heterogeneity of T cells in their association with inflammatory bowel disease (IBD) and other autoimmune diseases, neurons in63

their association with schizophrenia (SCZ) and other brain-related diseases/traits, and hepatocytes in their association with64

triglyceride levels (TG) and other metabolic traits; we analyzed a broader set of scRNA-seq data sets to provide validation65

across species (human vs. mouse) and across sequencing platforms, and to include scRNA-seq data sets with experimentally66

determined cell types and cell states.67

Results68

Overview of methods69

scDRS integrates gene expression profiles from scRNA-seq with polygenic disease information from GWAS to associate70

individual cells to disease, by assessing the excess expression of putative disease genes from GWAS. scDRS consists of three71

steps (Fig. 1, Methods, and Supp. Note). First, scDRS constructs a set of putative disease genes from GWAS summary statistics72

using MAGMA20, an existing gene scoring method (top 1,000 MAGMA genes; see Methods for other choices evaluated).73

Second, scDRS quantifies the aggregate expression of the putative disease genes in each cell to generate cell-specific raw74
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disease scores; to maximize power, each putative disease gene is inversely weighted by its gene-specific technical noise level75

in the single-cell data, estimated via modeling the mean-variance relationship across genes18, 21 (alternative choices of cell76

scores are evaluated in Methods). To determine statistical significance, scDRS also generates 1,000 sets of cell-specific raw77

control scores at Monte Carlo (MC) samples of matched control gene sets (matching the gene set size, mean expression, and78

expression variance of the putative disease genes); cell-specific MC p-values are defined as the proportion of the 1,000 raw79

control scores for a given cell exceeding the raw disease score for that cell22. Third, scDRS approximates the ideal MC80

p-values (obtained using �1,000 MC samples) by pooling control scores across cells. Specifically, it normalizes the raw81

disease score and raw control scores for each cell (producing the normalized disease score and normalized control scores), and82

then computes cell-level p-values based on the empirical distribution of the pooled normalized control scores across all control83

gene sets and all cells; this approximation relies on the assumption that the raw control score distributions (across the 1,00084

control gene sets, for each cell) are from the same parametric distribution (e.g., normal distributions with different parameters,85

such that the normalization procedure can align these distributions across cells), a reasonable assumption when the disease gene86

set is neither too small nor too large (e.g., >50 genes and <20% of all genes; Methods). Importantly, scDRS does not use cell87

type or other cell-level annotations, although these annotations can be of value when interpreting its results.88

scDRS outputs individual cell-level p-values, normalized disease scores, and 1,000 sets of normalized control scores89

(referred to as “disease scores” and “control scores” in the rest of the paper) that can be used for a wide range of downstream90

applications (Methods). Here, we focus on three downstream analyses. First, we perform cell type-level analyses to associate91

predefined cell types to disease and assess heterogeneity in association to disease across cells within a predefined cell type.92

Second, we perform individual cell-level analyses to associate individual cells to disease and correlate individual cell-level93

variables to the scDRS disease score. Third, we perform gene-level analyses to prioritize disease-relevant genes whose94

expression is correlated with the scDRS disease score, reflecting co-expression with genes implicated by disease GWAS. In95

the cell type-level analyses, we compute a single MC p-value across the focal set of cells by comparing the diseases scores to96

the 1,000 sets of control scores (Methods), avoiding the assumption that the cells are independent—a strong assumption in97

scRNA-seq analyses, e.g., when analyzing cells in the same cluster that are dependent due to the clustering process.98

We analyzed publicly available GWAS summary statistics of 74 diseases and complex traits (average N=341K; Supp. Table99

1) in conjunction with 16 scRNA-seq or single-nucleus RNA-seq (snRNA-seq) data sets spanning 1.3 million cells from 31100

tissues and organs from mouse (mus musculus) and human (homo sapiens) (Supp. Table 2; 15 out of 16 data sets publicly101

available; Data Availability). The single-cell data sets include two mouse cell atlases from the Tabula Muris Senis (TMS)19
102

collected using different technologies (fluorescence-activated cell sorting followed by Smart-seq2 amplification23 for the TMS103

FACS data and 10x microfluidic droplet capture and amplification24 for the TMS droplet data), the unpublished Tabula Sapiens104

(TS) human cell atlas25, and other data sets focusing on specific tissues containing well-annotated cell types and cell states. We105

focused on the TMS FACS data in our primary analyses due to its comprehensive coverage of 23 tissues and 120 cell types and106

more accurate quantification of gene expression levels (via Smart-seq2); we used the other 15 data sets to validate our results.107

We note the extensive use of mouse gene expression data to study human diseases and complex traits (see Bryois et al.8, other108

studies6, 7, 9, 12, 26, and Discussion).109

Simulations assessing calibration and power110

We performed null simulations and causal simulations to assess the calibration and power of scDRS, comparing scDRS to three111

state-of-art methods for scoring individual cells with respect to a specific gene set: Seurat (cell-scoring function)15, Vision16,112

and VAM18. To our knowledge, VAM is the only method for scoring individual cells that provides cell-level association113

p-values; Seurat and Vision provide quantitative cell-level scores that we transformed to p-values based on the standard normal114

distribution (Methods).115

First, we evaluated each method in null simulations in which no cells have systematically higher expression across the116

putative disease genes analyzed. We subsampled 10,000 cells from the TMS FACS data and randomly selected 1,000 putative117

disease genes. scDRS and Seurat produced well-calibrated p-values, Vision suffered slightly inflated type I error, and VAM118

suffered severely inflated type I error (Fig. 2A and Supp. Table 9). The slight miscalibration of Vision may be due to the119

mismatch between the normal distribution used for computing p-values and the actual null distribution of the cell-level scores.120

The poor calibration of VAM may be because it uses a permutation-based test that assumes independence between genes under121

the null, an assumption that is likely to be violated in scRNA-seq data. We performed 3 secondary analyses pertaining to null122

simulations. First, we considered other numbers of putative disease genes (100 or 500, instead of 1,000). We determined that123

scDRS remained well-calibrated, VAM continued to suffer from severely inflated type I error, and Seurat and Vision suffered124

increased type I error at 500 genes and severely inflated type I error at 100 genes (Supp. Fig. 2A-C). Second, we considered125

biased sets of putative disease genes (randomly selected from genes with high mean expression, genes with high expression126

variance, or overdispersed genes (genes with high expression variance but normal levels of technical noise27)). We determined127

that scDRS remained reasonably well-calibrated, VAM continued to suffer from severely inflated type I error, and Seurat and128

3
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Vision were conservative for high-expression genes and high-variance genes but suffered inflated type I error for overdispersed129

genes (Supp. Fig. 2D-L). Third, we assessed calibration of our MC test for cell type-disease association based on the output of130

scDRS, using the same subsampled data (and 1,000 putative disease genes). We confirmed that this test was well-calibrated131

(Supp. Table 10).132

Next, we evaluated scDRS, Seurat and Vision in causal simulations in which a subset of causal cells has systematically133

higher expression across putative disease genes (we did not include VAM, which was not well-calibrated in null simulations).134

We used the same 10,000 cells subsampled from the TMS FACS data, randomly selected 1,000 causal disease genes, randomly135

selected 500 of the 10,000 cells as causal cells and artificially perturbed their expression levels to be higher (1.05-1.50 times for136

different simulations) across the 1,000 causal disease genes, and randomly selected 1,000 putative disease genes (provided137

as input to each method) with 25% overlap with the 1,000 causal disease genes. We determined that scDRS attained higher138

power than Seurat and Vision to detect individual cell-disease associations at FDR<0.1 (Fig. 2B and Supp. Table 11); the139

improved power of scDRS may be due to its incorporation of gene-specific weights that down-weight genes with higher levels140

of technical noise. We performed 4 secondary analyses pertaining to causal simulations. First, we considered other levels of141

overlap between the 1,000 causal genes and 1,000 putative disease genes (from 5% to 50%, instead of 25%). We determined142

that scDRS continued to attain higher power than Seurat and Vision (Supp. Fig. 3B). Second, we considered causal simulations143

in which we selected all 528 B cells in the subsampled data as causal cells, instead of randomly selecting 500 causal cells.144

We observed a similar improvement in power of scDRS over Seurat and Vision (Supp. Fig. 3C). Third, we computed the145

actual FDR for each method in each of the above causal simulations. We determined that scDRS attained well-calibrated FDR146

across all parameter settings, whereas Seurat and Vision suffered from inflated type I error at smaller effect sizes (1.1 times147

higher expression for causal cells) and lower levels of overlap (15%) (Supp. Fig. 3D-F). Fourth, since Seurat and Vision148

were not initially designed to produce calibrated p-values, we also evaluated each method’s area under the receiver operating149

characteristic curve (AUC) in distinguishing causal from non-causal cells. We determined that scDRS attained more accurate150

classification than Seurat and Vision under this metric (Supp. Fig. 3G-I).151

In summary, scDRS is well-calibrated in null simulations and attains higher power to detect causal cells than Seurat and152

Vision in causal simulations.153

Results across 120 TMS cell types for 74 diseases and complex traits154

We analyzed GWAS data from 74 diseases and complex traits (average N=341K; Supp. Table 1) in conjunction with the155

TMS FACS data with 120 cell types (cells from different tissues were combined for a given cell type; Supp. Table 3). We156

first report scDRS results for individual cells aggregated at the cell type level; individual cell-level results are discussed in157

subsequent sections. Results for a subset of 20 representative cell types and 21 representative diseases/traits are reported in Fig.158

3 (complete results in Supp. Fig. 4 and Supp. Table 12). Within this subset, scDRS identified 70 associated cell type-disease159

pairs (FDR<0.05; squares in Fig. 3) and detected significant heterogeneity in association with disease across individual cells160

within cell type for 37 of these 70 associated cell type-disease pairs (FDR<0.05; cross symbols in Fig. 3; 247 of 577 associated161

cell type-disease pairs across all pairs of 120 cell types and 74 diseases/traits). We also report the proportion of significantly162

associated individual cells for each cell type-disease pair (FDR<0.1, a less stringent threshold as false positive associations of163

individual cells are less problematic and we do not focus on the results for any one specific cell; heatmap colors in Fig. 3). We164

note these associated cell type-disease pairs (and individual cell-disease associations discussed in subsequent sections) may165

reflect indirect tagging of causal cell types rather than direct causal associations, analogous to previous work (see Discussion).166

