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ABSTRACT38

Gene expression at the individual cell-level resolution, as quantified by single-cell RNA-sequencing (scRNA-seq), can provide

unique insights into the pathology and cellular origin of diseases and complex traits. Here, we introduce single-cell Disease

Relevance Score (scDRS), an approach that links scRNA-seq with polygenic risk of disease at individual cell resolution without

the need for annotation of individual cells to cell types; scDRS identifies individual cells that show excess expression levels for

genes in a disease-specific gene set constructed from GWAS data. We determined via simulations that scDRS is well-calibrated

and powerful in identifying individual cells associated to disease. We applied scDRS to GWAS data from 74 diseases and

complex traits (average N =346K) in conjunction with 16 scRNA-seq data sets spanning 1.3 million cells from 31 tissues and

organs. At the cell type level, scDRS broadly recapitulated known links between classical cell types and disease, and also

produced novel biologically plausible findings. At the individual cell level, scDRS identified subpopulations of disease-associated

cells that are not captured by existing cell type labels, including subpopulations of CD4+ T cells associated with inflammatory

bowel disease, partially characterized by their effector-like states; subpopulations of hippocampal CA1 pyramidal neurons

associated with schizophrenia, partially characterized by their spatial location at the proximal part of the hippocampal CA1

region; and subpopulations of hepatocytes associated with triglyceride levels, partially characterized by their higher ploidy levels.

At the gene level, we determined that genes whose expression across individual cells was correlated with the scDRS score

(thus reflecting co-expression with GWAS disease genes) were strongly enriched for gold-standard drug target and Mendelian

disease genes.

39

Introduction40

The mechanisms through which risk variants identified by genome-wide association studies (GWASs) impact critical tissues and41

cell types are largely unknown1, 2; identifying these tissues and cell types is central to our understanding of disease etiologies42

and will inform efforts to develop therapeutic treatments3. Single-cell RNA sequencing (scRNA-seq) has emerged as the tool43

of choice for measuring gene abundances at single-cell resolution4, 5, providing an increasingly clear picture of which genes are44

active in which cell types and also being able to identify novel cell populations within classically defined cell types. Integrating45

scRNA-seq with GWAS data offers the potential to identify critical tissues, cell types, and cell populations through which46

GWAS risk variants impact disease6–8, thus providing finer resolution than studies using bulk transcriptomic data9–12.47

Previous studies integrating scRNA-seq with GWAS have largely focused on predefined cell type annotations (e.g., classical48

cell types defined using known marker genes), aggregating cells from the same cell type followed by evaluating overlap of49

the cell type-level information with GWAS6–8. However, this approach overlooks the considerable heterogeneity of individual50

cells within cell types that has been reported in studies of scRNA-seq data alone13–18; the underlying methods (e.g., Seurat51

cell-scoring function15, Vision16, and VAM18) have sought to explain transcriptional heterogeneity in scRNA-seq data by52

scoring cells based on predefined gene sets such as pathway gene sets, but do not consider polygenic disease risk from GWAS53

and generally do not provide individual cell-level association p-values. Integrating information from scRNA-seq data at54

fine-grained resolution (e.g., individual cells both within and across cell types) with polygenic signals from disease GWAS has55

considerable potential to produce new biological insights.56

Here, we introduce single-cell Disease Relevance Score (scDRS), a method to evaluate polygenic disease enrichment of57

individual cells in scRNA-seq data. scDRS assesses whether a given cell has excess expression levels across a set of putative58

disease genes derived from GWAS, using an appropriately matched empirical null distribution to estimate well-calibrated59

p-values. To our knowledge, scDRS is the first method to associate individual cells in scRNA-seq data to disease GWAS. We60

performed extensive simulations to assess the calibration and power of scDRS. We then applied scDRS to 74 diseases and61

complex traits (average GWAS N =346K) in conjunction with 16 scRNA-seq data sets (including the Tabula Muris Senis62

(TMS) mouse cell atlas19), assessing cell type-disease associations and within-cell type association heterogeneity, including63

heterogeneity of T cells in their association with inflammatory bowel disease (IBD) and other autoimmune diseases, neurons in64

their association with schizophrenia (SCZ) and other brain-related diseases/traits, and hepatocytes in their association with65

triglyceride levels (TG) and other metabolic traits; we analyzed a broader set of scRNA-seq data sets to provide validation66

across species (human vs. mouse) and across sequencing platforms, and to include scRNA-seq data sets with experimentally67

determined cell types and cell states.68

Results69

Overview of methods70

scDRS integrates gene expression profiles from scRNA-seq with polygenic disease information from GWAS to associate71

individual cells to disease without the need for annotation of individual cells to cell types, by assessing the excess expression72

of putative disease genes from GWAS in a given cell relative to other genes with similar expression levels across all cells.73
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scDRS consists of three steps (Fig. 1, Methods, and Supp. Note). First, scDRS constructs a set of putative disease genes74

from GWAS summary statistics using MAGMA20, an existing gene scoring method (top 1,000 MAGMA genes; see Methods75

for other choices evaluated). Second, scDRS quantifies the aggregate expression of the putative disease genes in each cell to76

generate cell-specific raw disease scores; to maximize power, each putative disease gene is weighted by its GWAS MAGMA77

z-score and inversely weighted by its gene-specific technical noise level in the single-cell data, estimated via modeling the78

mean-variance relationship across genes18, 21 (alternative choices of cell scores are evaluated in Methods). To determine79

statistical significance, scDRS also generates 1,000 sets of cell-specific raw control scores at Monte Carlo (MC) samples80

of matched control gene sets (matching the gene set size, mean expression, and expression variance of the putative disease81

genes); cell-specific MC p-values are defined as the proportion of the 1,000 raw control scores for a given cell exceeding the82

raw disease score for that cell22. Third, scDRS approximates the ideal MC p-values (obtained using�1,000 MC samples)83

by pooling control scores across cells. Specifically, it normalizes the raw disease score and raw control scores for each cell84

(producing the normalized disease score and normalized control scores), and then computes cell-level p-values based on the85

empirical distribution of the pooled normalized control scores across all control gene sets and all cells; this approximation86

relies on the assumption that the raw control score distributions (across the 1,000 control gene sets, for each cell) are from the87

same parametric distribution (e.g., normal distributions with different parameters), a reasonable assumption when the disease88

gene set is neither too small nor too large (e.g., >50 genes and <20% of all genes; Methods). Importantly, scDRS does not use89

cell type or other cell-level annotations, although these annotations can be of value when interpreting its results. scDRS is90

computationally efficient and scales linearly with the number of cells and number of control gene sets for both running time91

and memory (Methods).92

scDRS outputs individual cell-level p-values (testing for cell-disease associations as described above), normalized disease93

scores, and 1,000 sets of normalized control scores (referred to as “disease scores” and “control scores” in the rest of the paper)94

that can be used for a wide range of downstream applications (Methods). Here, we focus on three downstream analyses. First,95

we perform cell type-level analyses to associate predefined cell types to disease and assess heterogeneity in association to96

disease across cells within a predefined cell type. Second, we perform individual cell-level analyses to associate individual cells97

to disease and correlate individual cell-level variables to the scDRS disease score. Third, we perform gene-level analyses to98

prioritize disease-relevant genes whose expression is correlated with the scDRS disease score, reflecting co-expression with99

genes implicated by disease GWAS.100

We analyzed publicly available GWAS summary statistics of 74 diseases and complex traits (average N=346K; Supp. Table101

1) in conjunction with 16 scRNA-seq or single-nucleus RNA-seq (snRNA-seq) data sets spanning 1.3 million cells from 31102

tissues and organs from mouse (mus musculus) and human (homo sapiens) (Supp. Table 2; 15 out of 16 data sets publicly103

available; Data Availability). The single-cell data sets include two mouse cell atlases from the Tabula Muris Senis (TMS)19
104

collected using different technologies (fluorescence-activated cell sorting followed by Smart-seq2 amplification23 for the TMS105

FACS data and 10x microfluidic droplet capture and amplification24 for the TMS droplet data), the unpublished Tabula Sapiens106

(TS) human cell atlas25, and other data sets focusing on specific tissues containing well-annotated cell types and cell states. We107

focused on the TMS FACS data in our primary analyses due to its comprehensive coverage of 23 tissues and 120 cell types and108

more accurate quantification of gene expression levels (via Smart-seq2); we used the other 15 data sets to validate our results.109

We note the extensive use of mouse gene expression data to study human diseases and complex traits (see Bryois et al.8, other110

studies6, 7, 9, 12, 26, and Discussion).111

Simulations assessing calibration and power112

We performed null simulations and causal simulations to assess the calibration and power of scDRS, comparing scDRS to three113

state-of-art methods for scoring individual cells with respect to a specific gene set: Seurat (cell-scoring function)15, Vision16,114

and VAM18. To our knowledge, VAM is the only method for scoring individual cells that provides cell-level association115

p-values; Seurat and Vision provide quantitative cell-level scores that we transformed to p-values based on the standard normal116

distribution (Methods).117

First, we evaluated each method in null simulations in which no cells have systematically higher expression across the118

putative disease genes analyzed. We subsampled 10,000 cells from the TMS FACS data and randomly selected 1,000 putative119

disease genes. We simulated GWAS gene weights for scDRS matching the MAGMA z-score distributions in real traits and120

used binary disease gene sets for the other 3 methods. scDRS and Seurat produced well-calibrated p-values, Vision suffered121

slightly inflated type I error, and VAM suffered severely inflated type I error (Fig. 2A and Supp. Table 11). The slight122

miscalibration of Vision may be due to the mismatch between the normal distribution used for computing p-values and the123

actual null distribution of the cell-level scores. The poor calibration of VAM may be because it uses a permutation-based124

test that assumes independence between genes under the null, an assumption that is likely to be violated in scRNA-seq data.125

Secondary analyses are reported in the Supp. Note, including null simulations with other numbers of putative disease genes or126

biased sets of putative disease genes (e.g., randomly selected from genes with high mean expression) (Supp. Fig. 4,5), and null127

3
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simulations for scDRS cell type-level association analysis (Supp. Table 12).128

Next, we evaluated scDRS, Seurat and Vision in causal simulations in which a subset of causal cells has systematically129

higher expression across putative disease genes (we did not include VAM, which was not well-calibrated in null simulations).130

We used the same 10,000 cells subsampled from the TMS FACS data, randomly selected 1,000 causal disease genes, randomly131

selected 500 of the 10,000 cells as causal cells and artificially perturbed their expression levels to be higher (1.05-1.50 times for132

different simulations) across the 1,000 causal disease genes, and randomly selected 1,000 putative disease genes (provided as133

input to each method) with 25% overlap with the 1,000 causal disease genes. We used the binary gene set for all 3 methods134

because there were no GWAS weights involved in generating the data. We determined that scDRS attained higher power than135

Seurat and Vision to detect individual cell-disease associations at FDR<0.1 (Fig. 2B and Supp. Table 13); the improved power136

of scDRS may be due to its incorporation of gene-specific weights that downweight genes with higher levels of technical noise.137

Please see secondary analyses in Supp. Note, including simulations with other levels of overlap between the 1,000 causal genes138

and 1,000 putative disease genes (Supp. Fig. 6).139

Results across 120 TMS cell types for 74 diseases and complex traits140

We analyzed GWAS data from 74 diseases and complex traits (average N=346K; Supp. Table 1,8) in conjunction with the141

TMS FACS data with 120 cell types (cells from different tissues were combined for a given cell type; Supp. Table 5). We first142

report scDRS cell type-level results, aggregated for each cell type from the scDRS individual cell-level results; the individual143

cell-level results are discussed in subsequent sections. Results for a representative subset of 19 cell types and 22 diseases/traits144

are reported in Fig. 3 (complete results in Supp. Fig. 7 and Supp. Table 14). Within this subset, scDRS identified 80 associated145

cell type-disease pairs (FDR<0.05; squares in Fig. 3) and detected significant within-cell type disease-association heterogeneity146

for 43 of these 80 associated cell type-disease pairs (FDR<0.05; cross symbols in Fig. 3; 273 of 597 across all pairs of the147

120 cell types and 74 diseases/traits). We also report the proportion of significantly associated individual cells for each cell148

type-disease pair (FDR<0.1, a less stringent threshold as false positive associations of individual cells are less problematic and149

we do not focus on the results for any one specific cell; heatmap colors in Fig. 3). We note these associated cell type-disease150

pairs (and individual cell-disease associations discussed in subsequent sections) may reflect indirect tagging of causal cell types151

rather than direct causal associations, analogous to previous works (see Discussion).152

For cell type-disease associations, as expected, scDRS broadly associated blood/immune cell types with blood/immune-153

related diseases/traits, brain cell types with brain-related diseases/traits, and other cell types with other diseases/traits (block-154

diagonal pattern in Fig. 3; exceptions are discussed in Supp. Note).155

We discuss 3 main findings for the blood/immune-related diseases/traits (upper left block in Fig. 3). First, different156

blood/immune cell types were associated with the corresponding blood cell traits, including proerythroblasts with RDW,157

classical monocytes with monocyte count, and adaptive immune cells with lymphocyte count. We detected significant158

heterogeneity across cells for the proerythroblast-RDW association, which may correspond to erythrocytes at different159

differentiation stages27 (see Supp. Fig. 8). Second, immune cell types were associated with immune diseases, including160

dendritic cells, CD4+ a/b T cells, CD8+ a/b T cells, and/or regulatory T cells with rheumatoid arthritis (RA), multiple161

sclerosis (MS), and IBD, consistent with previous findings12, 28. We detected significant heterogeneity across cells for many of162

these cell type-disease associations, consistent with the known diversity within the T cell population (see the T cell subsection163

below). Third, granulocyte monocyte progenitors (GMP) were strongly associated with MS, highlighting the role of myeloid164

cells in MS29, 30.165

We discuss 2 main findings for brain-related diseases/traits (middle block in Fig. 3). First, neuronal cell types, including166

medium spiny neurons (MSNs), interneurons, and neurons (neuronal cells with undetermined subtypes), were associated with167

schizophrenia (SCZ), major depressive disorder (MDD), bipolar disorder (BP), college education (ECOL), and several other168

brain-related traits; the role of MSN in SCZ, MDD, BP, and ECOL is supported by previous genetic studies8, 26, 31, 32. We169

detected significant heterogeneity across neurons in their association with most brain-related diseases/traits (see the neuron170

subsection below). Second, oligodendrocytes, oligodendrocyte precursor cells (OPCs) were also associated with multiple171

brain-related diseases/traits. These associations are less clear in existing genetic studies6, 8, 26, 33, but are biologically plausible,172

consistent with the increasingly discussed role of oligodendrocyte lineage cells in brain diseases/traits: the differentiation and173

myelination of oligodendrocyte lineage cells are important to maintain the functionality of neuronal cells34, 35. We detected174

significant heterogeneity across OPCs in their association with many brain-related diseases/traits, consistent with recent175

evidence of functionally diverse states of OPCs36, traditionally considered to be a homogeneous population (see Supp. Fig. 9).176

