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SUMMARY  

 

MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression 

via direct base pairing with their mRNA targets. Current prediction approaches 

identified that between 20 to 60% of mammalian transcriptomes are regulated by 

miRNAs, but it remains largely unknown which fraction of these interactions are 

functional in a specific cellular context. Here, we integrated transcriptome data from a 

set of miRNA-depleted mouse embryonic stem cell (mESC) lines with published 

miRNA interaction predictions and AGO-binding profiles. This integrative approach, 

combined with molecular validation data, identified that only 6% of expressed genes 

are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of 

the stem cell-specific miR-290-295 cluster target genes identified TFAP4 as an 

important transcription factor for early development. The extensive datasets 

developed in this study will support the development of improved predictive models 

for miRNA-mRNA functional interactions. 
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INTRODUCTION 

Mammalian microRNAs (miRNAs) are endogenous small regulatory RNAs, 

approximately 22 nucleotides in length involved in a diverse array of cellular and 

physiological processes (Bartel, 2018). They are often found in clusters on the 

genome and transcribed polycistronically from inter- or intra-genic genomic loci by 

RNA polymerase II (Lee et al., 2002, 2004). The resulting capped and poly-

adenylated primary transcript (pri-miRNA) is processed in the nucleus co-

transcriptionally by the Microprocessor Complex which consists of the RNase III 

DROSHA and the double-stranded RNA-binding protein DGCR8 to produce a miRNA 

precursor (pre-miRNA) (Denli et al., 2004; Nguyen et al., 2015). After export to the 

cytoplasm, the miRNA precursor (pre-miRNA) is cleaved by DICER, another RNase 

III protein (Bernstein et al., 2001; Hutvágner et al., 2001; Zhang et al., 2004), leading 

to a double-stranded miRNA duplex, which is subsequently loaded into an 

ARGONAUTE (AGO) protein, the primary effector protein in this RNA interference 

(RNAi) pathway (Mourelatos et al., 2002). After loading, the AGO-miRNA complexes 

generally target the 3’ untranslated regions (UTRs) of their target mRNAs at miRNA 

response elements (MREs) (Lewis et al., 2005), although reports of functional 

repression via binding to the coding sequence (CDS) exist as well (Hausser et al., 

2013; Reczko et al., 2012). MREs are usually complementary to the seed sequence 

of the miRNA, which is at positions 2-7 of the 5’ end of the mature miRNA (Lewis et 

al., 2003). MiRNA binding can lead to the functional repression of its target by 

translation inhibition and decay of the mRNA (Guo et al., 2010). 

The rapid rise in discoveries of miRNAs as key regulators of gene expression in 

many biological processes has prompted an extensive search for their functional 

targets, as well as the development of tools for a reliable identification thereof. In 

addition to Watson-Crick base-pairing, other features, such as the evolutionary 
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conservation (Lewis et al., 2005) and the MRE accessibility (Long et al., 2007) have 

been associated with the regulatory potential of a target site and have been exploited 

by computational prediction models for the identification of miRNA interactions 

(Agarwal et al., 2015; Id et al., 2018; Schäfer and Ciaudo, 2020). However, it has 

been shown that computational models tend to predict a large number of false-

positive interactions (Chu et al., 2020; Pinzon et al., 2017). To further improve 

existing prediction models, the integration of multiple approaches and data sets to 

obtain more accurate functional miRNA-mRNA interactions has been proposed 

(Oliveira et al., 2017). These integrative approaches have successfully improved the 

precision of predictions, but often at the cost of discarding a large number of 

functional interactions (Davis et al., 2017; Id et al., 2018; Liu and Wang, 2019).  