For cell type-disease associations, as expected, scDRS broadly associated blood/immune cell types with blood/immune-167

related diseases/traits, brain cell types with brain-related diseases/traits, and other cell types with other diseases/traits (block-168

diagonal pattern in Fig. 3). Interestingly, there were 3 exceptions to the block-diagonal pattern, involving 4 diseases/traits (Fig.169

3). First, hepatocytes (in addition to proerythroblasts) were associated with red blood cell distribution width (RDW), possibly170

because liver malfunction affects RDW. This association is consistent with the observation of increased RDW values in patients171

with liver disease28, but to our knowledge has not been reported in previous genetic studies. Second, ventricular myocytes (in172

addition to immune cell types) were associated with lymphocyte count. This association is consistent with the prognostic value173

of relative lymphocyte concentration in patients with symptomatic heart failure29, but to our knowledge has not been reported174

in previous genetic studies. Third, pancreatic beta cells (in addition to brain cell types) were associated with SCZ and body175

mass index (BMI); risk variants for SCZ and BMI are reported to be enriched in pancreatic islet-specific epigenomic regulatory176

elements30, 31.177

We discuss 3 main findings for the blood/immune-related diseases/traits (upper left block in Fig. 3). First, different178

blood/immune cell types were associated with the corresponding blood cell traits, including proerythroblasts with RDW,179

classical monocytes with monocyte count, and adaptive immune cells with lymphocyte count. We detected significant180

heterogeneity across cells for the proerythroblast-RDW association, which may correspond to erythrocytes at different181

differentiation stages32 (see Supp. Fig. 5). Second, immune cell types were associated with immune diseases, including182

4
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dendritic cells, CD4+ a/b T cells, CD8+ a/b T cells, and/or regulatory T cells with rheumatoid arthritis (RA), multiple183

sclerosis (MS), and IBD, consistent with previous findings12, 33. We detected significant heterogeneity across cells for many184

of these cell type-disease associations, consistent with the known diversity within the T cell population (see “Heterogeneous185

subpopulations of T cells associated with autoimmune disease” section). Third, granulocyte monocyte progenitors (GMP) were186

strongly associated with MS, highlighting the role of myeloid cells in MS34, 35.187

We discuss 2 main findings for brain-related diseases/traits (middle block in Fig. 3). First, neuronal cell types, including188

medium spiny neurons (MSNs), interneurons, and neurons (neuronal cells with undetermined subtypes), were associated189

with schizophrenia (SCZ), major depressive disorder (MDD), college education (ECOL), and several other brain-related190

traits; the role of MSN in SCZ, MDD and ECOL is supported by previous genetic studies8, 26, 36. We detected significant191

heterogeneity across neurons in their association with most brain-related diseases/traits (see “Heterogeneous subpopulations192

of neurons associated with brain-related diseases and traits” section). Second, oligodendrocytes, oligodendrocyte precursor193

cells (OPCs) were also associated with multiple brain-related diseases/traits. These associations are less clear in existing194

genetic studies6, 8, 26, 37, but are biologically plausible, consistent with the increasingly discussed role of oligodendrocyte lineage195

cells in brain diseases/traits: the differentiation and myelination of oligodendrocyte lineage cells are important to maintain196

the functionality of neuronal cells38, 39. We detected significant heterogeneity across OPCs in their association with many197

brain-related diseases/traits, consistent with recent evidence of functionally diverse states of OPCs40, traditionally considered to198

be a homogeneous population (see Supp. Fig. 6).199

We discuss 3 main findings for other diseases/traits (lower right block in Fig. 3). First, hepatocytes were associated with200

several metabolic traits including TG and testosterone (TST) (and other lipid traits; Supp. Fig. 4); hepatocytes are known to201

play an important role in metabolism41. We detected significant heterogeneity across hepatocytes in their association with TG202

and TST (see “Heterogeneous subpopulations of hepatocytes associated with metabolic traits” section). Second, pancreatic beta203

cells were associated with glucose and type 2 diabetes (T2D). We detected significant heterogeneity across pancreatic beta204

cells in their association with glucose, which could be due to different insulin-producing beta cell states42, 43 (see Supp. Fig.205

7). Third, pancreatic PP cells (in addition to chondrocytes and bladder cells) were associated with bone mineral density heel206

T-score (BMD-HT), consistent with the fact that osteoblast and osteoclast cells (which form and reabsorb bones, respectively)207

are regulated by pancreatic polypeptide44, which are produced by pancreatic PP cells. To our knowledge, this finding has not208

been reported in previous genetic studies.209

We performed 2 secondary analyses to assess robustness of these results. First, we performed the same analyses on a mouse210

cell atlas assayed with a different technology (TMS droplet) and a human cell atlas assayed using the same technology (TS211

FACS) to provide comparisons of the results across technologies and across species. Results are reported in Supp. Fig. 8.212

We determined that the associations are highly consistent across technologies (r =0.90 for association � log10 p-value across213

cell type-disease pairs; P =1.7⇥10�26, Fisher’s exact test) and reasonably consistent across species (r =0.65 for association214

� log10 p-value; P =7.5⇥10�7, Fisher’s exact test). Second, we analyzed the same 120 TMS FACS cell types and 74 diseases215

using LDSC-SEG12 for comparison purposes (Methods). Results are reported in Supp. Fig. 9. We determined that the216

cell type-disease associations identified by the two methods are highly consistent (r =0.65 for association � log10 p-value;217

P =8.7⇥10�295, Fisher’s exact test). Interestingly, scDRS identified some biologically plausible associations that were missed218

by LDSC-SEG, including pancreatic PP cells and BMD-HT (scDRS FDR=0.046 vs. LDSC-SEG FDR=1.000; see ref.44),219

GMPs and MS (FDR 0.020 vs. 0.270; see ref.34, 35), and OPCs and MDD (FDR 0.020 vs. 0.100; see ref.45).220

We performed 3 secondary analyses to assess alternative versions of scDRS. First, we considered using an unweighted221

average for the cell-level score (without weighting genes by gene-specific technical noise). We determined that our default222

weighted score achieved moderately higher power than the unweighted score in detecting disease-associated cells (Supp.223

Fig. 10A). Second, we considered an overdispersion score capturing both overexpression and underexpression of putative224

disease genes in the relevant cell population (whereas the default weighted score only captures overexpression; Methods).225

We determined our default weighted score achieved substantially higher power than the overdispersion score, suggesting that226

most putative disease genes are overexpressed in the relevant cell population (Supp. Fig. 10B). Third, we investigated other227

choices of MAGMA gene window size for mapping SNPs to genes (0 kb or 50 kb, instead of 10 kb) and other numbers of228

putative disease genes (100, 500, or 2,000, instead of 1,000) and determined that results were not sensitive to the choices of229

these parameters (Supp. Fig. 11 and Supp. Table 16), although the optimal number of putative disease genes was significantly230

correlated with trait polygenicity46 (r =0.54, P =0.011, Supp. Fig. 12).231

In summary, cell type-disease associations identified by scDRS recapitulate known biology but also produced novel,232

biologically plausible findings. Many cell type-disease associations were heterogeneous across individual cells, strongly233

motivating analysis at the level of individual cells instead of cell types; further investigation of three examples of heterogeneity234

is provided in the remaining sections.235
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Heterogeneous subpopulations of T cells associated with autoimmune disease236

We sought to further understand the heterogeneity across T cells in the TMS FACS data in their association with autoimmune237

diseases (Fig. 3). We jointly analyzed all T cells in the TMS FACS data (3,769 cells, spanning 15 tissues). Since the original238

study clustered cells from different tissues separately19, we reclustered these T cells, resulting in 11 clusters (Fig. 4A; Methods);239

we verified that cells from different tissues, age, or sex clustered together (Supp. Fig. 13). We considered 10 autoimmune240

diseases: IBD, Crohn’s disease (CD), ulcerative colitis (UC), RA, MS, AIT, hypothyroidism (HT), eczema, asthma (ASM), and241

respiratory and ear-nose-throat diseases (RR-ENT) (Supp. Table 1); we also considered height as a negative control trait.242

We focused on individual cells associated with IBD, a representative autoimmune disease (Fig. 4B; results for the243

other 9 autoimmune diseases and height are reported in Supp. Fig. 14). The 357 IBD-associated cells (FDR<0.1) formed244

subpopulations of 4 of the 11 T cell clusters; we characterized these subpopulations based on marker gene expression and245

overlap of specifically expressed genes in each subpopulation with T cell signature gene sets (Methods). First, the subpopulation246

of 120 IBD-associated cells in cluster 3 (labeled as “Treg”) had high expression of regulatory T cell (Treg) marker genes247

(e.g., FOXP3+, CTLA4+, LAG3+; Supp. Fig. 15A), and their specifically expressed genes significantly overlapped with Treg248

signatures (P =3.9⇥10�7, Fisher’s exact test; Supp. Fig. 15B), suggesting these cells had Treg immunosuppressive functions.249

Interestingly, these 120 IBD-associated cells were non-randomly distributed in cluster 3 on the UMAP plot (P <0.001, MC test;250

Methods). Genes specifically expressed in these IBD-associated cells are preferentially enriched (compared to the 509 non-IBD-251

associated cells in the same cluster) in pathways defined by response to lipopolysaccharide, T helper cell differentiation, and252

tumor necrosis factor-mediated signaling (Supp. Fig. 15D); these pathways are closely related to inflammation, a distinguishing253

feature of IBD47. Second, the 75 IBD-associated cells in cluster 4 (IL1RL1+ KLRG1+ AREG+; labeled as “Effector-like254

Treg”) were characterized as effector-like Tregs, which have active functions in Treg differentiation, immunosuppression,255

and tissue repair48; to our knowledge, this subpopulation of effector-like Tregs has only been studied in the context of lung256

cancer48, but their role in IBD is not surprising given the strong connection between Treg functions and IBD49, 50. Third, the 61257

IBD-associated cells in cluster 5 (IL23R+ RORC+ IL17A+; labeled as “Th17-like”) were characterized as having T helper 17258