We discuss 2 main findings for other diseases/traits (lower right block in Fig. 3). First, hepatocytes were associated with177

several metabolic traits including TG and testosterone (TST) (and other lipid traits; Supp. Fig. 7); hepatocytes are known to178

play an important role in metabolism37. We detected significant heterogeneity across hepatocytes in their association with TG179

and TST (see the hepatocyte subsection below). Second, other cell types, including chondrocytes, bladder cells, ventricular180

myocytes and pancreatic beta cells, were associated with their corresponding expected diseases/traits, consistent with previous181

4
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genetic studies38–41.182

We performed 4 secondary analyses to assess robustness of these results; further details are provided in the Supp. Note.183

First, we determined that scDRS cell type-disease associations are highly consistent between data sets collected using different184

technologies (TMS FACS vs. TMS droplet) and reasonably consistent between mouse and human data (TMS FACS vs. TS185

FACS) (Supp. Fig. 10). Second, we determined that cell type-disease associations are highly consistent between scDRS and 4186

existing cell type-level association methods (LDSC-SEG12 and 3 methods in Bryois et al.8; Supp. Fig. 11). Third, since the187

scDRS results may be biased towards major cell types with many cells, we implemented a version of scDRS that adjusts for188

cell type proportions, and determined that it was highly consistent with the default version (median of 0.97 across 74 diseases189

for the scDRS disease score correlation computed across all TMS FACS cells) and well-calibrated in null simulations (Supp.190

Fig. 4; Methods). Fourth, we determined that scDRS is robust to different scaling factors for size-factor normalization (median191

of 0.90 across 74 diseases for the scDRS disease score correlation between scaling to the default 10,000 vs. 1 million reads per192

cell computed across all TMS FACS cells; Methods).193

We performed 2 secondary analyses to assess alternative versions of scDRS; further details are provided in the Supp. Note.194

First, we determined that the default version of scDRS outperformed alternative versions using different disease gene selection195

methods (top 100, top 500, top 2,000, FWER<5%, FDR<1%, instead of top 1,000), weighting methods for the selected disease196

genes (no weights, GWAS MAGMA z-score weights, single-cell technical noise weights, instead of using both sets of weights),197

or MAGMA gene window sizes (0 kb, 50 kb, instead of 10 kb) (Supp. Fig. 12,13, Supp. Table 17,18; Methods). Second,198

we determined that the default weighted score (only capturing overexpression of putative disease genes in the relevant cell199

population) substantially outperformed an overdispersion score capturing both overexpression and underexpression (Supp. Fig.200

14; Methods).201

Heterogeneous subpopulations of T cells associated with autoimmune disease202

We sought to further understand the heterogeneity across T cells in the TMS FACS data in their association with autoimmune203

diseases (Fig. 3). We jointly analyzed all T cells in the TMS FACS data (3,769 cells, spanning 15 tissues). Since the original204

study clustered cells from different tissues separately19, we reclustered these T cells, resulting in 11 clusters (Fig. 4A; Methods);205

we verified that batch effects were not observed for tissue, age, or sex (Supp. Fig. 15). We considered 10 autoimmune206

diseases: IBD, Crohn’s disease (CD), ulcerative colitis (UC), RA, MS, AIT, hypothyroidism (HT), eczema, asthma (ASM), and207

respiratory and ear-nose-throat diseases (RR-ENT) (Supp. Table 1); we also considered height as a negative control trait.208

We focused on individual cells associated with IBD, a representative autoimmune disease (Fig. 4B; results for HT in209

Fig. 4C; results for the other 8 autoimmune diseases and height in Supp. Fig. 16). The 387 IBD-associated cells (FDR<0.1)210

formed subpopulations of 4 of the 11 T cell clusters; we characterized these subpopulations based on marker gene expression,211

automatic T cell subtype annotation42, and overlap of specifically expressed genes in each subpopulation with T cell signature212

gene sets (Supp. Fig. 17,18,19,20; Methods). First, the subpopulation of 123 IBD-associated cells in cluster 3 (labeled as213

“Treg”) had high expression of regulatory T cell (Treg) marker genes (e.g., FOXP3+, CTLA4+, LAG3+; Supp. Fig. 20A), and214

their specifically expressed genes significantly overlapped with Treg signatures (P =6.0⇥10�8 for MSigDB signatures and215

P =4.0⇥10�68 for an effector-like Treg program43, Fisher’s exact test; Supp. Fig. 20C,D), suggesting these cells had Treg216

immunosuppressive functions. Interestingly, these 123 IBD-associated cells were non-randomly distributed in cluster 3 on the217

UMAP plot (P <0.001, MC test; Methods). Genes specifically expressed in these IBD-associated cells were preferentially218

enriched (compared to the 506 non-IBD-associated cells in the same cluster) in pathways defined by NF-kB signaling, T helper219

cell differentiation, and tumor necrosis factor-mediated signaling (Supp. Fig. 20E); these pathways are closely related to220

inflammation, a distinguishing feature of IBD44. Second, the 78 IBD-associated cells in cluster 4 had high expression of T221

helper 2 (Th2) markers in the lower part of the cluster (e.g., CCR8+, IL2+) and Treg markers in the upper part (e.g., FOXP3+,222

CTLA4+; Supp. Fig. 17,18A-C), suggesting a mixed cluster identity (labeled as “Th2/Treg-like”); the role of Th2 cells in223

IBD has been discussed in literature45. Third, the 85 IBD-associated cells in cluster 5 (IL23R+ RORC+ IL17A+; labeled224

as “Th17-like”) were characterized as having T helper 17 (Th17) proinflammatory functions. Interestingly, drugs targeting225

IL17A (secukinumab and ixekizumab) have been considered for treatment of IBD but their use was associated with the onset of226

paradoxical effects (disease exacerbation after treatment with a putatively curative drug); the mechanisms underlying these227

events are not well understood46. Fourth, the 41 IBD-associated cells in cluster 9 (IFNG+ GZMB+ FASL+; labeled as “CD8+228

effector-like”) were characterized as having effector CD8+ (cytotoxic) T cell functions. Overall, these findings are consistent229

with previous studies associating subpopulations of effector T cells to IBD, particularly Tregs and Th17 cells44, 47–49.230

We further compared the individual T cell associations of IBD to HT, another representative autoimmune disease (Fig.231

4C,D; results for comparison of IBD to the other 8 autoimmune diseases are reported in Supp. Fig. 21). The top 4 HT-associated232

subpopulations included 3 IBD-associated subpopulations (cells in clusters 3,4,9; Fig. 4C), but also a unique subpopulation of233

cells in cluster 10 (labeled as “proliferative”). The association strength was also different between the two diseases. Despite the234

stronger associations to HT overall (possibly due to higher GWAS power), IBD was more strongly associated with cells in cluster235
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4 (labeled as “Th2/Treg-like”; Fig. 4D). Across the 10 autoimmune diseases, pairwise scDRS disease score correlations (across236

all TMS FACS cells) were moderate (average of 0.51), implying differences between these diseases; the score correlations were237

not entirely driven by gene set overlap (average overlap of 231/1,000 genes; average scDRS disease score correlation of 0.16238

when restricting to non-overlapping genes, substantially higher than the average of -0.10 across traits in different categories;239

Supp. Fig. 22, Supp. Table 19). Furthermore, the 10 autoimmune diseases formed 3 clusters based on hierarchical clustering of240

scDRS disease score correlations: IBD-related (IBD, UC, CD), allergy-related (Eczema, ASM, RR-ENT), and others (MS, RA,241

AIT, HT) (Supp. Fig. 22); these 3 groups represent biologically more similar subtypes of autoimmune diseases50, suggesting242

that scDRS can differentiate between subgroups of diseases from the same category.243

We investigated whether the heterogeneity of T cells in association with autoimmune diseases was correlated with T cell244

effectorness gradient, a continuous classification of T cells defined by naive T cells on one side (immunologically naive T245

cells matured from the thymus) and effector T cells on the other (differentiated from naive T cells upon activation and capable246

of mediating effector immune responses); we hypothesized that such a correlation might exist given the effector-like T cell247

subpopulations associated to IBD above. Following a recent study51, we separately computed the effectorness gradients for248

CD4+ T cells (1,686 cells) and CD8+ T cells (2,197 cells) using pseudotime analysis52 (Supp. Fig. 23A,B; Methods), and249

confirmed that the inferred effectorness gradients were significantly negatively correlated with naive T cell signatures and250

positively correlated with memory and effector T cell signatures (Supp. Fig. 23C,D; Methods). We assessed whether the251

CD4 (resp., CD8) effectorness gradient was correlated with scDRS disease scores for IBD or other autoimmune diseases,252

across CD4+ T cells (resp., CD8+ T cells). Results are reported in Fig. 4E and Supp. Table 20. We determined that the CD4253

effectorness gradient was strongly associated with IBD, CD, UC, AIT, and HT (P <0.005, MC test; 15%-28% of variance in254

scDRS disease score explained by CD4 effectorness gradient), weakly associated with Eczema and ASM (P <0.05; 6%-9%255

variance explained), but not significantly associated with RA, MS, or RR-ENT. This implies that these autoimmune diseases256

are associated with more effector-like CD4+ T cells. We also determined that the CD8 effectorness gradient was weakly257

associated with IBD, CD, and AIT (P <0.05, MC test; 6%-9% variance explained), but not significantly associated with the258

other autoimmune diseases, suggesting that CD4+ effector T cells may be more important than CD8+ effector T cells for259

these diseases. Notably, after conditioning on the 11 cluster labels, the associations with CD4 effectorness gradient remained260

significant for IBD and CD (P <0.005, MC test), AIT and HT (P <0.05), and the associations with CD8 effectorness gradient261

remained significant for IBD and CD (P <0.05), indicating that scDRS distinguishes effectorness gradients within clusters.262

In addition, as a negative control, height was not significantly associated in any of these analyses. The association of T cell263

effectorness gradients with autoimmune diseases has not previously been formally evaluated, but is consistent with previous264

studies linking T cell effector functions to autoimmune disease53, 54; the results also suggest that different subpopulations265

of effector T cells share certain similarities in their association with autoimmune diseases, consistent with previous studies266

characterizing the similarities among different subtypes of effector T cells, such as an increase in the expression of cytokines267

and chemokines51, 55, 56.268

Finally, we prioritized disease-relevant genes by computing the correlation (across all TMS FACS cells) between the269

expression of a given gene and the scDRS score for a given disease; this approach identifies genes that are co-expressed with270

genes implicated by disease GWAS. We compared the top 1,000 genes prioritized using this approach with gold-standard271

disease-relevant genes based on putative drug targets from Open Targets57 (phase 1 or above; 8 gene sets with 27-250 genes;272

used for 8 autoimmune diseases except RR-ENT and HT; Supp. Table 21) or genes known to cause a Mendelian form of273

the disease58 (550 genes corresponding to “immune dysregulation”, used for RR-ENT and HT; Supp. Table 21). Results are274

reported in Fig. 4F and Supp. Table 22. We determined that scDRS attained a more accurate prioritization of disease-relevant275

genes compared to the top 1,000 MAGMA genes (median ratio of (excess overlap � 1) was 2.07, median ratio of � log10276

p-value was 2.86; Methods), likely by capturing disease-relevant genes with weak GWAS signal59. For example, ITGB7 was277

prioritized by scDRS for association with IBD (rank 11) but was missed by MAGMA (rank 10565, MAGMA P =0.54);278

ITGB7 impacts IBD via controlling lymphocyte homing to the gut and is a drug target for IBD (using vedolizumab)60, 61.279

In addition, JAK1 was prioritized by scDRS for association with RA (rank 358) but was missed by MAGMA (rank 5228,280

MAGMA P =0.26); JAK1 plays a role in regulating immune cell activation and is a drug target for RA (using tofacitinib,281

baricitinib, or upadacitinib)62, 63.282

Additional secondary analyses are reported in the in Supp. Note, including replication results in 2 human scRNA-seq283

data sets51, 64 (Supp. Table 23), comparison to cluster-level LDSC-SEG analysis (Supp. Fig. 24), and additional results on284

prioritization of disease-relevant genes (Supp. Fig. 25, Supp. Table 21).285

Heterogeneous subpopulations of neurons associated with brain-related diseases and traits286

We sought to further understand the heterogeneity across neurons (in the non-myeloid brain tissue) in the TMS FACS data287

(484 cells labeled as “neuron”) in association with brain-related diseases and traits (Fig. 3). We considered 7 brain-related288

diseases and traits: SCZ, MDD, BP, neuroticism (NRT), ECOL, BMI, Smoking (Supp. Table 1); we also considered height as a289
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negative control trait. While these traits were broadly associated with neurons, pairwise scDRS disease score correlations were290

moderate across all TMS FACS cells (average of 0.44; Supp. Fig. 22, Supp. Table 19); there were also notable differences in291

associated brain cell populations, e.g., oligodendrocytes produced stronger associations for SCZ than for Smoking (Supp. Fig.292

26). The TMS FACS data includes a partition of neurons into four brain subtissues (cerebellum, cortex, hippocampus, and293

striatum), but significant heterogeneity remained when we stratified our heterogeneity analyses by subtissue (Supp. Fig. 27).294

Since the TMS FACS data has limited coverage of neuronal subtypes, we focused our subsequent analyses on a separate295

mouse brain scRNA-seq data set (Zeisel & Muñoz-Manchado et al.65; 3,005 cells), which has better coverage of neuronal296

subtypes and has been analyzed at cell type level in several previous genetic studies8, 26, 66. We first investigated cell type-trait297

associations using scDRS, which associated several neuronal subtypes (CA1 pyramidal neurons, SS pyramidal neurons, and298

interneurons) with the 7 brain-related traits (Supp. Fig. 28A, Supp. Table 24), consistent with previous genetic studies8, 26, 66.299

We focused on the CA1 pyramidal neurons from the hippocampus (827 cells), which exhibited the strongest within-cell type300

heterogeneity (FDR<0.005 for all 7 brain traits, MC test; Supp. Table 24). Individual cell-trait associations for SCZ are301

reported in Fig. 5A (results for all 7 brain-related traits in Supp. Fig. 28B). We observed a continuous gradient of CA1302

pyramidal neuron-SCZ associations, with similar results for other traits.303

We investigated whether the heterogeneity observed in Fig. 5A was correlated with spatial location; we hypothesized that304

such a correlation might exist because of the known location-specific functions of hippocampal neurons17, 67. We inferred305

spatial coordinates of the CA1 pyramidal neurons along the natural CA1 spatial axes68 (dorsal-ventral long axis, proximal-distal306

transverse axis, and superficial-deep radial axis) for each cell in terms of continuous individual cell-level scores for these 6307

spatial regions by applying scDRS to published spatial signature gene sets (instead of MAGMA putative disease gene sets;308