We hypothesize that the inability of current miRNA target prediction models to 

provide a full and reliable view of functionally relevant miRNA interactions could be 

partially attributed to the lack of incorporating important context-specific factors. In 

this study, we performed an integrative analysis combining OMICs data from a 

unique series of miRNA-deficient mouse Embryonic Stem Cell (mESC) lines 

generated in the same genetic background (Drosha, Dgcr8, Dicer, Ago2&1 knockouts) 

with other publicly available datasets (prediction models, AGO-bound miRNAs) to 

determine global and accurate direct functional miRNA interactions in mESCs. We 

further validated our findings by measuring the impact of the deletion of a stem cell-

specific miRNA cluster on gene expression. All together we established that only 

about 6% of expressed genes are subject to direct miRNA-regulation in mESCs, 

refining previous higher estimations. In addition, we identified an important 

transcription factor, TFAP4, as a direct miR-290-295 target. TFAP4 is an essential 

regulator of the Wnt signaling pathway and thus an essential factor for stem cell 

differentiation. 
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RESULTS 

 

Gene expression is globally perturbed in RNAi knockout mutant mESC lines 

To better capture the extent of miRNA-mediated gene regulation in mESCs, we 

established a unique set of RNA interference knockout (RNAi_KO) mESCs using a 

paired CRISPR/Cas9 approach (Wettstein et al., 2016) (Dgcr8_KO (Cirera-Salinas et 

al., 2017), Drosha_KO (Cirera-Salinas et al., 2017), Dicer_KO (Bodak et al., 2017a) 

and Ago2&1_KO (Figure S1A)). For each RNAi_KO line, two independent clones 

were generated, and the downstream protein depletion was validated by Western 

Blotting (WB) (Figure S1B). We subsequently performed transcriptome profiling of 

small RNAs (sRNAs) and messenger RNAs (mRNAs) in duplicates from wildtypes 

(WT) and each RNAi_KO line. PCA plots for both RNA-seq experiments generally 

showed clustering of biological replicates and separation of samples (Figure 1A, 

Table S1 RNA-seq and Figure S1C, Table S2 sRNA-seq). In the RNA-seq data, 

Dgcr8_KO replicates showed minor differences in gene expression levels and, 

unsurprisingly, clustered with Drosha_KO samples, its Microprocessor complex 

partner. Additionally, as expected, the RNAi_KO mESC lines Dgcr8_KO, Drosha_KO 

and Dicer_KO exhibited decreased miRNA expression levels (Figure S1D). 

Interestingly, the depletion of both Argonautes also led to a strong reduction of the 

vast majority of miRNAs, suggesting that miRNAs are degraded in the absence of the 

AGO1 and AGO2, which are the main Argonaute proteins expressed in this cell type 

(Müller et al., 2020).  

To assess the effect of miRNA depletion on gene expression, we performed a 

differential expression (DE) analysis on the RNA-seq data. We expected the loss of 

miRNA-mediated regulation to lead to an upregulation of their target genes. Indeed, 

we observed a large number of upregulated genes in all RNAi_KO mutants (from 
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1376 in Dgcr8_KO to 3540 in Ago2&1_KO cell lines) (Figure 1B). However, the 

overlap across all mutants was unexpectedly small (462 genes, false discovery rate 

(FDR) < 0.1, Figure 1C). In addition, the Pearson correlation for differential gene 

expression (DGE) values of RNAi_KO cell lines was positive for all sample pairs; the 

correlation coefficients were high for Drosha/Dgcr8 and Dicer/Ago2&1 pairs (0.81 and 

0.8 respectively) but rather low (0.34 – 0.53) for all other pairs (Figure S1E), pointing 

to differences between nuclear and cytoplasmic processes across RNAi_KO mESC 

lines. 

Finally, all mutants exhibited a sizeable number of downregulated genes (Figure 1B), 

with only 126 overlapping between all genotypes (FDR< 0.1, Figure S1F), most likely 

indicative of numerous indirect effects of the primary loss in RNAi factors. 

In conclusion, the extended perturbation of gene expression observed in RNAi_KO 

mESC lines is not exclusively caused by the lack of miRNAs. Mutant-specific effects 

and secondary regulation events seem to strongly influence global gene expression 

profiles in stem cells. 