(Th17) proinflammatory functions. Interestingly, drugs targeting IL17A (secukinumab and ixekizumab) have been considered259

for treatment of IBD but their use was associated with the onset of paradoxical effects (disease exacerbation after treatment with260

a putatively curative drug); the mechanisms underlying these events are not well understood51. Fourth, the 38 IBD-associated261

cells in cluster 9 (IFNG+ GZMB+ FASL+; labeled as “Effector-like CD8+”) were characterized as having effector CD8+262

(cytotoxic) T cell functions. Overall, these findings are consistent with previous studies associating subpopulations of effector T263

cells to IBD, particularly Tregs and Th17 cells47, 49, 50, 52.264

We investigated whether the heterogeneity of T cells in association with autoimmune diseases was correlated with T cell265

effectorness gradient, a continuous classification of T cells defined by naive T cells on one side (immunologically naive T266

cells matured from the thymus) and effector T cells on the other (differentiated from naive T cells upon activation and capable267

of mediating effector immune responses); we hypothesized that such a correlation might exist given the effector-like T cell268

subpopulations associated to IBD above. Following a recent study53, we separately computed the effectorness gradients for269

CD4+ T cells (1,686 cells) and CD8+ T cells (2,197 cells) using pseudotime analysis54 (Supp. Fig. 16A,B; Methods), and270

confirmed that the inferred effectorness gradients were significantly negatively correlated with naive T cell signatures and271

positively correlated with memory and effector T cell signatures (Supp. Fig. 16C,D; Methods). We assessed whether the272

CD4 (resp., CD8) effectorness gradient was correlated with scDRS disease scores for IBD or other autoimmune diseases,273

across CD4+ T cells (resp., CD8+ T cells). Results are reported in Fig. 4C and Supp. Table 17. We determined that the274

CD4 effectorness gradient was strongly associated with IBD, CD, UC, and AIT (P <0.005, MC test; 18%-31% of variance275

in scDRS disease score explained by CD4 effectorness gradient), weakly associated with HT, Eczema, ASM, and RR-ENT276

(P <0.05, MC test; 6%-10% variance explained), but not significantly associated with RA or MS. This implies that these277

autoimmune diseases are associated with more effector-like CD4+ T cells. We also determined that the CD8 effectorness278

gradient was weakly associated with IBD and CD (P <0.05, MC test; 10%-11% variance explained), but not significantly279

associated with the other autoimmune diseases, suggesting that CD4+ effector T cells may be more important than CD8+280

effector T cells for these diseases. Notably, after conditioning on the 11 cluster labels, the associations with CD4 effectorness281

gradient remained significant for IBD, CD, AIT (P <0.005, MC test), and UC (P <0.05, MC test), and the associations with282

CD8 effectorness gradient remained significant for IBD and CD (P <0.05, MC test), indicating that scDRS distinguishes283

effectorness gradients within clusters. In addition, as a negative control, height was not significantly associated in any of these284

analyses. The association of T cell effectorness gradients with autoimmune diseases has not previously been formally evaluated,285

but is consistent with previous studies linking T cell effector functions to autoimmune disease55, 56; the results also suggest that286

different subpopulations of effector T cells share certain similarities in their association with autoimmune diseases, consistent287

with previous studies characterizing the similarities among different subtypes of effector T cells, such as an increase in the288

expression of cytokines and chemokines53, 57, 58.289

Finally, we prioritized disease-relevant genes by computing the correlation (across all 110,096 TMS FACS cells) between290
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the expression of a given gene and the scDRS score for a given disease; this approach identifies genes that are co-expressed291

with genes implicated by disease GWAS. We compared the top 1,000 genes prioritized using this approach with gold-standard292

disease-relevant genes based on putative drug targets from Open Targets59 (phase 1 or above; 8 gene sets with 27-250 genes;293

used for 8 autoimmune diseases except RR-ENT and HT; Supp. Table 18) or genes known to cause a Mendelian form of294

the disease60 (550 genes corresponding to “immune dysregulation”, used for RR-ENT and HT; Supp. Table 18). Results are295

reported in Fig. 4D and Supp. Table 19. We determined that scDRS attained a more accurate prioritization of disease-relevant296

genes compared to the top 1,000 MAGMA genes (median ratio of (excess overlap � 1) was 2.02, median ratio of � log10297

p-value was 2.76; see Methods), likely by capturing disease-relevant genes with weak GWAS signal46. For example, ITGB7298

was prioritized by scDRS for association with IBD (rank 9) but was missed by MAGMA (rank 10565, MAGMA P =0.54);299

ITGB7 impacts IBD via controlling lymphocyte homing to the gut and is a drug target for IBD (using vedolizumab)61, 62.300

In addition, JAK1 was prioritized by scDRS for association with RA (rank 386) but was missed by MAGMA (rank 5228,301

MAGMA P =0.26); JAK1 plays a role in regulating immune cell activation and is a drug target for RA (using tofacitinib,302

baricitinib, or upadacitinib)63, 64.303

We performed 4 secondary analyses. First, we assessed cell type-disease associations using scDRS for two human scRNA-304

seq data sets (Cano-Gamez & Soskic et al.53 and Nathan et al.65; Supp. Table 2) and each of the 10 autoimmune diseases (and305

height, a negative control trait); we focused on cell type-disease associations because these data sets contain well-annotated T306

cell subtypes and states. Results are reported in Supp. Table 20. In the Cano-Gamez & Soskic et al. data, cytokine-induced307

Tregs, cytokine-induced Th17 cells, and activated natural Tregs were significantly associated with IBD (FDR<0.05, MC308

test). In the Nathan et al. data, RORC+ Tregs, Th17 cells, CD161+ Th2 cells, Th2 cells, Th1 cells, and activated CD4+ T309

cells were significantly associated with IBD (FDR<0.05, MC test). These findings are consistent with our discoveries in310

TMS FACS linking activated T cells, particularly Tregs and Th17 cells, to IBD. In addition, as a negative control, no cell311

type was significantly associated with height in these two data sets. Second, we compared scDRS to cluster-level analyses312

using LDSC-SEG at various clustering resolutions. Results are reported in Supp. Fig. 17. We determined that both methods313

produced similar results at the cluster level, but the cluster-level analyses failed to recapitulate the individual cell-disease314

associations detected in the scDRS individual cell-level analysis (even when clustering at a very high resolution). Third, we315

investigated alternative disease gene prioritization methods, including prioritizing genes based on specific expression in the316

disease-critical T cell population (differentially expressed genes for comparing T cells vs. other cells in the TMS FACS data)317

and based on correlating the expression level of a given gene with scDRS disease scores across T cells, CD4+ T cells, or CD8+318

T cells (instead of all TMS FACS cells). We determined that our primary approach provided a more accurate prioritization of319

gold-standard disease-relevant genes (Supp. Fig. 18A-J). Fourth, we extended our prioritization of disease-relevant genes to all320

74 diseases/traits. We compared the prioritized genes with drug target genes for 27 diseases and Mendelian disease genes for 45321

diseases (Supp. Table 18). We determined that our approach attained a similar improvement over MAGMA across this broader322

set of diseases/traits (Supp. Fig. 18K-N).323

We conclude that T cells exhibit strong heterogeneity in association with autoimmune diseases. This heterogeneity can be324

partially explained by T cell effectorness gradients (e.g., 31% variance explained by the CD4 effecterness gradient for IBD),325

with stronger associations for effector-like T cells. In addition, genes whose expression across individual cells is correlated326

with the scDRS disease score are strongly enriched for gold-standard drug target and Mendelian disease genes.327

Heterogeneous subpopulations of neurons associated with brain-related diseases and traits328

We sought to further understand the heterogeneity across neurons (in the non-myeloid brain tissue) in the TMS FACS data329

(484 cells labeled as “neuron”) in association with brain-related diseases and traits (Fig. 3). We considered 6 brain-related330

diseases and traits: SCZ, MDD, neuroticism (NRT), ECOL, BMI, Smoking (Supp. Table 1); we also considered height as331

a negative control trait. The TMS FACS data includes a partition of neurons into four brain subtissues (cerebellum, cortex,332

hippocampus, and striatum), but significant heterogeneity remained when we stratified our heterogeneity analyses by subtissue333

(Supp. Fig. 19). Since the TMS FACS data has limited coverage of neuronal subtypes, we focused our subsequent analyses on334

a separate mouse brain scRNA-seq data set66 (Zeisel & Muñoz-Manchado et al.66; 3,005 cells), which has better coverage335

of neuronal subtypes and has been analyzed at cell type level in several previous genetic studies8, 26, 67. We first investigated336

cell type-trait associations using scDRS, which associated several neuronal subtypes (CA1 pyramidal neurons, SS pyramidal337

neurons, and interneurons) with the 6 brain-related traits (Supp. Fig. 20A, Supp. Table 21), consistent with previous genetic338

studies8, 26, 67. We focused on the CA1 pyramidal neurons from the hippocampus (827 cells), which exhibited the strongest339

within-cell type heterogeneity (FDR< 0.005 for all 6 brain traits, MC test; Supp. Table 21). Individual cell-trait associations for340

SCZ are reported in Fig. 5A, and individual cell-trait associations for all 6 brain-related traits are reported in Supp. Fig. 20B.341

We observed a continuous gradient of CA1 pyramidal neuron-SCZ associations, with similar results for other traits.342

We investigated whether the heterogeneity observed in Fig. 5A was correlated with spatial location; we hypothesized that343

such a correlation might exist because of the known location-specific functions of hippocampal neurons17, 68. We inferred344
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spatial coordinates of the CA1 pyramidal neurons along the natural CA1 spatial axes69 (dorsal-ventral long axis, proximal-distal345

transverse axis, and superficial-deep radial axis) for each cell in terms of continuous individual cell-level scores for these 6346

spatial regions by applying scDRS to published spatial signature gene sets (instead of MAGMA putative disease gene sets;347

Supp. Fig. 20C and Supp. Table 8; Methods). We verified that the inferred dorsal and ventral scores obtained by applying this348

procedure to independent mouse70 and human71 data sets with annotated spatial coordinates on the long axis were significantly349

correlated with the annotated spatial coordinates (r =0.54, 0.65 for the mouse data, r =0.18, 0.20 for the human data, P <0.01350

each, MC test; Supp. Fig. 21); annotated spatial coordinates on the transverse and radial axes were not available in these data351

sets. The inferred spatial scores for the long (dorsal, ventral) and transverse (proximal, distal) axes varied along the top two352