Supp. Fig. 28C, Supp. Table 10; Methods). We verified that this procedure produced spatial scores significantly correlated with309

annotated spatial coordinates in independent mouse and human data sets69, 70 (Supp. Fig. 29). The inferred spatial scores for310

the long (dorsal, ventral) and transverse (proximal, distal) axes varied along the top two UMAP axes, providing visual evidence311

of stronger neuron-SCZ associations in dorsal and proximal regions (Fig. 5A, Supp. Fig. 28).312

We used the results of scDRS for individual cells to assess whether the inferred spatial scores for each of the 6 spatial regions313

(dorsal/ventral/proximal/distal/superficial/deep) were correlated to the scDRS disease scores for each of the 7 brain-related314

traits (and height, a negative control trait) across CA1 pyramidal neurons (Methods). Results are reported in Fig. 5B (for the315

proximal region, which had the strongest associations), Supp. Fig. 30, and Supp. Table 25. We determined that the proximal316

score was strongly associated with all 7 brain-related traits (all P <0.002, MC test; 15%-29% of scDRS disease score variance317

explained by proximal score; P =0.006 for height), suggesting proximal CA1 pyramidal neurons may be more relevant to these318

brain-related traits (instead of distal CA1 pyramidal neurons). The association between the proximal region and brain-related319

traits is consistent with the fact that the proximal region of the hippocampus receives synaptic inputs in the perforant pathway,320

which is the main input source of the hippocampus71, 72.321

We reapplied scDRS to 3 additional mouse single-cell data sets69, 73, 74 and 3 human single-cell data sets70, 75, 76 (Supp.322

Table 2), computing both spatial scores and disease scores for each cell as above. Results are reported in Supp. Fig. 30. We323

determined that the proximal score was consistently associated with the 7 brain-related traits across these 7 data sets (while the324

distal score was consistently non-associated). For the long (dorsal-ventral) and radial (superficial-deep) axes, while the dorsal325

and deep scores were consistently associated with the 7 brain-related traits across the 7 data sets, the corresponding ventral and326

superficial scores were consistently associated across the 3 human data sets but consistently non-associated across the 4 mouse327

data sets, possibly due to differences in brain biology between human and mouse67, 77.328

Heterogeneous subpopulations of hepatocytes associated with metabolic traits329

We sought to further understand the heterogeneity across hepatocytes (in the liver) in the TMS FACS data in their association330

with metabolic traits (Fig. 3). Since the original study clustered all cells from the liver together19 (limiting the resolution for331

distinguishing cell states within hepatocytes), we reclustered the hepatocytes alone, resulting in 6 clusters (1,102 cells; Fig.332

5C; Methods). We considered 9 metabolic traits: TG, high-density lipoprotein (HDL), low-density lipoprotein (LDL), total333

cholesterol (TC), TST, alanine aminotransferase (ALT), alkaline phosphatase (ALP), sex hormone-binding globulin (SHBG),334

and total bilirubin (TBIL) (Supp. Table 1); we also considered height as a negative control trait.335

We focused on individual cells associated with TG, a representative metabolic trait (Fig. 5C; results for the other 8 metabolic336

traits and height in Supp. Fig. 31). The 530 TG-associated cells (FDR<0.1) formed subpopulations of 5 of the 6 hepatocyte337

clusters; we characterized these subpopulations based on ploidy level (number of sets of chromosomes in a cell) and zonation338

(pericentral/mid-lobule/periportal spatial location in the liver lobule), which have been extensively investigated in previous339

studies of hepatocyte heterogeneity78–80. We inferred the ploidy level and zonation for each individual cell in terms of a340

polyploidy score, a pericentral score, and a periportal score by applying scDRS to published polyploidy/zonation signature gene341

sets81–83 (instead of MAGMA putative disease gene sets; Supp. Fig. 32; Methods); we validated these inferred scores using342

expression signatures and independent data sets with experimentally determined annotations of ploidy level82 and zonation83
343
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(Supp. Note). The inferred ploidy level and zonation varied across clusters, providing visual evidence of stronger cell-TG344

associations in high-ploidy clusters (clusters 1,2), particularly the periportal high-ploidy cluster (cluster 2; Fig. 5C). We further345

compared the associations between the 9 metabolic traits. While these traits were broadly associated with hepatocytes, pairwise346

scDRS disease score correlations were moderate across all TMS FACS cells (average of 0.36; Supp. Fig. 22, Supp. Table 19);347

however, there were no notable differences in the associated hepatocyte subpopulations across traits (Supp. Fig. 33).348

We used the results of scDRS for individual cells to assess whether the inferred polyploidy, pericenteral and periportal349

scores were correlated to the scDRS disease score for each of the 9 metabolic traits (and height, a negative control trait)350

across hepatocytes; we jointly regressed the scDRS disease score for each trait on the polyploidy score, pericentral score,351

and periportal score (because the polyploidy score was positively correlated with the other 2 scores; Methods). Results are352

reported in Fig. 5D (for the polyploidy score which had the strongest associations), Supp. Fig. 34 and Supp. Table 26. The353

polyploidy, pericentral, and periportal scores jointly explained 42%-62% of variance of the scDRS disease scores across the 9354

metabolic traits. We determined that the polyploidy score was strongly associated with all 9 metabolic traits (all P <0.005355

except P =0.006 for HDL and P =0.007 for LDL, MC test; P =0.63 for height), suggesting that high-ploidy hepatocytes may356

be more relevant to these metabolic traits. The association between ploidy level and metabolic traits is consistent with previous357

findings that ploidy levels are associated with changes in the expression level of genes for metabolic processes such as de novo358

lipid biosynthesis and glycolysis80, 81, and supports the hypothesis that liver functions are enhanced in polyploid hepatocytes80.359

In addition, the periportal score was associated with the 9 metabolic traits (P <0.005 for TC, TST, ALP, MC test; all P <0.05360

except P =0.24 for TBIL; P =0.24 for height). While the pericentral score was not significantly associated with these traits in361

the TMS FACS data, we detected significant associations across multiple other data sets (see below). These results suggest that362

these metabolic traits are impacted by complex processes involving both pericentral and periportal hepatocytes.363

The association between hepatocyte ploidy level and metabolic traits may imply that there are metabolic trait GWAS364

variants associated with ploidy (ploidyQTL). This is supported by the excess overlap between the metabolic trait GWAS gene365

sets and a polyploidy signature gene set81, but is difficult to assess directly as genetic studies of ploidy level have largely366

focused on organisms other than humans84. Further details are provided in the Supp. Note, including results on 5 additional367

mouse and human data sets19, 82, 83, 85, 86 and validation of the polyploidy score using independent signature gene sets81 (Supp.368

Fig. 34 and Supp. Table 27).369

Discussion370

We have introduced scDRS, a method that leverages polygenic GWAS signals to associate individual cells in scRNA-seq data371

with diseases and complex traits; we showed via extensive simulations that scDRS is well-calibrated and powerful. We applied372

scDRS to 74 diseases and complex traits in conjunction with 16 scRNA-seq data sets and detected extensive heterogeneity in373

disease associations of individual cells within classical cell types, including subpopulations of T cells associated with IBD374

partially characterized by their effector-like states, subpopulations of neurons associated with SCZ partially characterized by375

their spatial location, and subpopulations of hepatocytes associated with TG partially characterized by their higher ploidy levels.376

These findings have improved our understanding of these diseases/traits, and may prove useful for targeting the relevant cell377

populations for in vitro experiments to elucidate the molecular mechanisms through which GWAS risk variants impact disease.378

To ensure a reasonable number of scDRS discoveries, we recommend using GWAS data with a heritability z-score greater than379

5, or sample size greater than 100K if heritability z-score is not available (although less stringent thresholds can be used for less380

polygenic traits) (Supp. Fig. 35). We also recommend using single-cell RNA-seq data with a diverse set of cells potentially381

relevant to disease, although a smaller number of cells should not affect the scDRS power. However, scDRS will not produce382

false positives for less ideal GWAS or single-cell data sets.383

scDRS does not rely on annotations of classical cell types based on known marker genes, a standard approach for integrating384

GWAS with scRNA-seq data6–8 (and bulk gene expression data9–12; see Supp. Note), because the scDRS analysis uses the385

gene expression levels measured in individual cells. Thus, scDRS is particularly well-suited for analyzing data sets that are less386

well-annotated (e.g., large-scale cell atlases19, 25) or contain less well-studied cell populations. In addition, scDRS characterizes387

heterogeneity across individual cells in their associations to common diseases and complex traits, providing a unique perspective388

relative to studies of single-cell transcriptional heterogeneity focusing on scRNA-seq data alone13–16, 18, 87, 88; it also improves389

upon recent methods for scoring individual cells with respect to a given gene set (e.g., Seurat15, Vision16, and VAM18) by390

providing robust individual cell-level association p-values and higher detection power (see Supp. Note).391

We have demonstrated the value of scDRS in associating individual cells to disease; assessing the heterogeneity across392

individual cells within predefined cell types in their association to disease; identifying cell-level variables partially characterizing393

the individual cells that are associated to disease; and broadly associating predefined cell types to disease. We anticipate that394

application of scDRS to future scRNA-seq/snRNA-seq and GWAS data sets will continue to further these goals.395

We note several limitations and future directions of our work. First, identifying a statistical correlation between individual396

cells (or cell types) and disease does not imply causality, but may instead reflect indirect tagging of causal cells/cell types,397
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analogous to previous work6, 7, 12, 20. However, even in such cases, the implicated cells/cell types are likely to be closely398

biologically related to the causal cells/cell types, based on their similar expression patterns. Second, we identified putative399

disease genes using MAGMA, a widely used method20. However, scDRS can be applied to any disease gene sets and gene400

weights, and it may be possible to construct more accurate sets of disease genes by incorporating other types of data, such as401

eQTL data89, protein-protein interaction data90 or functionally informed SNP-to-gene linking strategies91; we caution that402

such efforts must strive to avoid biases towards well-studied tissues. Third, since results of scDRS depend on the set of cells403

(and cell types) in the data set, it is appropriate to interpret the results with respect to other cells (or cell types) in the data set.404

We have implemented an option to adjust for cell type proportions (or any cell group annotations) so that the results will only405

depend on the set of cell types in the data set (but not the number of cells of each cell type), analogous to other disease-cell type406

association methods7, 8, 12; this option is recommended only for extremely unbalanced data sets (see Results and Methods).407

Fourth, while we have primarily focused on the associations involving a single disease/trait, further investigation of differences408

between diseases/traits within the same category is an important future direction. Please see more discussions, including use of409

mouse vs. human single-cell data, in Supp. Note. Despite all these limitations, scDRS is a powerful method for distinguishing410

disease associations of individual cells in single-cell RNA-seq data.411

Methods412

scDRS method413

We consider a scRNA-seq data set with ncell cells (not cell types) and ngene genes. We denote the cell-gene matrix as414

X 2 Rncell⇥ngene , where Xcg represents the expression level of cell c and gene g. We assume that X is size-factor-normalized415

(e.g., 10,000 counts per cell) and log-transformed (log(x+1)) from the original raw count matrix21. We regress the covariates416

out from the normalized data21 (with a constant term in the regressors to center the data), before adding the original log417

mean expression of each gene back to the residual data. Such a procedure preserves the mean-variance relationship in the418

covariate-corrected data, which is needed for estimating the gene-specific technical noise levels (see Supp. Note). Please see419

Supp. Fig. 2 for distributions of gene-level statistics for the TMS FACS, TMS droplet, and TS FACS data (gene-level statistics420

for all 16 data sets are reported in Supp. Table 3). The technical noise levels are moderately correlated across genes between421

the 16 data sets (avg. cor. 0.34) and are highly correlated between data sets with similar cell type compositions (e.g., 0.74422

between TMS FACS and TS FACS; Supp. Table 4).423

The scDRS algorithm is described in Box 1. Given a disease GWAS and an scRNA-seq data set, scDRS computes a424

p-value for each individual cell for association with the disease. scDRS also outputs cell-level normalized disease scores and B425

sets of normalized control scores (default B =1,000) that can be used for data visualization and Monte Carlo-based statistical426

inference (see Downstream applications and MC test). scDRS consists of three steps. First, scDRS constructs a set of putative427

disease genes from the GWAS summary statistics. Second, scDRS computes a raw disease score and B MC samples of raw428

control scores for each cell. Third, after gene set-wise and cell-wise normalization, scDRS computes an association p-value for429

each cell by comparing its normalized disease score to the empirical distribution of the pooled normalized control scores across430

all control gene sets and all cells. These steps are detailed below.431

Step 1: Constructing disease gene set. We use MAGMA20 to compute gene-level association p-values from disease GWAS432

summary statistics (Box 1, step 1). We use a reference panel based on individuals of European ancestry in the 1000 Genomes433

Project92. We use a 10-kb window around the gene body to map SNPs to genes. We select the top 1,000 genes based on434

MAGMA p-values as putative disease genes and use their MAGMA z-scores as the GWAS gene weights. We denote the disease435

gene set as G⇢ {1,2, · · · ,ngene} and their GWAS gene weights as {wg}g2G. Alternative parameter choices and methods for436

constructing putative disease gene sets are considered below (see Alternative versions of scDRS method).437

Step 2: Computing disease scores and control scores. We construct B sets of control genes Gctrl
1 , . . . ,Gctrl

B by randomly438

selecting genes matching the mean expression and expression variance of the disease genes calculated across all cells in the439

data set (Box 1, step 2a). Specifically, each control gene set Gctrl
b has the same size as the disease gene set G and is constructed440

by first dividing all genes into 20⇥20 equal-sized mean-variance bins and then for each gene in the disease gene set, randomly441

sampling a control gene from the same bin (containing the disease genes) without replacement. Next, we estimate the technical442

noise level for each gene s2
tech,g in the scRNA-seq data, the part of the variance due to sequencing noise, using a procedure443

similar to previous works18, 21 by modeling the mean-variance relationship across genes; we further compute the raw disease444

score and raw control scores for each cell as weighted average expression of genes in the corresponding gene set (Box 1,445

steps 2b-2c, Supp. Note). The weight for gene g is proportional to wgs�1
tech,g (capped at 10 for both the MAGMA z-score446

wg and single-cell weight s�1
tech,g), which upweights genes with stronger GWAS associations and downweights genes with447

higher levels of technical noise to increase detection power. The single-cell weight s�1
tech,g was adapted from VAM18, where the448
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Box 1 Single-cell disease relevance score (scDRS)
Input: Disease GWAS summary statistics (or putative disease gene set G with GWAS gene weights {wg}g2G), scRNA-seq data
X 2 Rncell⇥ngene .
Parameters: Number of MC samples of control gene sets B (default 1,000).

1: Construct putative disease gene set
a: Construct putative disease gene set G ⇢ {1,2, · · · ,ngene} with GWAS gene weights {wg}g2G from GWAS summary
statistics using MAGMA.