 

Integrative transcriptomics data analysis identifies global maps of functional 

miRNA interactions 

To identify direct and functional miRNA-mRNA pairs with high accuracy, we 

integrated sRNA-seq and RNA-seq data with published AGO2 binding data (Li et al., 

2020) and, sequence-based interaction prediction data from TargetScan (Agarwal et 

al., 2015) as visualized in Figure 2A. Briefly, potential interactions were established 

based on seed matching at AGO2 binding peaks and then filtered based on WT 

miRNA expression and target mRNA upregulation in RNAi_KO mESC lines. Finally, 

the sum of all four normalized features led to an interaction score, which was used to 
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rank interactions and genes based on the evidence supporting their of regulation by 

miRNAs.  

We identified high confidence miRNA-mRNA pairs as, for example, shown in Figures 

2B, C, while discarding putative interactions with little evidence as, for example, 

shown in Figures 2D, E and S2A-D. Filtering interactions by all four integrated 

features narrowed the number of detected miRNA target genes down to 444 (Figure 

2F, Table S3). Consistent with other studies (Hausser et al., 2013; Patel et al., 2020; 

Reczko et al., 2012), we observed seemingly functional interactions in regions 

outside of the 3’UTR (for example Figures S2E, F), which led us to exclude the 

3’UTR-centric TargetScan context++ score model from the filtering, still leading to a 

surprisingly low number of 707 identified miRNA-targeted genes (Figure 2F).  

In conclusion, multi-OMICs integration facilitated the exclusion of nonfunctional 

miRNA-mRNA interactions to obtain a set of high-confidence miRNA target genes in 

mESCs. 

 

Ribosome profiling in RNAi_KO mESCs reinforces the identification of 

functional miRNA target genes 

A substantial part of the data used in the integrative analysis was based on 

transcriptomics approaches, and we wondered whether the upregulation of miRNA 

targets in RNAi_KO mutants was also reflected at the translational level. We thus 

assessed the full proteome of all RNAi mutant and WT mESCs using sequential 

window acquisition of all theoretical fragment ion spectra mass spectrometry 

(SWATH-MS) experiments (Gillet et al., 2012), and measured the differential protein 

abundance of predicted miRNA targets. This approach allowed us to capture protein 

abundances only for 26% of predicted miRNA targets (186 of 707, Figure S3A). All 

RNAi_KO mutants showed significantly enriched positive log2FoldChanges (log2FCs) 
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as compared to a control distribution of log2FCs (p<0.002 for every mutant, student’s 

t-test), with at least 60% of genes exhibiting positive log2FCs (Figure S3A, Table S4).  

Since the experiment only captured about a quarter of predicted target genes, we 

next performed Ribosome profiling (Ribo-seq) in RNAi_KO mESCs to measure the 

ribosome-occupancy on mRNAs (Brar and Weissman, 2015). The high sensitivity of 

the approach allowed us to detect and compare ribosome occupancy for 95% of 

predicted miRNA targets (670 of 707, Figure 3A). For every mutant, enrichments for 

positive log2FCs were statistically more significant and stronger than in the mass 

spectrometry experiment (p<2e-13 for every mutant, Figure 3A, Table S5). 

Drosha_KO, Dicer_KO and Ago2&1_KO showed the strongest enrichment (77%, 

74%, 77% positive log2FCs respectively), while the enrichment in Dgcr8_KO was a 

little weaker (64% positive log2FCs). 

Taken together, the Ribo-seq approach reinforces the validity of our integrative 

analysis and the list of functional high-confidence miRNA targeted genes in mESCs. 