UMAP axes, providing visual evidence of stronger neuron-SCZ associations in dorsal and proximal regions (Fig. 5A, Supp.353

Fig. 20).354

We used the results of scDRS for individual cells to assess whether the inferred spatial scores for each of the 6 spatial355

regions (dorsal/ventral/proximal/distal/superficial/deep) were correlated to the scDRS disease scores for each of the 6 brain-356

related traits (and height, a negative control trait) across CA1 pyramidal neurons (Methods). Results are reported in Fig. 5B (for357

the proximal region, which had the strongest associations), Supp. Fig. 22 and Supp. Table 22. We determined that proximal358

score was strongly associated with all 6 brain-related traits (all P <0.001 except P =0.002 for MDD; P =0.008 for height,359

non-significant after Bonferroni correction; MC test; 15%-29% of variance in scDRS disease score explained by proximal360

scores across 6 brain-related traits), suggesting proximal CA1 pyramidal neurons may be more relevant to these brain-related361

traits (instead of distal CA1 pyramidal neurons). The association between the proximal region and brain-related traits is362

consistent with the fact that the proximal region of the hippocampus receives synaptic inputs in the perforant pathway, which is363

the main input source of the hippocampus72, 73.364

We reapplied scDRS to three additional mouse single-cell data sets70, 74, 75 and three human single-cell data sets71, 76, 77
365

(Supp. Table 2), computing both spatial scores and disease scores for each cell as above. Results are reported in Supp. Fig. 22.366

We determined that the proximal score was consistently associated with the 6 brain-related traits across these 7 data sets (while367

the distal score was consistently non-associated). For the long (dorsal-ventral) and radial (superficial-deep) axes, while the368

dorsal and deep scores were consistently associated with the 6 brain-related traits across the 7 data sets, the corresponding369

ventral and superficial scores were consistently associated across the 3 human data sets but consistently non-associated across370

the 4 mouse data sets, possibly due to differences in brain biology between human and mouse68, 78.371

We conclude that CA1 pyramidal neurons exhibit strong heterogeneity in association with brain-related diseases and372

traits. This heterogeneity can be partially explained by inferred spatial coordinates and may reflect the underlying functional373

organization of CA1 pyramidal neurons.374

Heterogeneous subpopulations of hepatocytes associated with metabolic traits375

Finally, we sought to further understand the heterogeneity across hepatocytes (in the liver) in the TMS FACS data in their376

association with metabolic traits (Fig. 3). Since the original study clustered all cells from the liver together19 (limiting the377

resolution for distinguishing cell states within hepatocytes), we reclustered the hepatocytes alone, resulting in 6 clusters (1,102378

cells, Fig. 5C; Methods). We considered 9 metabolic traits: TG, high-density lipoprotein (HDL), low-density lipoprotein379

(LDL), total cholesterol (TC), TST, alanine aminotransferase (ALT), alkaline phosphatase (ALP), sex hormone-binding globulin380

(SHBG), and total bilirubin (TBIL) (Supp. Table 1); we also considered height as a negative control trait.381

We focused on individual cells associated with TG, a representative metabolic trait (Fig. 5C; results for the other 8 metabolic382

traits and height are reported in Supp. Fig. 23). The 530 TG-associated cells (FDR<0.1) formed subpopulations of 5 of the 6383

hepatocyte clusters; we characterized these subpopulations based on ploidy level (number of sets of chromosomes in a cell)384

and zonation (pericentral/mid-lobule/periportal spatial location in the liver lobule), which have been extensively investigated385

in previous studies of hepatocyte heterogeneity79–81. We inferred the ploidy level and zonation for each individual cell in386

terms of a polyploidy score, a pericentral score, and a periportal score by applying scDRS to published polyploidy/zonation387

signature gene sets82–84 (instead of MAGMA putative disease gene sets; Supp. Fig. 24; Methods); we verified that the388

inferred high-ploidy hepatocytes had higher expression levels of the Xist (X-inactive specific transcript) non-coding RNA gene389

(for hepatocytes in female mice) and higher numbers of expressed genes (Supp. Fig. 24H,I), two distinguishing features of390

high-ploidy hepatocytes83, 85. We further verified that the inferred polyploidy score obtained by applying this procedure to391

independent data83 with experimentally determined ploidy level annotation were significantly correlated with the experimentally392

determined annotation (r =0.28, P <0.001, MC test), and that the inferred zonation scores obtained by applying this procedure393

to independent data84 with experimentally determined zonation annotations were significantly correlated with the experimentally394

determined annotations (r =0.42, P <0.001 for pericentral score, r =0.45, P <0.001 for periportal score, MC test). The inferred395

ploidy level and zonation varied across clusters, providing visual evidence of stronger cell-TG associations in high-ploidy396

clusters (cluster 1,2), particularly the periportal high-ploidy cluster (cluster 2; Fig. 5C).397

We used the results of scDRS for individual cells to assess whether the inferred polyploidy, pericenteral and periportal398
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scores were correlated to the scDRS disease score for each of the 9 metabolic traits (and height, a negative control trait)399

across hepatocytes; we jointly regressed the scDRS disease score for each trait on the polyploidy score, pericentral score,400

and periportal score (because the polyploidy score was positively correlated with the other 2 scores; Methods). Results are401

reported in Fig. 5D (for the polyploidy score which had the strongest associations), Supp. Fig. 25 and Supp. Table 23. The402

polyploidy, pericentral, and periportal scores jointly explained 42%-63% of variance of the scDRS disease scores across the 9403

metabolic traits. We determined that the polyploidy score was strongly associated with all 9 metabolic traits (all P <0.005404

except P =0.01 for LDL; P =0.62 for height; MC test), suggesting that high-ploidy hepatocytes may be more relevant to these405

metabolic traits. The association between ploidy level and metabolic traits is consistent with previous findings that ploidy406

levels are associated with changes in the expression level of genes for metabolic processes such as de novo lipid biosynthesis407

and glycolysis81, 82, and supports the hypothesis that liver functions are enhanced in polyploid hepatocytes81. In addition, the408

periportal score was associated with the 9 metabolic traits (P <0.005 for ALT and ALP, all P <0.05 except P =0.19 for TBIL;409

P =0.24 for height; MC test). While the pericentral score was not significantly associated with these traits in the TMS FACS410

data, we detected significant associations across multiple other data sets (see below). These results suggest that these metabolic411

traits are impacted by complex processes involving both pericentral and periportal hepatocytes.412

We performed 3 secondary analyses. First, we reapplied scDRS to 4 additional mouse single-cell data sets83, 84, 86 and413

1 human single-cell data set87 (Supp. Table 2). Results are reported in Supp. Fig. 25A,B. The results suggest consistent414

association of the polyploidy score and both the pericentral and periportal scores with the 9 metabolic traits. Second, given415

that scDRS associated both pericentral and periportal hepatocytes to metabolic traits, we assessed whether scDRS is able to416

detect pericentral-specific and periportal-specific effects. We analyzed all 6 hepatocyte scRNA-seq data sets using 8 metabolic417

pathway gene sets88, 89 (instead of MAGMA genes from GWAS; Methods) whose zonation patterns are well-understood (4418

pericentral-specific pathways and 4 periportal-specific pathways80). Results are reported in Supp. Fig. 25C,D. We determined419

that pericentral-specific pathways generally exhibited pericentral-specific effects, and periportal-specific pathways generally420

exhibited periportal-specific effects. Third, we assessed the robustness of our polyploidy score by inferring the ploidy level421

of hepatocytes using 3 additional sets of polyploidy signatures and 3 additional sets of diploidy signatures82 (expected to be422

negatively correlated with the polyploidy score; Methods) for each of the 6 data sets. Results are reported in Supp. Table 24.423

We determined that the polyploidy score is strongly positively correlated with scores obtained using the additional polyploidy424

signatures (P <0.005 for 17/18 correlations, MC test) and strongly negatively correlated with scores obtained using the425

additional diploidy signatures (P <0.005 for 10/18 correlations, MC test).426

We conclude that hepatocytes exhibit strong heterogeneity in association with metabolic traits. This heterogeneity can be427

partially explained by inferred ploidy levels and zonation patterns, with stronger associations for hepatocytes with higher ploidy428

level and hepatocytes located both in pericentral or periportal regions (instead of the mid-lobule region).429

Discussion430

We have introduced scDRS, a method that leverages polygenic GWAS signals to associate individual cells in scRNA-seq data431

with diseases and complex traits; we showed via extensive simulations that scDRS is well-calibrated and powerful. We applied432

scDRS to 74 diseases and complex traits in conjunction with 16 scRNA-seq data sets and detected extensive heterogeneity in433

disease associations of individual cells within classical cell types, including subpopulations of T cells associated with IBD434

partially characterized by their effector-like states, subpopulations of neurons associated with SCZ partially characterized by435

their spatial location, and subpopulations of hepatocytes associated with TG partially characterized by their higher ploidy levels.436

These findings have improved our understanding of these diseases/traits, and may prove useful for targeting the relevant cell437

populations for in vitro experiments to elucidate the molecular mechanisms through which GWAS risk variants impact disease.438

scDRS does not rely on annotations of classical cell types based on known marker genes, a standard approach for integrating439

GWAS with scRNA-seq data6–8 (and bulk gene expression data9–12; see Supp. Note). Thus, scDRS is particularly well-suited440

for analyzing data sets that are less well-annotated (e.g., large-scale cell atlases19, 25) or contain less well-studied cell populations.441

In addition, scDRS characterizes heterogeneity across individual cells in their associations to common diseases and complex442

traits, providing a unique perspective relative to studies of single-cell transcriptional heterogeneity focusing on scRNA-seq443

data alone13–16, 18, 90, 91; it also improves upon recent methods for scoring individual cells with respect to a given gene set (e.g.,444

Seurat15, Vision16, and VAM18) by providing robust individual cell-level association p-values and higher detection power (see445

Supp. Note).446

We have demonstrated the value of scDRS in associating individual cells to disease; assessing the heterogeneity across447

individual cells within predefined cell types in their association to disease; identifying cell-level variables partially characterizing448

the individual cells that are associated to disease; and broadly associating predefined cell types to disease. We anticipate that449

application of scDRS to future scRNA-seq/snRNA-seq and GWAS data sets will continue to further these goals.450