2: Compute disease scores and control scores
a: Sample B sets of control genes Gctrl

1 , . . . ,Gctrl
B matching mean expression and expression variance of disease genes.

b: Estimate gene-specific technical noise level s2
tech,g, 8g 2 {1, · · · ,ngene}.

c: Compute raw disease score and B raw control scores for each cell c = 1, · · · ,ncell,

raw disease score: sc =
Âg2G wgs�1

tech,gXcg

Âg2G wgs�1
tech,g

, B raw control scores: sctrl
cb =

Âg2Gctrl
b

wgs�1
tech,gXcg

Âg2Gctrl
b

wgs�1
tech,g

, 8 b 2 {1, · · · ,B}

(1)

3: Compute disease association p-values
a: First gene set alignment by mean and variance. Let s2

g be the expression variance of gene g. For each cell c,

sc sc�
1

ncell

ncell

Â
c0=1

sc0 , sctrl
cb  

 
sctrl

cb �
1

ncell

ncell

Â
c0=1

sctrl
c0b

!
Âg2Gctrl

b
wgs�1

tech,g

Âg2G wgs�1
tech,g

vuut Âg2G w2
gs�2

tech,gs2
g

Âg2Gctrl
b

w2
gs�2

tech,gs2
g
, 8 b 2 {1, · · · ,B}

(2)

b: Cell-wise standardization for each cell c by the mean µ̂ctrl
c and variance ŝ ctrl

c of control scores sctrl
c1 , · · · ,sctrl

cB of that cell,

sc (sc� µ̂ctrl
c )/ŝ ctrl

c , sctrl
cb  (sctrl

cb � µ̂ctrl
c )/ŝ ctrl

c , 8 b 2 {1, · · · ,B} (3)

c: Second gene set alignment by mean. For each cell c,

sc sc�
1

ncell

ncell

Â
c0=1

sc0 , sctrl
cb  sctrl

cb �
1

ncell

ncell

Â
c0=1

sctrl
c0b , 8 b 2 {1, · · · ,B} (4)

d: Compute cell-level p-values based on the empirical distribution of the pooled normalized control scores for each cell c,

pc =

"
1+

ncell

Â
c0=1

B

Â
b=1

I(sc  sctrl
c0b )

#.
(1+ncellB) (5)

Output: cell-level p-values pc, normalized disease scores sc, and normalized control scores sctrl
c1 , · · · ,sctrl

cB .

cell-specific score is proportional to Âg2G s�2
tech,gX2

cg and was shown to have a superior classification accuracy. Alternative cell449

scores (instead of the weighted average score) are evaluated below (see Alternative versions of scDRS method).450

Step 3: Computing disease-association p-values. We first describe the alternative distribution that scDRS aims to detect.451

Since the control genes match the mean expression and expression variance of the disease genes across cells, it can be shown452

that the raw disease score has the same mean but a higher variance compared to each set of raw control scores; the higher453

variance is because the disease genes are more positively correlated with each other due to co-expression in the associated cell454

population (Supp. Fig. 1A-C). As a result, the disease-relevant cells, with high expression of the disease genes, are expected to455

have larger raw disease scores than raw control scores. We caution that the disease genes may be more positively correlated456

due to other reasons such as being physically close to each other, but scDRS will produce much weaker signals in these cases457

(Supp. Fig. 5). Please see more details in Supp. Note.458

The first gene set alignment (Box 1, step 3a) corrects for the potential mismatch of control gene sets by first centering the
scores and then aligning the variance level for each gene set. The variance of the raw disease score is estimated as Âg2G w̃2

gs2
g

and similarly for the raw control scores, with s2
g being the expression variance of gene g and w̃g = wgs�1

tech,g/Âg2G wgs�1
tech,g the
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corresponding weight; this heuristic assumes independence of the genes (or different gene sets have similar levels of gene-gene
correlation), and consequently avoids downweighting the raw disease score due to the higher correlation between disease genes
(Supp. Fig. 1D, Supp. Note). After adjusting the control gene sets, the gold standard MC p-values, based on comparison to B
MC samples of raw control scores of the same cell, can be written as22

pMC
c =

1+ÂB
b=1 I(sc  sctrl

cb )

1+B
, 8 c 2 {1, · · · ,ncell}. (6)

This finite-sample MC p-value is a conservative estimate of the ideal MC p-value obtained via an infinite number of MC459

samples22. However, as Eq. (6) suggests, an MC test with B MC samples can only produce an MC p-value no smaller than460

1/(1+B). Instead of using a large number of MC samples which is computationally intensive, we approximate the ideal MC461

p-value by pooling the control scores across cells. Specifically, we first align the control score distributions (across the B462

control gene sets, for each cell) by matching their means and variances, followed by re-centering the mean scores of different463

gene sets (Box 1, steps 3b-3c, Supp. Fig. 1E,F, Supp. Note). This procedure produces a normalized disease score and B464

normalized control scores for each cell. Finally, we compute the scDRS p-values based on the empirical distribution of the465

pooled normalized control scores across all control gene sets and all cells (Box 1, step 3d). The pooling procedure assumes466

that the raw control score distributions (across the B control gene sets, for each cell) are from the same location-scale family467

(e.g., the family of all normal distributions or that of all student’s t-distributions) such that they can be aligned by matching468

the first two moments; it is a reasonable assumption when the number of disease genes is neither too small nor too large (e.g.,469

50 < |G|< 20%ngene), where the control score distributions are close to normal distributions by the central limit theorem (Supp.470

Note). As shown in Supp. Fig. 1G-I, the scDRS p-values with B =1,000 is indeed able to well approximate the MC p-values471

obtained using a much larger number of MC samples (B =20,000).472

Downstream applications and MC test473

scDRS outputs individual cell-level p-values, (normalized) disease scores, and (normalized) control scores that can be used
for a wide range of downstream applications: assessing association between a given cell type and a given disease; assessing
heterogeneity in association with a given disease across a given set of cells; and assessing association between a cell-level
variable and a given disease across a given set of cells. We use a unified MC test for these 3 analyses based on the disease
score and control scores. Specifically, let t be the test statistic computed from the disease score of the given set of cells (the 3
analyses differ by the test statistics they use) and let tctrl

1 , · · · , tctrl
B be the same test statistics computed from the B sets of control

scores of the same set of cells. The MC p-value can be written as

pMC =
1+ÂB

b=1 I(t  tctrl
b )

1+B
. (7)

The MC test avoids the assumption that the cells are independent—a strong assumption in scRNA-seq analyses, e.g., when474

analyzing cells in the same cluster that are dependent due to the clustering process. We can also compute an MC z-score475

as zMC =
⇥
t�Mean

�
{tctrl

b }B
b=1
�⇤�

SD
�
{tctrl

b }B
b=1
�
; this MC z-score is not restricted by the MC limit of 1/(1+B) but relies476

the assumption that the control test statistics {tctrl
b }B

b=1 approximately follow a normal distribution. Below, we describe the477

test statistics used by the 3 analyses listed above. We note that the MC test can in principle be extended to any analysis that478

computes a test statistic from the disease scores of a set of cells.479

Assessing association between a given cell type and a given disease. We use the top 5% quantile of the disease scores480

of cells from the given cell type as the test statistic. This test statistic is robust to annotation outliers, e.g., a few misannotated481

but highly significant cells. One can also use other test statistics such as the top 1% quantile or the maximum.482

Assessing heterogeneity in association with a given disease across a given set of cells. We use Geary’s C16, 93 as the
test statistic. Geary’s C measures the spatial autocorrelation of the disease score across a set of cells (e.g., cells from the same
cell type or cell cluster) with respect to a cell-cell similarity matrix. Given a set of n cells, the corresponding disease scores
s1, · · · ,sn, and the cell-cell similarity matrix W 2 Rn⇥n, Geary’s C is calculated as

C =
(n�1)Âi, j Wi j(si� s j)2

2(Âi, j Wi j)Âi(si� s̄)2 , (8)

where s̄ = 1
n Ân

i=1 si. We use the cell-cell connectivity matrix for the similarity matrix like previous works16, which corresponds483

to the “connectivities” output from the scanpy function “scanpy.pp.neighbors”94. A value significantly lower than 1 indicates484

positive spatial autocorrelation, suggesting cells close to each other on the similarity matrix have similar disease scores, forming485

subclusters of cells with similar levels of disease association. This indicates a high level of disease association heterogeneity486

across the given set of cells. We use this test to assess within-cell type disease association heterogeneity and within-cluster487

association disease heterogeneity.488
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Assessing association between a cell-level variable and a given disease across a given set of cells. For associating a489

single cell-level variable with disease, we use the Pearson’s correlation between the cell-level variable and the disease score490

across the given set of cells as the test statistic. For jointly associating multiple cell-level variables with disease, we use the491

regression t-statistic as the test statistic, obtained from jointly regressing the disease score against the cell-level variables.492

Computational cost493

Both the computation time and memory use of scDRS scale linearly with the number of cells and the number of control494

gene sets (default 1,000). We performed benchmark experiments by subsampling cells from the Nathan et al. data64 and,495

as expected, observed a linear relationship between the number of cells and both the computation time and memory usage496

(Supp. Fig. 3). scDRS required 1.6 hours of computation time and 30GB of memory to process 500K cells under the default497

setting (1,000 control gene sets); it is estimated to take around 3 hours and 60GB of memory to run scDRS on a data set with498

a million cells and a similar level of sparsity. Of note, in this experiment, the memory usage is only 1.5X of the theoretical499

lower limit, namely 18.9G consisting of 11.4G for loading the data in high precision (64-bit float) and 7.5G for computing the500

1,000 sets of raw and normalized control scores for each cell (2⇥500,089⇥1,000⇥8B = 7.5G); the memory usage is 3X of501

the theoretical lower limit for low-precision computation. Therefore, scDRS is reasonably efficient in memory usage. Based502

on this benchmark experiment, we also suggest an empirical formula for estimating the memory usage (in the unit of GB) as503

3⇥ (low_precision_data_size+ncellB⇥8/10243).504

Simulations505

We performed simulations on a data set with 10,000 cells subsampled from the TMS FACS data. In null simulations, we506

randomly selected putative disease genes from a set of non-informative genes. We considered four numbers of putative disease507

genes (100, 500, 1,000, or 2,000) and four types of genes to sample from: (1) the set of all genes, (2) the set of top 25% genes508

with high mean expression, (3) the set of top 25% genes with high expression variance, (4) the set of top 25% overdispersed509

genes, where the level of overdispersion is calculated as the difference between the actual variance and the estimated technical510

variance in the log scale data. For the default version of scDRS, we simulated GWAS gene weights by first randomly selecting511

a disease (out of the 74 diseases/traits) and then randomly permuting the top MAGMA z-scores from the selected disease. We512

did not simulate gene-specific technical noise-based single-cell weights because these weights were inherent to the single-cell513

data. For the MC test for cell type-disease association, we used the top 5% quantile as the test statistic and computed the514

MC p-values for each cell type and each set of random putative disease genes by comparing the test statistic from the disease515

scores to those computed from the 1,000 sets of control scores (see Monte-Carlo-based downstream analyses above). In causal516

simulations, we randomly selected 1,000 causal disease genes, randomly selected 500 of the 10,000 cells as causal cells and517

artificially perturbed their expression levels to be higher (at various effect sizes) across the 1,000 causal disease genes, and518

randomly selected 1,000 putative disease genes (provided as input to scDRS and other methods) with various levels of overlap519

with the 1,000 causal disease genes. Here, the effect size corresponds to the fold change of expression of the causal genes in520

the causal cells (multiplicative in the original count space and additive in the log space). We performed three sets of causal521

simulations: (1) varying effect size from 5% to 50% while fixing 25% overlap, (2) varying level of overlap from 5% to 50%522

while fixing 25% effect size, (3) assigning the 528 B cells in the subsampled data to be causal (instead of the 500 randomly523

selected cells; varying effect size while fixing 25% overlap). The FDR and power reported in Fig. 2B and Supp. Fig. 6 are based524

on applying the B-H procedure95 to all cells at nominal FDR=0.1. All experiments were repeated 100 times and confidence525

intervals were computed based on the normal distribution. We considered three methods for comparison, namely Seurat15
526

(“score_genes” as implemented in scanpy94), Vision16, and VAM18. To our knowledge, VAM is the only published cell-scoring527

method that provides cell-level association p-values. We chose to include Seurat due to its wide use and standardized its output528

cell-level scores (mean 0 and SD 1) before computing the cell-level p-values based on the standard normal distribution. We529

chose to include Vision because its outputs are nominal cell-level z-scores and can be easily converted to p-values; we again530

added the standardization step because otherwise the results of Vision were highly unstable. We did not include other methods531

like PAGODA14 or AUCell14 because it is not straightforward to convert their outputs to cell-level association p-values and also532

because the z-scoring methods (e.g., Vision) outperformed other methods in a comprehensive evaluation in Frost et al.18
533

GWAS summary statistic data sets534

We analyzed GWAS summary statistics of 74 diseases and complex traits from the UK Biobank96 (47 of the 74 diseases/traits535

with average N=415K) and other publicly available sources32, 97–118 (27 of the 74 diseases/traits with average N=225K); average536

N=346K for all 74 diseases/traits; Supp. Table 1). All diseases and traits were well-powered (heritability z-score>5), except537

celiac disease (Celiac), systemic lupus erythematosus (SLE), multiple sclerosis (MS), subject well being (SWB), and type 1538

diabetes (T1D), which were included due to their clinical importance. The major histocompatibility complex (MHC) region539

was removed from all analyses because of its unusual LD and genetic architecture119.540
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scRNA-seq data sets541

We analyzed 16 scRNA-seq or snRNA-seq data sets (Supp. Table 2). We included 3 atlas-level data sets (TMS FACS, TMS542

droplet, and TS FACS) to broadly associate diverse cell types and cell populations to disease; these 3 data sets cover different543

species (mouse and human) and different technologies (FACS and droplet), which allows us to assess the robustness of our544

results across different species and technologies. We included another 13 data sets that focus on a single tissue and contain545

finer-grained annotations of cell types and cell states. Notably, several of these data sets contain experimentally determined546

annotations which allow us to better validate our results, including Cano-Gamez & Soskic et al. data51 containing experimentally547

perturbed CD4+ T cell states, Nathan et al. data64 containing T cells states determined by profiling surface markers using548

CITE-seq, Habib & Li et al. data69 containing experimentally determined spatial locations for CA1 pyramidal neurons based on549

ISH of spatial landmark genes, Ayhan et al. data70 containing experimentally determined spatial locations for CA1 pyramidal550

neurons (dorsal and ventral) based on surgical resection, and Richter & Deligiannis et al. data82 containing experimentally551

determined hepatocyte ploidy levels based on Hoechst staining.552

Adjusting for cell type proportions553

scDRS can additionally take a set of cell type annotations (or any cell group annotations) and adjust for cell type proportions554

by inversely weighting cells by the number of cells in the corresponding cell type (weights were normalized to have mean 1 and555

were constrained between 0.1 and 10). This version of scDRS generated highly consistent as the default version in the TMS556

FACS data (median of 0.97 across 74 traits for the disease score correlation computed across all TMS FACS cells) and was557

well-calibrated in null simulations (Supp. Fig. 4). We recommend the use of this new option only for extremely unbalanced558

data sets, for 3 reasons. First, it produced consistent results for relatively balanced data sets such as TMS FACS. Second, it559

requires cell type annotations where the cell types have a similar level of granularity (e.g., B cells vs. T cells instead of B cells560

vs. a subtype of CD4+ Th17 cells), which is not always available. For example, the TMS cell type annotation contains both561

high-level cell types like T cells and more fine-grained cell types like Tregs. Third, the cell type annotation can be defined with562

different levels of granularity, such as broader types like immune cells or very specific types like CD4+ Th17 cells, and it is563

unclear how to choose the right level of granularity for a given data set.564

Comparison with other cell type-level association methods565

We briefly discuss the similarities and differences between scDRS and 3 cell type-level association methods that also make use566

of MAGMA: the MAGMA-based method in Skene et al.26, Watanabe et al.7, and the MAGMA-based method in Bryois et567

al.8 All statements about scDRS apply to both individual cell level-analysis and cell type-level analysis. First, all 4 methods568

focus on specifically-expressed genes in a cell type (or cell) rather than merely highly-expressed genes. Second, all 4 methods569

produce results that depend on cell types (cells) present in the data set, so it is important to interpret the results with respect to570

other cell types (cells) in the data set. Third, scDRS and the method of Watanabe et al. depend on different scaling factors571

for size factor normalization (while the other 2 methods do not). However, we determined this step is crucial for removing572

confounding effects, and scDRS is not sensitive to different choices of scaling factors (Results). Fourth, the other 3 methods573

use linear regression to associate MAGMA z-scores with cell type features across genes (cell type expression level in Watanabe574

et al.; cell type specificity in Skene et al. and Bryois et al.). scDRS can be viewed as a non-parametric alternative to these575

methods, employing a stratified permutation test that associates MAGMA z-scores for top genes with expression levels for a576

given cell by permuting genes within each level of expression mean and variance. Thus, unlike the other 3 methods, scDRS577

does not rely on a linearity assumption. Fifth, scDRS may be more powerful when there is within-cell type heterogeneity in578

association to disease. Further details are provided in the Supp. Note.579

Alternative versions of scDRS method580

We considered alternative versions of scDRS, involving (1) other choices of MAGMA gene window size, (2) other strategies581

for selecting putative disease genes, (3) other methods for choosing gene weights for the selected putative disease genes, (4) an582

alternative overdispersion score (instead of weighted average), and (5) other methods for constructing putative disease genes.583

We considered 3 MAGMA gene window sizes for mapping SNPs to genes: 0 kb, 10 kb (default), and 50 kb. We considered584

6 strategies for selecting putative disease genes: top 100, top 500, top 1,000 (default), top 2,000, FWER<5%, FDR<1%585

(multiple testing correction performed based on MAGMA p-values for each trait separately; number of top genes constrained586

between 100 and 2,000 for the latter two methods). We considered 4 methods for choosing gene weights for the selected587

putative disease genes: no weights, GWAS z-score weights (proportional to MAGMA z-score capped at 10), single-cell VS588

weights (proportional to reciprocal of technical noise level s�1
tech,g capped at 10), and using both sets of weights (default). We589

evaluated the performance based on a curated set of 20 traits with expected and unexpected disease-critical cell types; we590

caution that some cell types labeled as unexpected may still be relevant to disease despite not being implicated in the current591

literature (Supp. Fig. 12, Supp. Table 17). The default version of scDRS substantially outperformed all other versions except592

the version that uses the top 2,000 genes for the gene selection method. This latter version was not chosen as the default593
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because it was not significantly better than using the top 1,000 genes and scDRS was less well-calibrated for gene sets with594

2,000 genes.595

The overdispersion score is defined as

sc =
Âg2G

h
(Xcg�µg)2�s2

tech,g

i
/s2

tech,g

Âg2G 1/s2
tech,g

, (9)

where µg and s2
tech,g are the average expression and technical noise level of gene g respectively. The overdispersion score tests596

for both overexpression and underexpression of the putative disease genes in the relevant cell population (unlike the weighted597

average score which only tests for overexpression of the disease genes). We compared the overdispersion score to two versions598

of scDRS that only tested for overexpression: the default version (GWAS+single-cell weights) and the unweighted score. We599

assessed the performance in terms of number of significant discoveries in TMS FACS across the 74 diseases (details in Supp.600

Fig. 14).601

We also discuss other methods for constructing putative disease genes. While we constructed putative disease genes using602

GWAS data and mapped SNPs to genes based on genomic locations, it may be possible to obtain a more accurate disease gene603

set by either incorporating data from other sources such as protein-protein interaction data90 or using a more sophisticated604

SNP-to-gene linking strategy91; exploring these approaches is an interesting future direction.605

Analysis of T cells and autoimmune diseases606

We collectively analyzed all T cells from the TMS FACS data (4,125 cells labeled as CD4+ a-b T cell, CD8+ a-b T cell,607

regulatory T cell, mature NK T cell, mature a-b T cell, or T cell in the TMS data; Supp. Table 5); the more general terms608

like “T cell” and “mature a-b T cell” were used for cells whose more specific identities were not clear. We processed the T609

cells following the standard procedure using scanpy94. First, we performed size factor normalization (10,000 counts per cell)610

and log transformation. Second, we selected highly variable genes and computed the batch-corrected PCA embedding using611

Harmony120, treating each mouse as a batch. Finally, we constructed KNN graphs and clustered the cells using the Leiden612

algorithm121 (resolution=0.7), followed by computing the UMAP embedding. We removed 376 cells either from small clusters613

(less than 100 cells) or whose identities are ambiguous, resulting in 3,769 cells. We annotated the clusters based on the major614

TMS cell types in the cluster; the label “mature a-b T cell” was omitted because a more specific TMS cell type label (e.g.,615

“CD8+ a-b T”) was available in the corresponding cluster. We considered cells from clusters 1-4 as clear CD4+ T cells (1,686616

cells) and cells from clusters 1, 2, 7-9 as clear CD8+ T cells (2,197 cells; the shared clusters 1 and 2 contain a mix of naive617

CD4+ and CD8+ T cells). We used diffusion pseudotime (DPT)52 to assign effectorness gradient for CD4+ and CD8+ T cells618

separately, where we used the leftmost cell in cluster 2 on the UMAP as the root cell (clearly naive T cell).619

To robustly annotate disease-associated T cell subpopulations, we performed 2 sets of automatic T cell subtype analyses:620

classification based on marker gene expression (details in Supp. Fig. 18) and automatic T cell states annotation using621

projecTILE42 (v2.0.2). The two sets of annotations were consistent for distinguishing effector vs. naive T cells and distinguishing622

CD4+ vs. CD8+ T cells, suggesting the results were overall consistent. Since the projecTILE reference contained a limited623

set of T cell subtypes (e.g., no Th2 or Th17 cells), we used the marker gene-based annotation for the main results. For the624

analysis of individual cells associated with IBD, we considered 4 major clusters of T cells with >25 IBD-associated cells625

(FDR<0.1). First, the subpopulation of 123 IBD-associated cells in cluster 3 (which consisted of 629 cells with TMS cell type626

labels “CD4+ a-b T” or “regulatory T”) were labeled as “Treg” as described in the main paper. Second, the 78 IBD-associated627

cells in cluster 4 (which consisted of 165 cells with TMS cell type label “CD4+ a-b T”) were labeled as “Th2/Treg-like” as628

described in the main paper. Their specifically expressed genes significantly overlapped with a KLRG1+ AREG+ effector-like629

Treg program43 characterized by high expression levels of IL1RL1 (ST2), KLRG1, and AREG (P =1.3⇥10�50, Fisher’s exact630

test; Supp. Fig. 20D), suggesting these cells had active functions for Treg differentiation, immunosuppression, and tissue631

repair43. Third, the 85 IBD-associated cells in cluster 5 (which consisted of 370 cells with TMS cell type label “T cell”) were632

labeled as “Th17-like” as described in the main paper. Their specifically expressed genes significantly overlapped with Th17633

signatures (P =2.0⇥10�6, Fisher’s exact test; Supp. Fig. 20C) and a Th17-like Treg program43 (P =1.9⇥10�24, Fisher’s634

exact test; Supp. Fig. 20D), suggesting Th17 proinflammatory functions. Finally, the 41 IBD-associated cells in cluster 9635

(consisting of 499 cells with TMS cell type label “CD8+ a-b T”) were labeled as “CD8+ effector-like” as described in the636

main paper. Their specifically expressed genes significantly overlapped with effector CD8+ T cell signatures (P =1.6⇥10�9,637

Fisher’s exact test; Supp. Fig. 20C), suggesting cytotoxic T cell functions. For the analysis of individual cells associated with638

HT, the putative identities of HT-associated cells in clusters 3,4,9 were similar to the putative identities of IBD-associated cells639

in the corresponding clusters. The 44 HT-associated cells in cluster 10 (consisting of 112 cells with TMS cell type label “T640

cell”) were labeled as “Proliferative” due to high expression of proliferation markers (Supp. Fig. 18,20B).641

We used MSigDB122, 123 (v7.1) to curate T cell signature gene sets, including naive CD4, memory CD4, effector CD4,642

naive CD8, memory CD8, effector CD8, Treg, Th1 (T helper 1), Th2 (T helper 2), and Th17 (T helper 17) signatures. For each643
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T cell signature gene set, we identified a set of relevant MSigDB gene sets (22-34, Supp. Table 9), followed by selecting the top644

100 most frequent genes in these MSigDB gene sets as the T cell signature genes; a gene was required to appear at least twice645

and genes appearing the same number of times were all included, resulting in 62 to 513 genes for the 10 T cell signature gene646

sets (Supp. Table 10). For gold-standard gene sets used in the analysis of disease gene prioritization, we curated 27 putative647

drug target gene sets from Open Targets57 (mapped to 27 of the 74 diseases/traits considered in the paper; Supp. Table 21); for648

a given disease, we selected all genes with drug score >0 (clinical trial phase 1 and above) and only considered diseases with at649

least 10 putative drug target genes. We curated 16 Mendelian diseases gene sets from Freund et al.58 (mapped to 45 of the 74650

diseases/traits considered in the paper; Supp. Table 21). For comparison of two gene sets, the p-value is based on Fisher’s exact651

test and excess overlap is defined as the ratio between the observed overlap of the two gene sets and the expected overlap (by652

chance). Of note, for a given query gene set with a fixed size and a fixed level of excess overlap with the reference gene set, the653

� log10 p-value increases with the size of the reference gene set; we report both excess overlap and � log10 p-value while using654

the former as our primary metric, which is more interpretable.655

Analysis of neurons and brain-related diseases/traits656

For the TMS FACS data, we focused on the 484 neurons (TMS label “neuron”, excluding cells with TMS label “medium657

spiny neuron” or “interneuron”). For the Zeisel & Muñoz-Manchado et al. data, we applied scDRS to all 3,005 cells and658

then focused on the 827 CA1 pyramidal neurons (“level1class” label “pyramidal CA1”). For inferring spatial coordinates,659

we curated differentially expressed genes for each of the 6 spatial regions (dorsal vs. ventral, ventral vs. dorsal, proximal vs.660

distal, distal vs. proximal, deep vs. superficial, and superficial vs. deep) using the gene expression data from Cembrowski661

et al.68 (GEO GSE67403; gene sets in Supp. Table 10). For each differential gene expression analysis, we selected genes662

based on FPKM>10 for the average expression in the enriched region (e.g., dorsal for the dorsal vs. ventral comparison),663

q-value<0.05, and log2(fold change)>2. We used scDRS and these signature gene sets to assign 6 spatial scores for each cell.664

For the regression analysis, we separately regressed the scDRS disease scores for each of the 7 brain-related traits (and height,665

a negative control trait) on each of the 6 spatial scores. We performed marginal regression instead of joint regression for these666

spatial scores because the inferred spatial scores for opposite regions on the same axis (e.g., dorsal vs. ventral) were highly667

collinear (strongly negatively correlated), and the inferred spatial scores for dorsal, proximal, and deep regions (which had668

strong marginal associations to diseases) had very low pairwise correlations (average |r|=0.10; Supp. Fig. 28D), suggesting669

these associations were independent. We reported correlation p-values (MC test) and variance explained for each of the 6670

spatial scores.671

Analysis of hepatocytes and metabolic traits672

We considered all hepatocytes in the TMS FACS data (1,162 cells) and reprocessed them following the same procedure as we673

did for the T cells. We further filtered out low-quality cells (mitochondrial proportion�0.3; likely to be apoptotic or lysing674

cells), resulting in 1,102 hepatocytes (Fig. 5C). We curated signature gene sets for ploidy level, zonation, and putative zonated675

pathways. We curated 4 sets of polyploidy signatures, including differentially expressed genes (DEGs) for partial hepatectomy676

(PH) vs. pre-PH81 (used for the polyploidy score), Cdk1 knockout (case) vs. control81, 4n vs. 2n hepatocytes82, large vs. small677

hepatocytes81. We curated 3 sets of diploidy signatures, including DEGs for pre-PH vs. PH81, control vs. Cdk1 knockout81,678

and 2n vs. 4n hepatocytes82. We curated signature gene sets for pericentral (CV) and periportal (PN) hepatocytes from Halpern679

et al.83. We curated gene sets for putative zonated pathways from MSigDB122, 123 (v7.1), including glycolysis (pericentral),680

bile acid production (pericentral), lipogenesis (pericentral), xenobiotic metabolism (pericentral), beta-oxidation (periportal),681

cholesterol biosynthesis (periportal), protein secretion (periportal), and gluconeogenesis (periportal). All signature gene sets682

are reported in Supp. Table 10. For the joint regression analysis of scDRS disease score on ploidy and zonation scores, we683

regressed the polyploidy score out of both the pericentral and periportal score before the joint regression because the ploidy684

level confounded both zonation scores. We performed joint regression instead of marginal regression here (unlike the regression685

analysis in the neuron section) because the polyploidy score was positively correlated with the pericentral and periportal scores686

(unlike the analysis in the neuron section where the 3 sets of scores had low correlations).687

Data availability688

We release our data at https://figshare.com/projects/Single-cell_Disease_Relevance_Score_scDRS_689

/118902 (instructions at https://github.com/martinjzhang/scDRS), including GWAS summary statistics of690

the 74 diseases/traits, TMS FACS scRNA-seq data, reprocessed TMS FACS data (for T cells and hepatocytes), MAGMA691

and gold standard gene sets, and scDRS results for TMS FACS (disease scores and control scores for the 74 diseases/traits).692