We note several limitations and future directions of our work. First, identifying a statistical correlation between individual451

cells (or cell types) and disease does not imply causality, but may instead reflect indirect tagging of causal cells/cell types,452
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analogous to previous work6, 7, 12, 20. However, even in such cases, the implicated cells/cell types are likely to be closely453

biologically related to the causal cells/cell types, based on their similar expression patterns. Second, the relevant cell-level454

variables that we identified (e.g., T cell effectorness gradients for autoimmune diseases) only partially explain the heterogeneity455

across individual cells in their association to disease; there are likely more cell-level variables driving this heterogeneity that456

remain to be identified. Third, we primarily used mouse RNA-seq data (TMS FACS) to study human diseases and complex457

traits, but there are biological differences between human and mouse. Arguments in favor of using mouse RNA-seq data to458

study human diseases and complex traits include (1) it is easier to obtain high-quality atlas-level scRNA-seq data from mice, (2)459

our key findings were replicated in human data, (3) we evaluated only protein-coding genes with 1:1 orthologs between mice460

and humans, which are highly conserved, (4) we used a large number of genes to associate cells to diseases (1,000 MAGMA461

putative disease genes), minimizing potential bias due to individual genes differentially expressed across species (see Bryois462

et al.8 and other studies6, 7, 12, 26 for additional discussion). However, it is possible that some cell types are less conserved463

across species8, 92 (e.g., our results for CA1 pyramidal neurons along the long and radial axes (Supp. Fig. 22) seem to indicate464

different disease association patterns between human and mouse), motivating follow-up analyses involving human scRNA-seq465

data (including those that we have performed here). Fourth, we identified putative disease genes using MAGMA, a widely466

used method20. However, it may be possible to construct more accurate sets of disease genes by incorporating other types467

of data, such as protein-protein interaction data93 or functionally informed SNP-to-gene linking strategies94; we caution that468

such efforts must strive to avoid biases towards well-studied tissues. Fifth, scDRS detects overexpression of putative disease469

genes (analogous to previous works7, 8, 12), but is not designed to detect underexpression. Our initial implementation of an470

overdispersion score was less well-powered than scDRS in analyses of real disease/traits (Supp. Fig. 10), but further efforts to471

combine directional and overdispersion scores may be warranted95. Sixth, scDRS results for a given cell depends on the other472

cells in the data set through both the estimation of technical noise levels and the selection of matched control genes; however,473

both steps depend only on gene-specific quantities averaged across all cells (gene-specific expression mean and expression474

variance) and are thus robust to inclusion or exclusion of a small set of cells (or a large random subset of cells). Seventh, the475

fact that scDRS assesses the statistical significance of an individual cell’s association to disease by implicitly comparing it to476

other cells via matched control genes may reduce power if most cells in the data are truly causal. For example, association with477

IBD in a data set containing only Tregs (one of the causal cell types for IBD) will likely yield largely non-significant results.478

This limitation did not impact our main analyses, because the TMS data includes a broad set of cell types; in more specialized479

data sets (which may be preferred in some settings due to the more comprehensive profiling of the focal cell population), this480

limitation can potentially be addressed by selecting matched control genes based on a broad cell atlas (e.g., the TMS or TS data).481

Eighth, we have only analyzed scRNA-seq data from control samples. Extending scDRS to analyze scRNA-seq data from482

case-control samples or experimentally perturbed samples96, perhaps by applying scDRS and comparing disease scores of483

cells from different conditions, may provide further insights about disease. Despite all these limitations, scDRS is a powerful484

method for distinguishing disease associations of individual cells in single-cell RNA-seq data.485

Methods486

scDRS method487

We consider a scRNA-seq data set with ncell cells and ngene genes. We denote the cell-gene matrix as X 2 Rncell⇥ngene , where488

Xcg represents the expression level of cell c and gene g. We assume that X is size-factor-normalized (e.g., 10,000 counts per489

cell) and log-transformed (log(x+1)) from the original raw count matrix21. We regress the covariates out from the normalized490

data21 (with a constant term in the regressors to center the data), before adding the original log mean expression of each gene491

back to the residual data. Such a procedure preserves the mean-variance relationship in the covariate-corrected data, which is492

needed for estimating the gene-specific technical noise levels (see Supp. Note).493

The scDRS algorithm is described in Box 1. Given a disease GWAS and a scRNA-seq data set, scDRS computes a p-value494

for each individual cell for association with the disease. scDRS also outputs cell-level normalized disease scores and B sets of495

normalized control scores (default B =1,000) that can be used for data visualization and Monte Carlo-based statistical inference496

(see Downstream applications and MC test). scDRS consists of three steps. First, scDRS constructs a set of putative disease497

genes from the GWAS summary statistics. Second, scDRS computes a raw disease score and B MC samples of raw control498

scores for each cell. Third, after gene set-wise and cell-wise normalization, scDRS computes an association p-value for each499

cell by comparing its normalized disease score to the empirical distribution of the pooled normalized control scores across all500

control gene sets and all cells. These steps are detailed below.501

Step 1: Constructing disease gene set. We use MAGMA20 to compute gene-level association p-values from disease502

GWAS summary statistics (Box 1, step 1). We use a reference panel based on individuals of European ancestry in the 1000503

Genomes Project97. We use a 10-kb window around the gene body to map SNPs to genes. We select the top 1,000 genes based504

on MAGMA p-values as putative disease genes. We denote the disease gene set as G⇢ {1,2, · · · ,ngene}. Alternative parameter505
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Box 1 Single-cell disease relevance score (scDRS)
Input: Disease GWAS summary statistics (or putative disease gene set G), scRNA-seq data X 2 Rncell⇥ngene .
Parameters: Number of MC samples of control gene sets B (default 1,000).

1: Construct putative disease gene set
a: Construct putative disease gene set G⇢ {1,2, · · · ,ngene} from GWAS summary statistics using MAGMA.

2: Compute disease scores and control scores
a: Sample B sets of control genes Gctrl

1 , . . . ,Gctrl
B matching mean expression and expression variance of disease genes.

b: Estimate gene-specific technical noise level s2
tech,g, 8g 2 {1, · · · ,ngene}.

c: Compute raw disease score and B raw control scores for each cell c = 1, · · · ,ncell,

raw disease score: sc =
Âg2G s�1

tech,gXcg

Âg2G s�1
tech,g

, B raw control scores: sctrl
cb =

Âg2Gctrl
b

s�1
tech,gXcg

Âg2Gctrl
b

s�1
tech,g

, 8 b 2 {1, · · · ,B} (1)

3: Compute disease association p-values
a: First gene set alignment by mean and variance. Let s2

g be the expression variance of gene g. For each cell c,

sc sc�
1

ncell

ncell

Â
c0=1

sc0 , sctrl
cb  

 
sctrl

cb �
1

ncell

ncell

Â
c0=1

sctrl
c0b

!
Âg2Gctrl

b
s�1

tech,g

Âg2G s�1
tech,g

vuut Âg2G s�2
tech,gs2

g

Âg2Gctrl
b

s�2
tech,gs2

g
, 8 b 2 {1, · · · ,B} (2)

b: Cell-wise standardization for each cell c by the mean µ̂ctrl
c and variance ŝ ctrl

c of control scores sctrl
c1 , · · · ,sctrl

cB of that cell,

sc (sc� µ̂ctrl
c )/ŝ ctrl

c , sctrl
cb  (sctrl

cb � µ̂ctrl
c )/ŝ ctrl

c , 8 b 2 {1, · · · ,B} (3)

c: Second gene set alignment by mean. For each cell c,

sc sc�
1

ncell

ncell

Â
c0=1

sc0 , sctrl
cb  sctrl

cb �
1

ncell

ncell

Â
c0=1

sctrl
c0b , 8 b 2 {1, · · · ,B} (4)

d: Compute cell-level p-values based on the empirical distribution of the pooled normalized control scores for each cell c,

pc =

"
1+

ncell

Â
c0=1

B

Â
b=1

I(sc  sctrl
c0b )

#.
(1+ncellB) (5)

Output: cell-level p-values pc, normalized disease scores sc, and normalized control scores sctrl
c1 , · · · ,sctrl

cB .

choices and methods for constructing putative disease gene sets are considered below (see Alternative versions of scDRS506

method).507

Step 2: Computing disease scores and control scores. We construct B sets of control genes Gctrl
1 , . . . ,Gctrl

B by randomly508

selecting genes matching the mean expression and expression variance of the disease genes (Box 1, step 2a). Specifically,509

each control gene set Gctrl
b has the same size as the disease gene set G and is constructed by first dividing all genes into 20⇥20510

equal-sized mean-variance bins and then for each gene in the disease gene set, randomly sampling a control gene from the same511

bin (containing the disease genes) without replacement. Next, we estimate the technical noise level for each gene s2
tech,g in the512

scRNA-seq data using a procedure similar to previous works18, 21, and compute the raw disease score and raw control scores for513

each cell as weighted average expression of genes in the corresponding gene set (Box 1, steps 2b-2c, Supp. Note). The weight514

for gene g is proportional to s�1
tech,g, which down-weights genes with higher levels of technical noise to increase detection power.515

The weighting strategy was adapted from VAM18, where the cell-specific score is proportional to Âg2G s�2
tech,gX2

cg and was516

shown to have a superior classification accuracy. Alternative cell scores (instead of the weighted average score) are evaluated517

below (see Alternative versions of scDRS method).518

Step 3: Computing disease-association p-values. We first describe the alternative distribution that scDRS aims to detect.519

Since the control genes match the mean expression and expression variance of the disease genes, it can be shown that the520

raw disease score has the same mean but a higher variance compared to each set of raw control scores; the higher variance is521
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because the disease genes are more positively correlated with each other due to co-expression in the associated cell population522

(Supp. Fig. 1A-C). As a result, the disease-relevant cells, with high expression of the disease genes, are expected to have larger523

raw disease scores than raw control scores. Please see Supp. Note for more details.524

The first gene set alignment (Box 1, step 3a) corrects for the potential mismatch of control gene sets by first centering the
scores and then aligning the variance level for each gene set. The variance of the raw disease score is estimated as Âg2G w2

gs2
g

and similarly for the raw control scores, with s2
g being the expression variance of gene g and wg = s�1

tech,g/Âg2G s�1
tech,g the

corresponding weight; this heuristic assumes independence of the genes (or different gene sets have similar levels of gene-gene
correlation), and consequently avoids down-weighting the raw disease score due to the higher correlation between disease
genes (Supp. Fig. 1D, Supp. Note). After adjusting the control gene sets, the gold standard MC p-values, based on comparison
to B MC samples of raw control scores of the same cell, can be written as22

pMC
c =

1+ÂB
b=1 I(sc  sctrl

cb )