The 16 scRNA-seq data sets were obtained as follows. The TMS FACS data and TMS droplet data19 was downloaded693

from the official release https://figshare.com/articles/dataset/Processed_files_to_use_with_694

scanpy_/8273102. The TS FACS data25 was downloaded from the official release https://figshare.com/695
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articles/dataset/Tabula_Sapiens_release_1_0/14267219. The Cano-Gamez & Soskic et al. data51 was696

downloaded from https://www.opentargets.org/projects/effectorness. The Nathan et al. data64 was697

downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158769. The Zeisel &698

Muñoz-Manchado et al. data65 was downloaded from http://linnarssonlab.org/cortex/. The Zeisel et al.699

data73 was downloaded from http://mousebrain.org/downloads.html. The Habib & Li et al. data69 and700

Habib, Avraham-Davidi, & Basu et al. data75 were downloaded from https://singlecell.broadinstitute.org/701

single_cell. The Ayhan et al. data70 was downloaded from https://cells.ucsc.edu/human-hippo-axis/.702

The Yao et al. data74 was downloaded from https://assets.nemoarchive.org/dat-jb2f34y. The Zhong et703

al. data76 was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119212.704

The Aizarani et al. data86 was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=705

GSE124395. Halpern & Shenhav et al. data83 was downloaded from https://www.ncbi.nlm.nih.gov/geo/706

query/acc.cgi?acc=GSE84498. The Richter & Deligiannis et al. data82 (annotated count matrix) was obtained via707

communication with the authors (raw data publicly available via links in the paper). The Taychameekiatchai et al. data85 is not708

publicly available, but was obtained via communication with the authors.709

Code availability710

Software implementing scDRS and its downstream applications and a web interface for interactively exploring results of711

scDRS are available at https://github.com/martinjzhang/scDRS.712
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Figure 1. Overview of scDRS method. scDRS takes a disease GWAS and an scRNA-seq data set as input and outputs
individual cell-level p-values for association with the disease. (1) scDRS constructs a set of putative disease genes from
GWAS summary statistics by selecting the top 1,000 MAGMA genes; these putative disease genes are expected to have higher
expression levels in the relevant cell population. (2) scDRS computes a raw disease score for each cell, quantifying the
aggregate expression of the putative disease genes in that cell; to maximize power, each putative disease gene is weighted by its
GWAS MAGMA z-score and inversely weighted by its gene-specific technical noise level in scRNA-seq. scDRS also
computes a set of 1,000 Monte Carlo raw control scores for each cell, in each case using a random set of control genes
matching the gene set size, mean expression, and expression variance of the putative disease genes. (3) scDRS normalizes the
raw disease score and raw control scores across gene sets and across cells, and then computes a p-value for each cell based on
the empirical distribution of the pooled normalized control scores across all control gene sets and all cells. The choice of 1,000
for the number of putative disease genes and the choice of 1,000 for the number of control scores are independent.
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A B

Figure 2 Null and causal simulations

Figure 2. Results for null and causal simulations. (A) Q-Q plot for null simulations using 1,000 randomly selected genes as
the putative disease genes. Random GWAS gene weights were used for scDRS matching the MAGMA z-score distributions in
real traits while binary gene sets were used for the other 3 methods. The x-axis denotes theoretical � log10 p-value quantiles
and the y-axis denotes actual � log10 p-value quantiles for different methods. Each point is based on 100 simulation replicates
(with 10,000 cells per simulation replicate); error bars denote 95% confidence intervals (all error bars are <0.05 from the point
estimate). Numerical results are reported in Supp. Table 11 and additional results are reported in Supp. Fig. 4. (B) Power for
casual simulations with perturbed expression of causal genes in causal cells. We report the power at FDR=0.1 for different
methods and different effect sizes. Each point is based on 100 simulation replicates (with 10,000 cells per simulation replicate);
error bars denote 95% confidence intervals (all error bars are <0.02 from the point estimate). Numerical results are reported in
Supp. Table 13 and additional results are reported in Supp. Fig. 6.
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Figure 3. Disease associations at the cell type-level. We report scDRS results for individual cells aggregated at the cell
type-level for a subset of 19 cell types and 22 diseases/traits in the TMS FACS data. Each row represents a disease/trait and
each column represents a cell type (with number of cells indicated in parentheses). Heatmap colors for each cell type-disease
pair denote the proportion of significantly associated cells (FDR<0.1 across all cells for a given disease). Squares denote
significant cell type-disease associations (FDR<0.05 across all pairs of the 120 cell types and 74 diseases/traits; p-values via
MC test; Methods). Cross symbols denote significant heterogeneity in association with disease across individual cells within a
given cell type (FDR<0.05 across all pairs; p-values via MC test; Methods). Heatmap colors (>10% of cells associated) and
cross symbols are omitted for cell type-disease pairs with non-significant cell type-disease associations via MC test (heatmap
colors omitted for 1 pair (Dendritic-ASM) and cross symbols omitted for 6 pairs (CD4+ a-b T-MONO, CD8+ a-b T-MONO,
bladder cell-RA, bladder cell-ASM, oligodendrocyte-BP, and dendritic-BMD-HT)). Auto Immune Traits (AIT) represents a
collection of diseases in the UK Biobank that characterize autoimmune physiopathogenic etiology124, 125. Abbreviated cell type
names include red blood cell (RBC), granulocyte monocyte progenitor (GMP), medium spiny neuron (MSN), and
oligodendrocyte precursor cell (OPC). Neuron refers to neuronal cells with undetermined subtypes (whereas MSN and
interneuron (non-overlapping with neuron) refer to neuronal cells with those inferred subtypes). Complete results for 120 cell
types and 74 diseases/traits are reported in Supp. Fig. 7 and Supp. Table 14.
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Figure 4. Associations of T cells with autoimmune diseases. (A) UMAP visualization of T cells in the TMS FACS data. In
the legend, cluster labels are based on annotated TMS cell types in the cluster. Compositions of tissue, sex, and age of cells in
each cluster are reported in Supp. Fig. 15. (B-C) Subpopulations of T cells associated with IBD and HT, respectively.
Significantly associated cells (FDR<0.1) are denoted in red, with shades of red denoting scDRS disease scores; other cells are
denoted in grey. Cluster boundaries indicate the corresponding T cell clusters from panel A. In the figure legend, the number of
disease-associated cells and total number of cells are provided in parentheses, and cluster labels are based on the putative
identities of the associated cells in the cluster, for the top 4 clusters (out of 11) with the strongest level of association (highest
average disease score for associated cells in the cluster). Results for the other 8 autoimmune diseases and height are reported in
Supp. Fig. 16. (D) Differences in individual cell-level associations between IBD and HT. Differentially associated cells
(absolute scDRS disease score difference>2) are denoted in red and blue, with shades of colors denoting scDRS disease score
differences; other cells are denoted in grey. Cluster boundaries indicate the corresponding T cell clusters from panel A. Clusters
are annotated as in panels B and C; the number of IBD-enriched cells, HT-enriched cells, and all cells in the cluster are
provided in parentheses. Differences in individual cell-level associations between IBD and the other 8 autoimmune diseases are
reported in Supp. Fig. 21. (E) Association between scDRS disease score and CD4 effectorness gradient across CD4+ T cells
for 5 representative autoimmune diseases and height, a negative control trait. The x-axis denotes CD4 effectorness gradient
quintile bins and the y-axis denotes the average scDRS disease score in each bin for each disease. * denotes P <0.05 and **
denotes P <0.005 (MC test). Numerical results for all 10 autoimmune diseases are reported in Supp. Table 20. (F) Excess
overlap of genes prioritized by scDRS with gold standard gene sets. The x-axis denotes the excess overlap of genes prioritized
by MAGMA and the y-axis denotes the excess overlap of genes prioritize by scDRS, for each of 10 autoimmune diseases. The
median ratio of (excess overlap � 1) for scDRS vs. MAGMA was 2.07. Numerical results are reported in Supp. Table 22.
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Figure 5. Associations of neurons with brain-related disease/traits and hepatocytes with metabolic traits. (A)
Subpopulations of CA1 pyramidal neurons associated with SCZ in the Zeisel & Muñoz-Manchado et al. data. Colors of cells
denote scDRS disease scores (negative disease scores are denoted in grey). We include a visualization of putative
dorsal-ventral and proximal-distal axes (see text). Results for all 7 brain-related diseases/traits and height are reported in Supp.
Fig. 28B. (B) Association between scDRS disease score and proximal score across CA1 pyramidal neurons for 5
representative brain-related disease/traits and height, a negative control trait. The x-axis denotes proximal score quintile bins
and the y-axis denotes average scDRS disease score in each bin for each disease. * denotes P <0.05 and ** denotes P <0.005
(MC test). Results for all 6 spatial scores and all 7 brain traits (and height) are reported in Supp. Fig. 30 and Supp. Table 25.
(C) Subpopulations of hepatocytes associated with TG in the TMS FACS data. Significantly associated cells (FDR<0.1) are
denoted in red, with shades of red denoting scDRS disease scores; non-significant cells are denoted in grey. Cluster boundaries
indicate the corresponding hepatocyte clusters. In the legend, numbers in parentheses denote the number of TG-associated cells
vs. the total number of cells and cluster labels are based on the putative identity of cells in the cluster. Results for the other 8
metabolic traits and height are reported in Supp. Fig. 31. (D) Association between scDRS disease score and polyploidy score
for 4 representative metabolic traits and height, a negative control trait. The x-axis denotes polyploidy score quintile bins and
the y-axis denotes average scDRS disease score in each bin for each disease. * denotes P <0.05 and ** denotes P <0.005 (MC
test). Results for all 3 scores (polyploidy score, pericentral score, periportal score) and all 9 metabolic traits (and height) are
reported in Supp. Fig. 34 and Supp. Table 26.
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7. Kyoko Watanabe, Maša Umićević Mirkov, Christiaan A de Leeuw, Martijn P van den Heuvel, and Danielle Posthuma.735

Genetic mapping of cell type specificity for complex traits. Nature communications, 10(1):1–13, 2019.736

8. Julien Bryois, Nathan G Skene, Thomas Folkmann Hansen, Lisette JA Kogelman, Hunna J Watson, Zijing Liu, Leo737

Brueggeman, Gerome Breen, Cynthia M Bulik, Ernest Arenas, et al. Genetic identification of cell types underlying brain738

complex traits yields insights into the etiology of parkinson’s disease. Nature genetics, 52(5):482–493, 2020.739

9. Xinli Hu, Hyun Kim, Eli Stahl, Robert Plenge, Mark Daly, and Soumya Raychaudhuri. Integrating autoimmune risk loci740

with gene-expression data identifies specific pathogenic immune cell subsets. The American Journal of Human Genetics,741

89(4):496–506, 2011.742

10. Padhraig Gormley, Verneri Anttila, Bendik S Winsvold, Priit Palta, Tonu Esko, Tune H Pers, Kai-How Farh, Ester743

Cuenca-Leon, Mikko Muona, Nicholas A Furlotte, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility744

loci for migraine. Nature genetics, 48(8):856–866, 2016.745

11. Halit Ongen, Andrew A Brown, Olivier Delaneau, Nikolaos I Panousis, Alexandra C Nica, and Emmanouil T Dermitzakis.746

Estimating the causal tissues for complex traits and diseases. Nature genetics, 49(12):1676–1683, 2017.747

12. Hilary K Finucane, Yakir A Reshef, Verneri Anttila, Kamil Slowikowski, Alexander Gusev, Andrea Byrnes, Steven748

Gazal, Po-Ru Loh, Caleb Lareau, Noam Shoresh, et al. Heritability enrichment of specifically expressed genes identifies749

disease-relevant tissues and cell types. Nature genetics, 50(4):621–629, 2018.750

13. Jean Fan, Neeraj Salathia, Rui Liu, Gwendolyn E Kaeser, Yun C Yung, Joseph L Herman, Fiona Kaper, Jian-Bing Fan,751

Kun Zhang, Jerold Chun, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion752

analysis. Nature methods, 13(3):241–244, 2016.753

14. Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Hana Imrichova, Gert Hulselmans, Florian Rambow,754

Jean-Christophe Marine, Pierre Geurts, Jan Aerts, Joost van den Oord, et al. Scenic: single-cell regulatory network755

inference and clustering. Nature methods, 14(11):1083–1086, 2017.756

15. Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating single-cell transcriptomic757

data across different conditions, technologies, and species. Nature biotechnology, 36(5):411–420, 2018.758

16. David DeTomaso, Matthew G Jones, Meena Subramaniam, Tal Ashuach, J Ye Chun, and Nir Yosef. Functional759

interpretation of single cell similarity maps. Nature communications, 10(1):1–11, 2019.760

17. Mark S Cembrowski and Nelson Spruston. Heterogeneity within classical cell types is the rule: lessons from hippocampal761

pyramidal neurons. Nature Reviews Neuroscience, 20(4):193–204, 2019.762

18. Hildreth Robert Frost. Variance-adjusted mahalanobis (vam): a fast and accurate method for cell-specific gene set scoring.763

Nucleic acids research, 48(16):e94–e94, 2020.764

19. The Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature,765

583(7817):590–595, 2020.766

22



20. Christiaan A de Leeuw, Joris M Mooij, Tom Heskes, and Danielle Posthuma. Magma: generalized gene-set analysis of767

gwas data. PLoS Comput Biol, 11(4):e1004219, 2015.768

21. Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck III, Yuhan Hao,769

Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell data. Cell, 177(7):1888–1902,770

2019.771

22. Belinda Phipson and Gordon K Smyth. Permutation p-values should never be zero: calculating exact p-values when772

permutations are randomly drawn. Statistical applications in genetics and molecular biology, 9(1), 2010.773

23. Simone Picelli, Omid R Faridani, Åsa K Björklund, Gösta Winberg, Sven Sagasser, and Rickard Sandberg. Full-length774

rna-seq from single cells using smart-seq2. Nature protocols, 9(1):171, 2014.775

24. Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson, Solongo B Ziraldo,776

Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al. Massively parallel digital transcriptional profiling of single777

cells. Nature communications, 8(1):1–12, 2017.778

25. Stephen R Quake, Tabula Sapiens Consortium, et al. The tabula sapiens: a single cell transcriptomic atlas of multiple779

organs from individual human donors. bioRxiv, 2021.780

26. Nathan G Skene, Julien Bryois, Trygve E Bakken, Gerome Breen, James J Crowley, Héléna A Gaspar, Paola Giusti-781

Rodriguez, Rebecca D Hodge, Jeremy A Miller, Ana B Muñoz-Manchado, et al. Genetic identification of brain cell types782

underlying schizophrenia. Nature genetics, 50(6):825–833, 2018.783

27. Peng Huang, Yongzhong Zhao, Jianmei Zhong, Xinhua Zhang, Qifa Liu, Xiaoxia Qiu, Shaoke Chen, Hongxia Yan,784

Christopher Hillyer, Narla Mohandas, et al. Putative regulators for the continuum of erythroid differentiation revealed by785

single-cell transcriptome of human bm and ucb cells. Proceedings of the National Academy of Sciences, 117(23):12868–786