1+B
, 8 c 2 {1, · · · ,ncell}. (6)

This finite-sample MC p-value is a conservative estimate of the ideal MC p-value obtained via an infinite number of MC525

samples22. However, as Eq. (6) suggests, an MC test with B MC samples can only produce an MC p-value no smaller than526

1/(1+B). Instead of using a large number of MC samples which is computationally intensive, we approximate the ideal MC527

p-value by pooling the control scores across cells. Specifically, we first align the control score distributions (across the B528

control gene sets, for each cell) by matching their means and variances, followed by re-centering the mean scores of different529

gene sets (Box 1, steps 3b-3c, Supp. Fig. 1E,F, Supp. Note). This procedure produces a normalized disease score and B530

normalized control scores for each cell. Finally, we compute the scDRS p-values based on the empirical distribution of the531

pooled normalized control scores across all control gene sets and all cells (Box 1, step 3d). The pooling procedure assumes532

that the raw control score distributions (across the B control gene sets, for each cell) are from the same location-scale family533

(e.g., the family of all normal distributions or that of all student’s t-distributions) such that they can be aligned by matching534

the first two moments; it is a reasonable assumption when the number of disease genes is neither too small nor too large (e.g.,535

50 < |G|< 20%ngene), where the control score distributions are close to normal distributions by the central limit theorem (Supp.536

Note). As shown in Supp. Fig. 1G-I, the scDRS p-values with B =1,000 is indeed able to well approximate the MC p-values537

obtained using a much larger number of MC samples (B =20,000).538

Downstream applications and MC test539

scDRS outputs individual cell-level p-values, (normalized) disease scores, and (normalized) control scores that can be used
for a wide range of downstream applications: assessing association between a given cell type and a given disease; assessing
heterogeneity in association with a given disease across a given set of cells; and assessing association between a cell-level
variable and a given disease across a given set of cells. We use a unified MC test for these 3 analyses based on the disease
score and control scores. Specifically, let t be the test statistic computed from the disease score of the given set of cells (the 3
analyses differ by the test statistics they use) and let tctrl

1 , · · · , tctrl
B be the same test statistics computed from the B sets of control

scores of the same set of cells. The MC p-value can be written as

pMC =
1+ÂB

b=1 I(t  tctrl
b )

1+B
. (7)

The MC test avoids the assumption that the cells are independent—a strong assumption in scRNA-seq analyses, e.g., when540

analyzing cells in the same cluster that are dependent due to the clustering process. We can also compute an MC z-score541

as zMC =
⇥
t�Mean

�
{tctrl

b }B
b=1
�⇤�

SD
�
{tctrl

b }B
b=1
�
; this MC z-score is not restricted by the MC limit of 1/(1+B) but relies542

the assumption that the control test statistics {tctrl
b }B

b=1 approximately follow a normal distribution. Below, we describe the543

test statistics used by the 3 analyses listed above. We note that the MC test can in principle be extended to any analysis that544

computes a test statistic from the disease scores of a set of cells.545

Assessing association between a given cell type and a given disease. We use the top 5% quantile of the disease scores546

of cells from the given cell type as the test statistic. This test statistic is robust to annotation outliers, e.g., a few misannotated547

but highly significant cells. One can also use other test statistics such as the top 1% quantile or the maximum.548

Assessing heterogeneity in association with a given disease across a given set of cells. We use Geary’s C16, 98 as the
test statistic. Geary’s C measures the spatial autocorrelation of the disease score across a set of cells (e.g., cells from the same
cell type or cell cluster) with respect to a cell-cell similarity matrix. Given a set of n cells, the corresponding disease scores
s1, · · · ,sn, and the cell-cell similarity matrix W 2 Rn⇥n, Geary’s C is calculated as

C =
(n�1)Âi, j Wi j(si� s j)2

2(Âi, j Wi j)Âi(si� s̄)2 , (8)
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where s̄ = 1
n Ân

i=1 si. We use the cell-cell connectivity matrix for the similarity matrix like previous works16, which corresponds549

to the “connectivities” output from the scanpy function “scanpy.pp.neighbors”99. A value significantly lower than 1 indicates550

positive spatial autocorrelation, suggesting cells close to each other on the similarity matrix have similar disease scores, forming551

subclusters of cells with similar levels of disease association. This indicates a high level of disease association heterogeneity552

across the given set of cells. We use this test to assess within-cell type disease association heterogeneity and within-cluster553

association disease heterogeneity.554

Assessing association between a cell-level variable and a given disease across a given set of cells. For associating a555

single cell-level variable with disease, we use the Pearson’s correlation between the cell-level variable and the disease score556

across the given set of cells as the test statistic. For jointly associating multiple cell-level variables with disease, we use the557

regression t-statistic as the test statistic, obtained from jointly regressing the disease score against the cell-level variables.558

Alternative versions of scDRS method559

We consider 3 alternative versions of scDRS, involving (1) other choices of MAGMA gene window size and number of putative560

disease genes, (2) other choices of cell-level raw scores, (3) other strategies of constructing putative disease genes.561

Other choices of MAGMA gene window size and number of putative disease genes. We evaluated other choices of the562

MAGMA gene window size for mapping SNPs to genes (0 kb or 50 kb, instead of 10 kb) and other numbers of the putative563

disease genes (100, 500, or 2,000, instead of 1,000). We considered 6 configurations (varying gene window size while fixing the564

putative disease gene set size as 1,000 or varying disease gene set size while fixing the gene window to be 10 kb) and evaluated565

the performance of each configuration using 5 traits each with a positive control and a negative control cell type (Supp. Table566

15). Results are reported in Supp. Table 16. We determined that the default setting (10 kb window size and 1,000 disease genes)567

attained a reasonable overall performance relative to other parameter choices. As a secondary analysis, we investigated if the568

optimal number of putative disease genes is trait-specific and specifically if it depends on the trait heritability (Supp. Table 1) or569

polygenicity46 (Me for common SNPs; Supp. Table 1). We obtained the optimal number of disease genes (from 500, 1,000, or570

2,000 while using 10-kb MAGMA gene window) for each trait that yields most significantly associated cells (FDR<0.1). We571

then correlated the optimal gene set size with heritability and polygenicity across traits. Results are reported in Supp. Fig. 12.572

We determined that the optimal disease gene set size is significantly correlated with trait polygenicity but non-significantly573

correlated with trait heritability.574

Other choices of cell-level raw scores. We evaluated two alternative cell-level raw scores, namely

unweighted average: sc =
1
|G| Â

g2G
Xcg, overdispersion score: sc =

Âg2G

h
(Xcg�µg)2�s2

tech,g

i
/s2

tech,g

Âg2G 1/s2
tech,g

, (9)

where µg and s2
tech,g are the average expression and technical noise level of gene g respectively. The overdispersion score tests575

for both overexpression and underexpression of the putative disease genes in the relevant cell population (unlike the weighted576

average score which only tests for overexpression of the disease genes). We applied the two alternative scores to the TMS577

FACS data and the 74 diseases and complex traits. Results are reported in Supp. Fig. 10. We determined that the weighted578

average score (used by scDRS) attained high power than the two alternative scores. It further suggests that the GWAS putative579

disease genes are mostly overexpressed in the relevant cell population.580

Other strategies of constructing putative disease genes. While we constructed putative disease genes using GWAS data581

and mapped SNPs to genes based on genomic locations, it is potentially possible to obtain a more accurate disease gene set by582

either incorporating data from other sources like protein-protein interaction data93 or using a more sophisticated SNP-to-gene583

linking strategy94; we did not use these approaches which may be biased towards well-studied tissues.584

Simulations585

We performed simulations on a data set with 10,000 cells subsampled from the TMS FACS data. In null simulations, we586

randomly selected putative disease genes from a set of non-informative genes. We considered three numbers of putative disease587

genes (100, 500, or 1,000) and four types of genes to sample from: (1) the set of all genes, (2) the set of top 25% genes with588

high mean expression, (3) the set of top 25% genes with high expression variance, (4) the set of top 25% overdispersed genes,589

where the level of overdispersion is calculated as the difference between the actual variance and the estimated technical variance590

in the log scale data. For the MC test for cell type-disease association, we used the top 5% quantile as the test statistic and591

computed the MC p-values for each cell type and each set of random putative disease genes by comparing the test statistic592

from the disease scores to those computed from the 1,000 sets of control scores (see Monte-Carlo-based downstream analyses593

above). In causal simulations, we randomly selected 1,000 causal disease genes, randomly selected 500 of the 10,000 cells as594
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causal cells and artificially perturbed their expression levels to be higher (at various effect sizes) across the 1,000 causal disease595

genes, and randomly selected 1,000 putative disease genes (provided as input to scDRS and other methods) with various596

levels of overlap with the 1,000 causal disease genes. Here, the effect size corresponds to the fold change of expression of597

the causal genes in the causal cells (multiplicative in the original count space and additive in the log space). We performed598

three sets of causal simulations: (1) varying effect size from 5% to 50% while fixing 25% overlap, (2) varying level of overlap599

from 5% to 50% while fixing 25% effect size, (3) assigning the 528 B cells in the subsampled data to be causal (instead of600

the 500 randomly selected cells; varying effect size while fixing 25% overlap). The FDR and power reported in Fig. 2B and601

Supp. Fig. 3 are based on applying the B-H procedure100 to all cells at nominal FDR=0.1. All experiments were repeated 100602

times and confidence intervals were computed based on the normal distribution. We considered three methods for comparison,603

namely Seurat15 (“score_genes” as implemented in scanpy99), Vision16, and VAM18. To our knowledge, VAM is the only604

published cell-scoring method that provides cell-level association p-values. We chose to include Seurat due to its wide use and605

standardized its output cell-level scores (mean 0 and SD 1) before computing the cell-level p-values based on the standard606

normal distribution. We chose to include Vision because its outputs are nominal cell-level z-scores and can be easily converted607

to p-values; we again added the standardization step because otherwise the results of Vision were highly unstable. We did608

not include other methods like PAGODA14 or AUCell14 because it is not straightforward to convert their outputs to cell-level609

association p-values and also because the z-scoring methods (e.g., Vision) outperformed other methods in a comprehensive610

evaluation in Frost et al.18
611

GWAS summary statistic data sets612

We analyzed GWAS summary statistics of 74 diseases and complex traits from the UK Biobank101 (47 of the 74 diseases/traits613

with average N=415K) and other publicly available sources102–124 (27 of the 74 diseases/traits with average N=212K); average614