12876, 2020.787

28. Karthik A Jagadeesh, Kushal K Dey, Daniel T Montoro, Steven Gazal, Jesse M Engreitz, Ramnik J Xavier, Alkes L Price,788

and Aviv Regev. Identifying disease-critical cell types and cellular processes across the human body by integration of789

single-cell profiles and human genetics. bioRxiv, 2021.790

29. Noushin Lotfi, Rodolfo Thome, Nahid Rezaei, Guang-Xian Zhang, Abbas Rezaei, Abdolmohamad Rostami, and Nafiseh791

Esmaeil. Roles of gm-csf in the pathogenesis of autoimmune diseases: an update. Frontiers in immunology, 10:1265,792

2019.793

30. Mirre De Bondt, Niels Hellings, Ghislain Opdenakker, and Sofie Struyf. Neutrophils: Underestimated players in the794

pathogenesis of multiple sclerosis (ms). International Journal of Molecular Sciences, 21(12):4558, 2020.795

31. Jonathan RI Coleman, Héléna A Gaspar, Julien Bryois, Enda M Byrne, Andreas J Forstner, Peter A Holmans, Christiaan A796

de Leeuw, Manuel Mattheisen, Andrew McQuillin, Jennifer M Whitehead Pavlides, et al. The genetics of the mood797

disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biological798

psychiatry, 88(2):169–184, 2020.799

32. Niamh Mullins, Andreas J Forstner, Kevin S O’Connell, Brandon Coombes, Jonathan RI Coleman, Zhen Qiao, Thomas D800

Als, Tim B Bigdeli, Sigrid Børte, Julien Bryois, et al. Genome-wide association study of more than 40,000 bipolar801

disorder cases provides new insights into the underlying biology. Nature genetics, 53(6):817–829, 2021.802

33. Devika Agarwal, Cynthia Sandor, Viola Volpato, Tara M Caffrey, Jimena Monzón-Sandoval, Rory Bowden, Javier803

Alegre-Abarrategui, Richard Wade-Martins, and Caleb Webber. A single-cell atlas of the human substantia nigra reveals804

cell-specific pathways associated with neurological disorders. Nature communications, 11(1):1–11, 2020.805

34. Benjamin Ettle, Johannes CM Schlachetzki, and Jürgen Winkler. Oligodendroglia and myelin in neurodegenerative806

diseases: more than just bystanders? Molecular neurobiology, 53(5):3046–3062, 2016.807

35. Andrea G Dietz, Steven A Goldman, and Maiken Nedergaard. Glial cells in schizophrenia: a unified hypothesis. The808

Lancet Psychiatry, 7(3):272–281, 2020.809

36. Sonia Olivia Spitzer, Sergey Sitnikov, Yasmine Kamen, Kimberley Anne Evans, Deborah Kronenberg-Versteeg, Sabine810

Dietmann, Omar de Faria Jr, Sylvia Agathou, and Ragnhildur Thóra Káradóttir. Oligodendrocyte progenitor cells become811

regionally diverse and heterogeneous with age. Neuron, 101(3):459–471, 2019.812

37. Michele Alves-Bezerra and David E Cohen. Triglyceride metabolism in the liver. Comprehensive Physiology, 8(1):1,813

2017.814

23



38. Michael Guo, Zun Liu, Jessie Willen, Cameron P Shaw, Daniel Richard, Evelyn Jagoda, Andrew C Doxey, Joel Hirschhorn,815

and Terence D Capellini. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation816

influencing height. elife, 6:e29329, 2017.817

39. John P Kemp, John A Morris, Carolina Medina-Gomez, Vincenzo Forgetta, Nicole M Warrington, Scott E Youlten, Jie818

Zheng, Celia L Gregson, Elin Grundberg, Katerina Trajanoska, et al. Identification of 153 new loci associated with heel819

bone mineral density and functional involvement of gpc6 in osteoporosis. Nature genetics, 49(10):1468–1475, 2017.820

40. Helen R Warren, Evangelos Evangelou, Claudia P Cabrera, He Gao, Meixia Ren, Borbala Mifsud, Ioanna Ntalla, Praveen821

Surendran, Chunyu Liu, James P Cook, et al. Genome-wide association analysis identifies novel blood pressure loci and822

offers biological insights into cardiovascular risk. Nature genetics, 49(3):403–415, 2017.823

41. Joshua Chiou, Chun Zeng, Zhang Cheng, Jee Yun Han, Michael Schlichting, Michael Miller, Robert Mendez, Serina824

Huang, Jinzhao Wang, Yinghui Sui, et al. Single-cell chromatin accessibility identifies pancreatic islet cell type–and825

state-specific regulatory programs of diabetes risk. Nature Genetics, 53(4):455–466, 2021.826

42. Massimo Andreatta, Jesus Corria-Osorio, Sören Müller, Rafael Cubas, George Coukos, and Santiago J Carmona.827

Interpretation of t cell states from single-cell transcriptomics data using reference atlases. Nature communications,828

12(1):1–19, 2021.829

43. Amy Li, Rebecca H Herbst, David Canner, Jason M Schenkel, Olivia C Smith, Jonathan Y Kim, Michelle Hillman, Arjun830

Bhutkar, Michael S Cuoco, C Garrett Rappazzo, et al. Il-33 signaling alters regulatory t cell diversity in support of tumor831

development. Cell reports, 29(10):2998–3008, 2019.832

44. Clara Abraham and Judy H. Cho. Inflammatory bowel disease. New England Journal of Medicine, 361(21):2066–2078,833

2009. PMID: 19923578.834

45. Giorgos Bamias and Fabio Cominelli. Role of th2 immunity in intestinal inflammation. Current opinion in gastroenterol-835

ogy, 31(6):471, 2015.836

46. Marine Fauny, David Moulin, Ferdinando D’amico, Patrick Netter, Nadine Petitpain, Djesia Arnone, Jean-Yves Jouzeau,837

Damien Loeuille, and Laurent Peyrin-Biroulet. Paradoxical gastrointestinal effects of interleukin-17 blockers. Annals of838

the rheumatic diseases, 79(9):1132–1138, 2020.839

47. Sara Omenetti and Theresa T Pizarro. The treg/th17 axis: a dynamic balance regulated by the gut microbiome. Frontiers840

in immunology, 6:639, 2015.841

48. Mei Lan Chen and Mark S Sundrud. Cytokine networks and t-cell subsets in inflammatory bowel diseases. Inflammatory842

bowel diseases, 22(5):1157–1167, 2016.843

49. Tanbeena Imam, Sungtae Park, Mark H Kaplan, and Matthew R Olson. Effector t helper cell subsets in inflammatory844

bowel diseases. Frontiers in immunology, 9:1212, 2018.845

50. Martina Yaneva and Razvigor Darlenski. The link between atopic dermatitis and asthma-immunological imbalance and846

beyond. Asthma Research and Practice, 7(1):1–8, 2021.847

51. Eddie Cano-Gamez, Blagoje Soskic, Theodoros I Roumeliotis, Ernest So, Deborah J Smyth, Marta Baldrighi, David848

Willé, Nikolina Nakic, Jorge Esparza-Gordillo, Christopher GC Larminie, et al. Single-cell transcriptomics identifies an849

effectorness gradient shaping the response of cd4+ t cells to cytokines. Nature communications, 11(1):1–15, 2020.850

52. Laleh Haghverdi, Maren Büttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. Diffusion pseudotime robustly851

reconstructs lineage branching. Nature methods, 13(10):845–848, 2016.852

53. David M Gravano and Katrina K Hoyer. Promotion and prevention of autoimmune disease by cd8+ t cells. Journal of853

autoimmunity, 45:68–79, 2013.854

54. Stewart Leung, Xuebin Liu, Lei Fang, Xi Chen, Taylor Guo, and Jingwu Zhang. The cytokine milieu in the interplay of855

pathogenic th1/th17 cells and regulatory t cells in autoimmune disease. Cellular & molecular immunology, 7(3):182–189,856

2010.857

55. Maria Gutierrez-Arcelus, Nikola Teslovich, Alex R Mola, Rafael B Polidoro, Aparna Nathan, Hyun Kim, Susan Hannes,858

Kamil Slowikowski, Gerald FM Watts, Ilya Korsunsky, et al. Lymphocyte innateness defined by transcriptional states859

reflects a balance between proliferation and effector functions. Nature communications, 10(1):1–15, 2019.860

56. Peter A Szabo, Hanna Mendes Levitin, Michelle Miron, Mark E Snyder, Takashi Senda, Jinzhou Yuan, Yim Ling Cheng,861

Erin C Bush, Pranay Dogra, Puspa Thapa, et al. Single-cell transcriptomics of human t cells reveals tissue and activation862

signatures in health and disease. Nature communications, 10(1):1–16, 2019.863

24



57. Gautier Koscielny, Peter An, Denise Carvalho-Silva, Jennifer A Cham, Luca Fumis, Rippa Gasparyan, Samiul Hasan,864

Nikiforos Karamanis, Michael Maguire, Eliseo Papa, et al. Open targets: a platform for therapeutic target identification865

and validation. Nucleic acids research, 45(D1):D985–D994, 2017.866

58. Malika Kumar Freund, Kathryn S Burch, Huwenbo Shi, Nicholas Mancuso, Gleb Kichaev, Kristina M Garske, David Z867

Pan, Zong Miao, Karen L Mohlke, Markku Laakso, et al. Phenotype-specific enrichment of mendelian disorder genes868

near gwas regions across 62 complex traits. The American Journal of Human Genetics, 103(4):535–552, 2018.869

59. Luke J O’Connor, Armin P Schoech, Farhad Hormozdiari, Steven Gazal, Nick Patterson, and Alkes L Price. Extreme870

polygenicity of complex traits is explained by negative selection. The American Journal of Human Genetics, 105(3):456–871

476, 2019.872

60. Hailong Zhang, Yajuan Zheng, Youdong Pan, Changdong Lin, Shihui Wang, Zhanjun Yan, Ling Lu, Gaoxiang Ge,873

Jinsong Li, Yi Arial Zeng, et al. A mutation that blocks integrin a 4 b 7 activation prevents adaptive immune-mediated874

colitis without increasing susceptibility to innate colitis. BMC biology, 18(1):1–15, 2020.875

61. Cambrian Y Liu. b7 gives tregs a gut area code. Cellular and molecular gastroenterology and hepatology, 9(3):543–544,876

2020.877

62. Ernest HS Choy, Corinne Miceli-Richard, Miguel A González-Gay, Luigi Sinigaglia, Douglas E Schlichting, Gabriella878

Meszaros, Inmaculada de la Torre, and Hendrik Schulze-Koops. The effect of jak1/jak2 inhibition in rheumatoid arthritis:879

efficacy and safety of baricitinib. Clin Exp Rheumatol, 37(4):694–704, 2019.880

63. Robert Harrington, Shamma Ahmad Al Nokhatha, and Richard Conway. Jak inhibitors in rheumatoid arthritis: an881

evidence-based review on the emerging clinical data. Journal of Inflammation Research, 13:519, 2020.882

64. Aparna Nathan, Jessica I Beynor, Yuriy Baglaenko, Sara Suliman, Kazuyoshi Ishigaki, Samira Asgari, Chuan-Chin883

Huang, Yang Luo, Zibiao Zhang, Kattya Lopez, et al. Multimodally profiling memory t cells from a tuberculosis cohort884

identifies cell state associations with demographics, environment and disease. Nature Immunology, 22(6):781–793, 2021.885

65. Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna Juréus, Sueli886

Marques, Hermany Munguba, Liqun He, Christer Betsholtz, et al. Cell types in the mouse cortex and hippocampus887

revealed by single-cell rna-seq. Science, 347(6226):1138–1142, 2015.888

66. Nathan G Skene and Seth GN Grant. Identification of vulnerable cell types in major brain disorders using single cell889

transcriptomes and expression weighted cell type enrichment. Frontiers in neuroscience, 10:16, 2016.890

67. Bryan A Strange, Menno P Witter, Ed S Lein, and Edvard I Moser. Functional organization of the hippocampal891

longitudinal axis. Nature Reviews Neuroscience, 15(10):655–669, 2014.892

68. Mark S Cembrowski, Julia L Bachman, Lihua Wang, Ken Sugino, Brenda C Shields, and Nelson Spruston. Spatial893

gene-expression gradients underlie prominent heterogeneity of ca1 pyramidal neurons. Neuron, 89(2):351–368, 2016.894

69. Naomi Habib, Yinqing Li, Matthias Heidenreich, Lukasz Swiech, Inbal Avraham-Davidi, John J Trombetta, Cynthia895

Hession, Feng Zhang, and Aviv Regev. Div-seq: Single-nucleus rna-seq reveals dynamics of rare adult newborn neurons.896

Science, 353(6302):925–928, 2016.897

70. Fatma Ayhan, Ashwinikumar Kulkarni, Stefano Berto, Karthigayini Sivaprakasam, Connor Douglas, Bradley C Lega,898

and Genevieve Konopka. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in899

humans. Neuron, 2021.900

71. Menno P Witter, Thanh P Doan, Bente Jacobsen, Eirik S Nilssen, and Shinya Ohara. Architecture of the entorhinal cortex901

a review of entorhinal anatomy in rodents with some comparative notes. Frontiers in Systems Neuroscience, 11:46, 2017.902

72. Espen J Henriksen, Laura L Colgin, Carol A Barnes, Menno P Witter, May-Britt Moser, and Edvard I Moser. Spatial903

representation along the proximodistal axis of ca1. Neuron, 68(1):127–137, 2010.904

73. Amit Zeisel, Hannah Hochgerner, Peter Lönnerberg, Anna Johnsson, Fatima Memic, Job Van Der Zwan, Martin Häring,905

Emelie Braun, Lars E Borm, Gioele La Manno, et al. Molecular architecture of the mouse nervous system. Cell,906

174(4):999–1014, 2018.907

74. Zizhen Yao, Cindy TJ van Velthoven, Thuc Nghi Nguyen, Jeff Goldy, Adriana E Sedeno-Cortes, Fahimeh Baftizadeh,908

Darren Bertagnolli, Tamara Casper, Megan Chiang, Kirsten Crichton, et al. A taxonomy of transcriptomic cell types909

across the isocortex and hippocampal formation. Cell, 184(12):3222–3241, 2021.910

75. Naomi Habib, Inbal Avraham-Davidi, Anindita Basu, Tyler Burks, Karthik Shekhar, Matan Hofree, Sourav R Choudhury,911

François Aguet, Ellen Gelfand, Kristin Ardlie, et al. Massively parallel single-nucleus rna-seq with dronc-seq. Nature912

methods, 14(10):955–958, 2017.913

25



76. Suijuan Zhong, Wenyu Ding, Le Sun, Yufeng Lu, Hao Dong, Xiaoying Fan, Zeyuan Liu, Ruiguo Chen, Shu Zhang, Qiang914

Ma, et al. Decoding the development of the human hippocampus. Nature, 577(7791):531–536, 2020.915