N=341K for all 74 diseases/traits; Supp. Table 1). All diseases and traits were well-powered (heritability z-score>6), except615

celiac disease (Celiac), systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis (PBC), subject616

well being (SWB), fasting glucose (FG), and type 1 diabetes (T1D), which were included due to their clinical importance.617

The major histocompatibility complex (MHC) region was removed from all analyses because of its unusual LD and genetic618

architecture125.619

scRNA-seq data sets620

We analyzed 16 scRNA-seq or snRNA-seq data sets (Supp. Table 2). We included 3 atlas-level data sets (TMS FACS, TMS621

droplet, and TS FACS) to broadly associate diverse cell types and cell populations to disease; these 3 data sets cover different622

species (mouse and human) and different technologies (FACS and droplet), which allows us to assess the robustness of our623

results across different species and technologies. We included another 13 data sets that focus on a single tissue and contain624

finer-grained annotations of cell types and cell states. Notably, several of these data sets contain experimentally determined625

annotations which allow us to better validate our results, including Cano-Gamez & Soskic et al. data53 containing experimentally626

perturbed CD4+ T cell states, Nathan et al. data65 containing T cells states determined by profiling surface markers using627

CITE-seq, Habib & Li et al. data70 containing experimentally determined spatial locations for CA1 pyramidal neurons based on628

ISH of spatial landmark genes, Ayhan et al. data71 containing experimentally determined spatial locations for CA1 pyramidal629

neurons (dorsal and ventral) based on surgical resection, and Richter & Deligiannis et al. data83 containing experimentally630

determined hepatocyte ploidy levels based on Hoechst staining.631

Analysis of T cells and autoimmune diseases632

We collectively analyzed all T cells from the TMS FACS data (4,125 cells labeled as CD4+ a-b T cell, CD8+ a-b T cell,633

regulatory T cell, mature NK T cell, mature a-b T cell, or T cell in the TMS data; Supp. Table 3); the more general terms634

like “T cell” and “mature a-b T cell” were used for cells whose more specific identities were not clear. We processed the T635

cells following the standard procedure using scanpy99. First, we performed size factor normalization (10,000 counts per cell)636

and log transformation. Second, we selected highly variable genes and computed the batch-corrected PCA embedding using637

Harmony126, treating each mouse as a batch. Finally, we constructed KNN graphs and clustered the cells using the Leiden638

algorithm127 (resolution=0.7), followed by computing the UMAP embedding. We removed 376 cells either from small clusters639

(less than 100 cells) or whose identities are ambiguous, resulting in 3,769 cells. We annotated the clusters based on the major640

TMS cell types in the cluster; the label “mature a-b T cell” was omitted because a more specific TMS cell type label (e.g.,641

“CD8+ a-b T”) was available in the corresponding cluster. We considered cells from clusters 1-4 as clear CD4+ T cells (1,686642

cells) and cells from clusters 1, 2, 7-9 as clear CD8+ T cells (2,197 cells; the shared clusters 1 and 2 contain a mix of naive643

CD4+ and CD8+ T cells). We used diffusion pseudotime (DPT)54 to assign effectorness gradient for CD4+ and CD8+ T cells644

separately, where we used the leftmost cell in cluster 2 on the UMAP as the root cell (clearly naive T cell).645

We used MSigDB88, 89 (v7.1) to curate T cell signature gene sets, including naive CD4, memory CD4, effector CD4, naive646

CD8, memory CD8, effector CD8, Treg, Th1 (T helper 1), Th2 (T helper 2), and Th17 (T helper 17) signatures. For each T cell647
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signature gene set, we identified a set of relevant MSigDB gene sets (22-34, Supp. Table 7), followed by selecting the top 100648

most frequent genes in these MSigDB gene sets as the T cell signature genes; a gene was required to appear at least twice and649

genes appearing the same number of times were all included, resulting in 62 to 513 genes for the 10 T cell signature gene sets650

(Supp. Table 8). For gold-standard gene sets used in the analysis of disease gene prioritization, we curated 27 putative drug651

target gene sets from Open Targets59 (mapped to 27 of the 74 diseases/traits considered in the paper; Supp. Table 18); for a652

given disease, we selected all genes with drug score >0 (clinical trial phase 1 and above) and only considered diseases with at653

least 10 putative drug target genes. We curated 16 Mendelian diseases gene sets from Freund et al.60 (mapped to 45 of the 74654

diseases/traits considered in the paper; Supp. Table 18). For comparison of two gene sets, the p-value is based on Fisher’s exact655

test and excess overlap is defined as the ratio between the observed overlap of the two gene sets and the expected overlap (by656

chance). Of note, for a given query gene set with a fixed size and a fixed level of excess overlap with the reference gene set, the657

� log10 p-value increases with the size of the reference gene set; we report both excess overlap and � log10 p-value while using658

the former as our primary metric, which is more interpretable.659

For the analysis of individual cells associated with IBD, we considered 4 major clusters of T cells with >25 IBD-associated660

cells (FDR<0.1) and inferred the identities of the subpopulations of IBD-associated cells in these 4 clusters based on the661

expression of marker genes and overlap of the specifically expressed genes in each of these subpopulations with T cell signatures.662

First, the subpopulation of 120 IBD-associated cells in cluster 3 (which consisted of 629 cells with TMS cell type labels “CD4+663

a-b T” or “regulatory T”) were labeled as “Treg” as described in the main paper. Second, the 75 IBD-associated cells in cluster664

4 (which consisted of 165 cells with TMS cell type label “CD4+ a-b T”) had specifically expressed genes overlapping with a665

KLRG1+ AREG+ effector-like Treg program48 characterized by high expression levels of IL1RL1 (ST2), KLRG1, and AREG666

(P =1.3⇥10�50, Fisher’s exact test; Supp. Fig. 15A,C), suggesting these cells had active functions for Treg differentiation,667

immunosuppression, and tissue repair48 (labeled as “Effector-like Treg” in Fig. 4B). Third, the 61 IBD-associated cells in668

cluster 5 (which consisted of 370 cells with TMS cell type label “T cell”) had high expression of Th17 marker genes (e.g.,669

IL23R, RORC, IL17A; Supp. Fig. 15A) and their specifically expressed genes significantly overlapped with Th17 signatures670

(P =2.0⇥10�6, Fisher’s exact test; Supp. Fig. 15B) and a Th17-like Treg program48 (P =1.9⇥10�24, Fisher’s exact test; Supp.671

Fig. 15C), suggesting Th17 proinflammatory functions (labeled as “Th17-like” in Fig. 4B). Finally, the 38 IBD-associated672

cells in cluster 9 (consisting of 499 cells with TMS cell type label “CD8+ a-b T”) had high expression of genes related to673

cytotoxicity (e.g., IFNG, GZMB, FASL; Supp. Fig. 15A,B), and their specifically expressed genes significantly overlapped with674

effector CD8+ T cell signatures (P =1.4⇥10�7, Fisher’s exact test; Supp. Fig. 15B), suggesting cytotoxic T cell functions675

(labeled as “Effector-like CD8+” in Fig. 4B).676

Analysis of neurons and brain-related diseases/traits677

For the TMS FACS data, we focused on the 484 neurons (TMS label “neuron”, excluding cells with TMS label “medium678

spiny neuron” or “interneuron”). For the Zeisel & Muñoz-Manchado et al. data, we applied scDRS to all 3,005 cells and679

then focused on the 827 CA1 pyramidal neurons (“level1class” label “pyramidal CA1”). For inferring spatial coordinates, we680

curated differentially expressed genes for each of the 6 spatial regions (dorsal vs. ventral, ventral vs. dorsal, proximal vs. distal,681

distal vs. proximal, deep vs. superficial, and superficial vs. deep) using the gene expression data from Cembrowski et al.69
682

(GEO GSE67403; gene sets in Supp. Table 8). For each differential gene expression analysis, we selected genes based on683

FPKM>10 for the average expression in the enriched region (e.g., dorsal for the dorsal vs. ventral comparison), q-value<0.05,684

and log2(fold change) >2. We used scDRS and these signature gene sets to assign 6 spatial scores for each cell. For the685

regression analysis, we separately regressed the scDRS disease scores for each of the 6 brain-related diseases/traits (and height,686

a negative control trait) on each of the 6 spatial scores. We performed marginal regression instead of joint regression for these687

spatial scores because the inferred spatial scores for opposite regions on the same axis (e.g., dorsal vs. ventral) were highly688

collinear (strongly negatively correlated), and the inferred spatial scores for dorsal, proximal, and deep regions (which had689

strong marginal associations to diseases) had very low pairwise correlations (average |r|=0.10; Supp. Fig. 20D), suggesting690

these associations were independent. We reported correlation p-values (MC test) and variance explained for each of the 6691

spatial scores.692

Analysis of hepatocytes and metabolic traits693

We considered all hepatocytes in the TMS FACS data (1,162 cells) and reprocessed them following the same procedure as we694

did for the T cells. We further filtered out low-quality cells (mitochondrial proportion�0.3; likely to be apoptotic or lysing695

cells), resulting in 1,102 hepatocytes (Fig. 5C). We curated signature gene sets for ploidy level, zonation, and putative zonated696

pathways. We curated 4 sets of polyploidy signatures, including differentially expressed genes (DEGs) for partial hepatectomy697

(PH) vs. pre-PH82 (used for the polyploidy score), Cdk1 knockout (case) vs. control82, 4n vs. 2n hepatocytes83, large vs. small698

hepatocytes82. We curated 3 sets of diploidy signatures, including DEGs for pre-PH vs. PH82, control vs. Cdk1 knockout82, and699