77. Ruth Benavides-Piccione, Mamen Regalado-Reyes, Isabel Fernaud-Espinosa, Asta Kastanauskaite, Silvia Tapia-González,916

Gonzalo León-Espinosa, Concepcion Rojo, Ricardo Insausti, Idan Segev, and Javier DeFelipe. Differential structure of917

hippocampal ca1 pyramidal neurons in the human and mouse. Cerebral Cortex, 30(2):730–752, 2020.918

78. Miri Adler, Yael Korem Kohanim, Avichai Tendler, Avi Mayo, and Uri Alon. Continuum of gene-expression profiles919

provides spatial division of labor within a differentiated cell type. Cell systems, 8(1):43–52, 2019.920

79. Shani Ben-Moshe and Shalev Itzkovitz. Spatial heterogeneity in the mammalian liver. Nature Reviews Gastroenterology921

& Hepatology, 16(7):395–410, 2019.922

80. Romain Donne, Maëva Saroul-Aïnama, Pierre Cordier, Séverine Celton-Morizur, and Chantal Desdouets. Polyploidy in923

liver development, homeostasis and disease. Nature Reviews Gastroenterology & Hepatology, 17(7):391–405, 2020.924

81. Teemu P Miettinen, Heli KJ Pessa, Matias J Caldez, Tobias Fuhrer, M Kasim Diril, Uwe Sauer, Philipp Kaldis, and925

Mikael Björklund. Identification of transcriptional and metabolic programs related to mammalian cell size. Current926

Biology, 24(6):598–608, 2014.927

82. ML Richter, IK Deligiannis, K Yin, A Danese, E Lleshi, P Coupland, Catalina A Vallejos, KP Matchett, NC Henderson,928

M Colome-Tatche, et al. Single-nucleus rna-seq2 reveals functional crosstalk between liver zonation and ploidy. Nature929

communications, 12(1):1–16, 2021.930

83. Keren Bahar Halpern, Rom Shenhav, Orit Matcovitch-Natan, Beáta Tóth, Doron Lemze, Matan Golan, Efi E Massasa,931

Shaked Baydatch, Shanie Landen, Andreas E Moor, et al. Single-cell spatial reconstruction reveals global division of932

labour in the mammalian liver. Nature, 542(7641):352–356, 2017.933

84. Yujie Meng, Junhui Li, Jianju Liu, Haixiao Hu, Wei Li, Wenxin Liu, and Shaojiang Chen. Ploidy effect and genetic934

architecture exploration of stalk traits using dh and its corresponding haploid populations in maize. BMC plant biology,935

16(1):1–15, 2016.936

85. Aris Taychameekiatchai and Bruce Wang. Tentative title. Manuscript in preparation, 2021.937

86. Nadim Aizarani, Antonio Saviano, Laurent Mailly, Sarah Durand, Josip S Herman, Patrick Pessaux, Thomas F Baumert,938

Dominic Grün, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature, 572(7768):199–204,939

2019.940

87. Meromit Singer, Chao Wang, Le Cong, Nemanja D Marjanovic, Monika S Kowalczyk, Huiyuan Zhang, Jackson Nyman,941

Kaori Sakuishi, Sema Kurtulus, David Gennert, et al. A distinct gene module for dysfunction uncoupled from activation942

in tumor-infiltrating t cells. Cell, 166(6):1500–1511, 2016.943

88. Sidharth V Puram, Itay Tirosh, Anuraag S Parikh, Anoop P Patel, Keren Yizhak, Shawn Gillespie, Christopher Rodman,944

Christina L Luo, Edmund A Mroz, Kevin S Emerick, et al. Single-cell transcriptomic analysis of primary and metastatic945

tumor ecosystems in head and neck cancer. Cell, 171(7):1611–1624, 2017.946

89. François Aguet and Manuel Muñoz Aguirre. Genetic effects on gene expression across human tissues. Nature, 550:204–947

213, 2017.948

90. Elle M Weeks, Jacob C Ulirsch, Nathan Y Cheng, Brian L Trippe, Rebecca S Fine, Jenkai Miao, Tejal A Patwardhan,949

Masahiro Kanai, Joseph Nasser, Charles P Fulco, et al. Leveraging polygenic enrichments of gene features to predict950

genes underlying complex traits and diseases. medRxiv, 2020.951

91. Steven Gazal, Omer Weissbrod, Farhad Hormozdiari, Kushal Dey, Joseph Nasser, Karthik Jagadeesh, Daniel Weiner,952

Huwenbo Shi, Charles Fulco, Luke O’Connor, et al. Combining snp-to-gene linking strategies to pinpoint disease genes953

and assess disease omnigenicity. medRxiv, 2021.954

92. Genomes Project Consortium, A Auton, LD Brooks, RM Durbin, EP Garrison, and HM Kang. A global reference for955

human genetic variation. Nature, 526(7571):68–74, 2015.956

93. Robert C Geary. The contiguity ratio and statistical mapping. The incorporated statistician, 5(3):115–146, 1954.957

94. F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene expression data analysis.958

Genome biology, 19(1):1–5, 2018.959

95. Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple960

testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289–300, 1995.961

26



96. Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T Elliott, Kevin Sharp, Allan Motyer, Damjan962

Vukcevic, Olivier Delaneau, Jared O’Connell, et al. The uk biobank resource with deep phenotyping and genomic data.963

Nature, 562(7726):203–209, 2018.964

97. Katrina M De Lange, Loukas Moutsianas, James C Lee, Christopher A Lamb, Yang Luo, Nicholas A Kennedy, Luke965

Jostins, Daniel L Rice, Javier Gutierrez-Achury, Sun-Gou Ji, et al. Genome-wide association study implicates immune966

activation of multiple integrin genes in inflammatory bowel disease. Nature genetics, 49(2):256–261, 2017.967

98. Patrick CA Dubois, Gosia Trynka, Lude Franke, Karen A Hunt, Jihane Romanos, Alessandra Curtotti, Alexandra968

Zhernakova, Graham AR Heap, Róza Ádány, Arpo Aromaa, et al. Multiple common variants for celiac disease influencing969

immune gene expression. Nature genetics, 42(4):295–302, 2010.970

99. James Bentham, David L Morris, Deborah S Cunninghame Graham, Christopher L Pinder, Philip Tombleson, Timothy W971

Behrens, Javier Martín, Benjamin P Fairfax, Julian C Knight, Lingyan Chen, et al. Genetic association analyses implicate972

aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nature973

genetics, 47(12):1457–1464, 2015.974

100. Farren Briggs, Xiaorong Shao, Benjamin A Goldstein, Jorge R Oksenberg, Lisa F Barcellos, and Philip L De Jager.975

Genome-wide association study of severity in multiple sclerosis. Genes & Immunity, 12(8), 2011.976

101. Heather J Cordell, Younghun Han, George F Mells, Yafang Li, Gideon M Hirschfield, Casey S Greene, Gang Xie, Brian D977

Juran, Dakai Zhu, David C Qian, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis978

risk loci and targetable pathogenic pathways. Nature communications, 6(1):1–11, 2015.979

102. Yukinori Okada, Di Wu, Gosia Trynka, Towfique Raj, Chikashi Terao, Katsunori Ikari, Yuta Kochi, Koichiro Ohmura,980

Akari Suzuki, Shinji Yoshida, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature,981

506(7488):376–381, 2014.982

103. Ditte Demontis, Raymond K Walters, Joanna Martin, Manuel Mattheisen, Thomas D Als, Esben Agerbo, Gísli Baldursson,983

Rich Belliveau, Jonas Bybjerg-Grauholm, Marie Bækvad-Hansen, et al. Discovery of the first genome-wide significant984

risk loci for attention deficit/hyperactivity disorder. Nature genetics, 51(1):63–75, 2019.985

104. Iris E Jansen, Jeanne E Savage, Kyoko Watanabe, Julien Bryois, Dylan M Williams, Stacy Steinberg, Julia Sealock, Ida K986

Karlsson, Sara Hägg, Lavinia Athanasiu, et al. Genome-wide meta-analysis identifies new loci and functional pathways987

influencing alzheimer’s disease risk. Nature genetics, 51(3):404–413, 2019.988

105. Mengzhen Liu, Yu Jiang, Robbee Wedow, Yue Li, David M Brazel, Fang Chen, Gargi Datta, Jose Davila-Velderrain,989

Daniel McGuire, Chao Tian, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic990

etiology of tobacco and alcohol use. Nature genetics, 51(2):237–244, 2019.991

106. Richard Karlsson Linnér, Pietro Biroli, Edward Kong, S Fleur W Meddens, Robbee Wedow, Mark Alan Fontana, Maël992

Lebreton, Stephen P Tino, Abdel Abdellaoui, Anke R Hammerschlag, et al. Genome-wide association analyses of risk993

tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature994

genetics, 51(2):245–257, 2019.995

107. Jeanne E Savage, Philip R Jansen, Sven Stringer, Kyoko Watanabe, Julien Bryois, Christiaan A De Leeuw, Mats996

Nagel, Swapnil Awasthi, Peter B Barr, Jonathan RI Coleman, et al. Genome-wide association meta-analysis in 269,867997

individuals identifies new genetic and functional links to intelligence. Nature genetics, 50(7):912–919, 2018.998

108. David M Howard, Mark J Adams, Toni-Kim Clarke, Jonathan D Hafferty, Jude Gibson, Masoud Shirali, Jonathan RI999

Coleman, Saskia P Hagenaars, Joey Ward, Eleanor M Wigmore, et al. Genome-wide meta-analysis of depression1000

identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature neuroscience,1001

22(3):343–352, 2019.1002

109. Gail Davies, Max Lam, Sarah E Harris, Joey W Trampush, Michelle Luciano, W David Hill, Saskia P Hagenaars, Stuart J1003

Ritchie, Riccardo E Marioni, Chloe Fawns-Ritchie, et al. Study of 300,486 individuals identifies 148 independent genetic1004

loci influencing general cognitive function. Nature communications, 9(1):1–16, 2018.1005

110. Aysu Okbay, Bart ML Baselmans, Jan-Emmanuel De Neve, Patrick Turley, Michel G Nivard, Mark Alan Fontana,1006

S Fleur W Meddens, Richard Karlsson Linnér, Cornelius A Rietveld, Jaime Derringer, et al. Genetic variants associated1007

with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature1008

genetics, 48(6):624–633, 2016.1009

111. Douglas M Ruderfer, Stephan Ripke, Andrew McQuillin, James Boocock, Eli A Stahl, Jennifer M Whitehead Pavlides,1010

Niamh Mullins, Alexander W Charney, Anil PS Ori, Loes M Olde Loohuis, et al. Genomic dissection of bipolar disorder1011

and schizophrenia, including 28 subphenotypes. Cell, 173(7):1705–1715, 2018.1012

27



112. Hassan S Dashti, Samuel E Jones, Andrew R Wood, Jacqueline M Lane, Vincent T Van Hees, Heming Wang, Jessica A1013

Rhodes, Yanwei Song, Krunal Patel, Simon G Anderson, et al. Genome-wide association study identifies genetic loci for1014

self-reported habitual sleep duration supported by accelerometer-derived estimates. Nature communications, 10(1):1–12,1015

2019.1016

113. Mats Nagel, Philip R Jansen, Sven Stringer, Kyoko Watanabe, Christiaan A De Leeuw, Julien Bryois, Jeanne E Savage,1017

Anke R Hammerschlag, Nathan G Skene, Ana B Muñoz-Manchado, et al. Meta-analysis of genome-wide association1018

studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nature genetics, 50(7):920–927,1019

2018.1020

114. Jonas B Nielsen, Lars G Fritsche, Wei Zhou, Tanya M Teslovich, Oddgeir L Holmen, Stefan Gustafsson, Maiken E1021

Gabrielsen, Ellen M Schmidt, Robin Beaumont, Brooke N Wolford, et al. Genome-wide study of atrial fibrillation1022

identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development.1023

The American Journal of Human Genetics, 102(1):103–115, 2018.1024

115. Heribert Schunkert, Inke R König, Sekar Kathiresan, Muredach P Reilly, Themistocles L Assimes, Hilma Holm, Michael1025

Preuss, Alexandre FR Stewart, Maja Barbalic, Christian Gieger, et al. Large-scale association analysis identifies 13 new1026

susceptibility loci for coronary artery disease. Nature genetics, 43(4):333–338, 2011.1027

116. Alisa K Manning, Marie-France Hivert, Robert A Scott, Jonna L Grimsby, Nabila Bouatia-Naji, Han Chen, Denis Rybin,1028

Ching-Ti Liu, Lawrence F Bielak, Inga Prokopenko, et al. A genome-wide approach accounting for body mass index1029

identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature genetics, 44(6):659–669, 2012.1030

117. Jonathan P Bradfield, Hui-Qi Qu, Kai Wang, Haitao Zhang, Patrick M Sleiman, Cecilia E Kim, Frank D Mentch, Haijun1031

Qiu, Joseph T Glessner, Kelly A Thomas, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies1032

multiple associated loci. PLoS genetics, 7(9):e1002293, 2011.1033

118. Andrew P Morris, Benjamin F Voight, Tanya M Teslovich, Teresa Ferreira, Ayellet V Segre, Valgerdur Steinthorsdottir,1034

Rona J Strawbridge, Hassan Khan, Harald Grallert, Anubha Mahajan, et al. Large-scale association analysis provides1035

insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature genetics, 44(9):981, 2012.1036

119. Hilary K Finucane, Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-Ru Loh, Verneri Anttila,1037

Han Xu, Chongzhi Zang, Kyle Farh, et al. Partitioning heritability by functional annotation using genome-wide association1038

summary statistics. Nature genetics, 47(11):1228–1235, 2015.1039

120. Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner,1040

Po-ru Loh, and Soumya Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with harmony. Nature1041

methods, 16(12):1289–1296, 2019.1042

121. Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing well-connected1043

communities. Scientific reports, 9(1):1–12, 2019.1044

122. Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette,1045

Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al. Gene set enrichment analysis: a knowledge-1046

based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences,1047

102(43):15545–15550, 2005.1048

123. Arthur Liberzon, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, Pablo Tamayo, and Jill P Mesirov.1049

Molecular signatures database (msigdb) 3.0. Bioinformatics, 27(12):1739–1740, 2011.1050

124. Farhad Hormozdiari, Steven Gazal, Bryce Van De Geijn, Hilary K Finucane, Chelsea J-T Ju, Po-Ru Loh, Armin Schoech,1051

Yakir Reshef, Xuanyao Liu, Luke O’connor, et al. Leveraging molecular quantitative trait loci to understand the genetic1052

architecture of diseases and complex traits. Nature genetics, 50(7):1041–1047, 2018.1053

125. Steven Gazal, Po-Ru Loh, Hilary K Finucane, Andrea Ganna, Armin Schoech, Shamil Sunyaev, and Alkes L Price.1054

Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding1055

annotations. Nature genetics, 50(11):1600–1607, 2018.1056

28


	References
	References