2n vs. 4n hepatocytes83. We curated signature gene sets for pericentral (CV) and periportal (PN) hepatocytes from Halpern et700

al.84. We curated gene sets for putative zonated pathways from MSigDB88, 89 (v7.1), including glycolysis (pericentral), bile acid701
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production (pericentral), lipogenesis (pericentral), xenobiotic metabolism (pericentral), beta-oxidation (periportal), cholesterol702

biosynthesis (periportal), protein secretion (periportal), and gluconeogenesis (periportal). All signature gene sets are reported703

in Supp. Table 8. For the joint regression analysis of scDRS disease score on ploidy and zonation scores, we regressed the704

polyploidy score out of both the pericentral and periportal score before the joint regression because the ploidy level confounded705

both zonation scores. We performed joint regression instead of marginal regression here (unlike the regression analysis in the706

neuron section) because the polyploidy score was positively correlated with the pericentral and periportal scores (unlike the707

analysis in the neuron section where the 3 sets of scores had low correlations).708

Data availability709

We release our data at https://figshare.com/projects/Single-cell_Disease_Relevance_Score_scDRS_710

/118902 (instructions at https://github.com/martinjzhang/scDRS), including GWAS summary statistics of711

the 74 diseases/traits, TMS FACS scRNA-seq data, reprocessed TMS FACS data (for T cells and hepatocytes), MAGMA712

and gold standard gene sets, and scDRS results for TMS FACS (disease scores and control scores for the 74 diseases/traits).713

The 16 scRNA-seq data sets were obtained as follows. The TMS FACS data and TMS droplet data19 was downloaded714

from the official release https://figshare.com/articles/dataset/Processed_files_to_use_with_715

scanpy_/8273102. The TS FACS data25 was downloaded from the official release https://figshare.com/716

articles/dataset/Tabula_Sapiens_release_1_0/14267219. The Cano-Gamez & Soskic et al. data53
717

was downloaded from https://www.opentargets.org/projects/effectorness. The Nathan et al. data65
718

was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158769. The Zeisel719

& Muñoz-Manchado et al. data66 was downloaded from http://linnarssonlab.org/cortex/. The Zeisel et720

al. data74 was downloaded from http://mousebrain.org/downloads.html. The Habib & Li et al. data70 and721

Habib, Avraham-Davidi, & Basu et al. data76 were downloaded from https://singlecell.broadinstitute.org/722

single_cell. The Ayhan et al. data71 was downloaded from https://cells.ucsc.edu/human-hippo-axis/.723

The Yao et al. data75 was downloaded from https://assets.nemoarchive.org/dat-jb2f34y. The Zhong et724

al. data77 was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119212.725

The Aizarani et al. data87 was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=726

GSE124395. Halpern & Shenhav et al. data84 was downloaded from https://www.ncbi.nlm.nih.gov/geo/727

query/acc.cgi?acc=GSE84498. The Richter & Deligiannis et al. data83 (annotated count matrix) was obtained via728

communication with the authors (raw data publicly available via links in the paper). The Taychameekiatchai et al. data86 is not729

publicly available, but was obtained via communication with the authors.730

Code availability731

Software implementing scDRS and its downstream applications and a web interface for interactively exploring results of732

scDRS are available at https://github.com/martinjzhang/scDRS.733
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Figure 1. Overview of scDRS method. scDRS takes disease GWAS and scRNA-seq data sets as input and outputs
individual cell-level p-values for association with the disease. (1) scDRS constructs a set of putative disease genes from
GWAS summary statistics by selecting the top 1,000 MAGMA genes; these putative disease genes are expected to have higher
expression levels in the relevant cell population. (2) scDRS computes a raw disease score for each cell, quantifying the
aggregate expression of the putative disease genes in that cell; to maximize power, each putative disease gene is inversely
weighted by its gene-specific technical noise level in the scRNA-seq data. scDRS also computes a set of 1,000 Monte Carlo
raw control scores for each cell, in each case using a random set of control genes matching the gene set size, mean expression,
and expression variance of the putative disease genes. (3) scDRS normalizes the raw disease score and raw control scores
across gene sets and across cells, and then computes a p-value for each cell based on the empirical distribution of the pooled
normalized control scores across all control gene sets and all cells. The choice of 1,000 for the number of putative disease
genes and the choice of 1,000 for the number of control scores are independent.
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Figure 2 Null and causal simulations

A B

Figure 2. Results for null and causal simulations. (A) Q-Q plot for null simulations using 1,000 randomly selected genes
as the putative disease genes. The x-axis denotes theoretical � log10 p-value quantiles and the y-axis denotes actual � log10
p-value quantiles for different methods. Each point is based on 100 simulation replicates (with 10,000 cells per simulation
replicate); error bars denote 95% confidence intervals (all error bars are <0.05 from the point estimate). Numerical results are
reported in Supp. Table 9 and additional results are reported in Supp. Fig. 2. (B) Power for casual simulations with perturbed
expression of causal genes in causal cells. We report the power at FDR=0.1 for different methods and different effect sizes.
Each point is based on 100 simulation replicates (with 10,000 cells per simulation replicate); error bars denote 95% confidence
intervals (all error bars are <0.02 from the point estimate). Numerical results are reported in Supp. Table 11 and additional
results are reported in Supp. Fig. 3.
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Figure 3. Disease associations at the cell type-level. We report scDRS results for individual cells aggregated at the cell
type-level for a subset of 20 cell types and 21 diseases/traits in the TMS FACS data. Each row represents a disease/trait and
each column represents a cell type (with number of cells indicated in parentheses). Heatmap colors for each cell type-disease
pair denote the proportion of significantly associated cells (FDR<0.1 across all cells for a given disease). Squares denote
significant cell type-disease associations (FDR<0.05 across all pairs of the 120 cell types and 74 diseases/traits; p-values via
MC test; Methods). Cross symbols denote significant heterogeneity in association with disease across individual cells within a
given cell type (FDR<0.05 across all pairs; p-values via MC test; Methods). Heatmap colors (>10% of cells associated) and
cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations via MC test (heatmap
colors omitted for 2 pairs (GMP-MONO and Dendritic-MS) and cross symbols omitted for 6 pairs (CD4+ a-b T-MONO,
CD8+ a-b T-MONO, oligodendrocyte-MONO, bladder cell-ASM, hepatocyte-ECOL, and dendritic-BMD-HT)). Auto
Immune Traits (AIT) represents a collection of diseases in the UK Biobank that characterize autoimmune physiopathogenic
etiology128, 129. Abbreviated cell type names include red blood cell (RBC), granulocyte monocyte progenitor (GMP), medium
spiny neuron (MSN), and oligodendrocyte precursor cell (OPC). Neuron refers to neuronal cells with undetermined subtypes
(whereas MSN and interneuron (non-overlapping with neuron) refer to neuronal cells with those inferred subtypes). Complete
results for 120 cell types and 74 diseases/traits are reported in Supp. Fig. 4 and Supp. Table 12.
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Figure 4. Associations of T cells with autoimmune diseases. (A) UMAP visualization of T cells in the TMS FACS data. In
the legend, cluster labels are based on annotated TMS cell types in the cluster. Composition of tissue, sex, and age of cells in
each cluster are reported in Supp. Fig. 13. (B) Subpopulations of T cells associated with IBD. Significantly associated cells
(FDR<0.1) are denoted in red, with shades of red denoting scDRS disease scores; non-significant cells are denoted in grey.
Cluster boundaries indicate the corresponding T cell clusters from panel A. In the legend, numbers in parentheses denote the
number of IBD-associated cells vs. the total number of cells and cluster labels are based on the putative identity of the
IBD-associated subpopulations, for the 4 of 11 clusters with IBD-associated cells. Results for the other 9 autoimmune diseases
and height are reported in Supp. Fig. 14. (C) Association between scDRS disease score and CD4 effectorness gradient across
CD4+ T cells for 5 representative autoimmune diseases and height, a negative control trait. The x-axis denotes CD4
effectorness gradient quintile bins and the y-axis denotes average scDRS disease score in each bin for each disease. * denotes
P <0.05 and ** denotes P <0.005 (MC test). Numerical results for all 10 autoimmune diseases are reported in Supp. Table 17.
(D) Excess overlap of genes prioritized by scDRS with gold standard gene sets. The x-axis denotes the excess overlap of genes
prioritized by MAGMA and the y-axis denotes the excess overlap of genes prioritize by scDRS, for each of 10 autoimmune
diseases. The median ratio of (excess overlap � 1) for scDRS vs. MAGMA was 2.02. Numerical results are reported in Supp.
Table 19.
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Figure 5. Associations of neurons with brain-related disease/traits and hepatocytes with metabolic traits. (A)
Subpopulations of CA1 pyramidal neurons associated with SCZ in the Zeisel & Muñoz-Manchado et al. data. Colors of cells
denote scDRS disease scores (negative disease scores are denoted in grey). We include a visualization of putative
dorsal-ventral and proximal-distal axes (see text). Results for all 6 brain-related diseases/traits and height are reported in Supp.
Fig. 20B. (B) Association between scDRS disease score and proximal score across CA1 pyramidal neurons for 4
representative brain-related disease/traits and height, a negative control trait. The x-axis denotes proximal score quintile bins
and the y-axis denotes average scDRS disease score in each bin for each disease. * denotes P <0.05 and ** denotes P <0.005
(MC test). Results for all 6 spatial scores and all 6 brain-related diseases/traits are reported in Supp. Fig. 22 and Supp. Table 22.
(C) Subpopulations of hepatocytes associated with TG in the TMS FACS data. Significantly associated cells (FDR<0.1) are
denoted in red, with shades of red denoting scDRS disease scores; non-significant cells are denoted in grey. Cluster boundaries
indicate the corresponding hepatocyte clusters. In the legend, numbers in parentheses denote the number of TG-associated cells
vs. the total number of cells and cluster labels are based on the putative identity of cells in the cluster. Results for the other 8
metabolic traits and height are reported in Supp. Fig. 23. (D) Association between scDRS disease score and polyploidy score
for 4 representative metabolic traits and height, a negative control trait. The x-axis denotes polyploidy score quintile bins and
the y-axis denotes average scDRS disease score in each bin for each disease. * denotes P <0.05 and ** denotes P <0.005 (MC
test). Results for all 3 scores (polyploidy score, pericentral score, periportal score) and all 9 metabolic traits (and height) are
reported in Supp. Fig. 25 and Supp. Table 23.
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