 

Combination of DEG from several RNAi_KO mESC lines is a key feature for the 

identification of functional miRNA targets 

Mouse ESCs have a specific miRNA expression pattern (Ciaudo et al., 2009; 

Houbaviy et al., 2003), with over 50% of all expressed miRNAs originating from four 

genomic clusters (Calabrese et al., 2007). Indeed, the miR-290-295 cluster is the 

most strongly expressed cluster in our dataset and almost half of our predicted 

miRNA target genes are predicted to be targeted by at least one member of this 

cluster (324 out of 707 genes, Figure 3B). MiR-290-295 has previously been shown 

to be involved in pluripotency maintenance and self-renewal of mESCs through 

several molecular processes (Yuan et al., 2017). We therefore complemented our 

predictions with experimental data by deleting the miR-290-295 cluster in the same 
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mESC background as the RNAi_KO mESCs, using a similar paired CRISPR/Cas9 

approach (Figure S3B) (Wettstein et al., 2016). We generated two independent cell 

lines and confirmed the integrity of the deletion at DNA and RNA levels (Figures S3C, 

D). We next profiled the transcriptome of the miR-290-295_KO mESCs and 

performed a DE analysis (Table S6). Surprisingly, miR-290-295_KO mESCs 

exhibited a strongly misregulated transcriptome with 1265 up- and 828 

downregulated genes, similar to the Dgcr8_KO mESC lines (Figures 1B, 3C). We 

then specifically looked at the DE of predicted miR-290-295 target genes in the miR-

290-295_KO mESC lines. As expected, predictions from the integrative analysis (324 

predicted miR-290-295 targets) showed a strong enrichment for upregulation, with 70% 

of predicted genes (226 of 324) exhibiting a positive log2FC (pink curve in Figure 3D, 

Table S6). We used the DE analysis to estimate the predictive contribution of each 

individual dataset used in our integrative analysis. As shown in Figure 3D, predictions 

based on AGO2-binding and on TargetScan scores showed virtually no enrichment 

for positive log2FCs, while predictions based on RNAi_KO upregulation showed a 

minor enrichment for upregulated genes, however to a lower degree than the 

integrative analysis (60% of targets showed a positive log2FC, Figure 3D).   

These results demonstrate that the DE across several RNAi_KO cell lines is an 

important feature for the prediction of functional miRNA targets. Further, generation 

of the miR-290-295_KO mutant cell lines allowed for the identification of a high-

confidence set of miR-290-295 target genes. 

 

Depletion of the miR-290-295 cluster combined with predicted functional 

interactions identifies novel key transcription factors regulated by miRNAs 

Out of the 324 predicted miR-290-295 targets, 92 showed a statistically significant 

upregulation in the miR-290-295_KO mutant (Table S6, Figure S4A). Interestingly, 13 
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of these were annotated as transcription factors (TFs) by the mTFkb database (Sun 

et al., 2017) of which three of them, Tfap4, Dazap2 and Mycn, had previously been 

implicated in stem cell functions including pluripotency (Chappell and Dalton, 2013; 

Papathanasiou et al., 2021; Sugawara et al., 2020) (Figure S4A). TFs are proteins 

that primarily bind to promoter regions to modulate gene transcription (Spitz and 

Furlong, 2012), therefore potentially contributing to the observed DGE that cannot be 

explained by the depletion of miRNAs alone. Tfap4 showed the highest interaction 

score from our analysis (Figures S4A,B) and has recently been shown to be required 

for reprogramming mouse fibroblasts into pluripotent stem cells (Papathanasiou et al., 

2021). We first investigated its regulation by miRNAs in mESCs by monitoring its 

expression at the protein level in RNAi_KO mutants (Drosha_KO and Dicer_KO) and 

miR-290-295_KO mESC lines. We observed an upregulation of at least 2-fold for 

TFAP4 in all mutant cell lines (Figure 4A). To assess whether this upregulation was 

caused by miR-290-295-mediated repression, we transfected miR-290-295_KO 

mESCs with two miRNAs of the miR-290-295 cluster (miR-291a-5p and miR-291a-3p) 

and measured TFAP4 expression by WB. Indeed, we observed a downregulation of 

TFAP4 protein levels as a result of miR-291a-5p and miR-291a-3p transfection 

(Figure 4B) and an even stronger downregulation of TFAP4 upon transfection with 

the two miRNA mimics simultaneously. These data strongly suggest that Tfap4 is 

regulated by these two members of the miR-290-295 cluster. 

We further hypothesized that a substantial number of misregulated genes observed 

in the miR-290-295_KO cell line (Figure 3C) may be in part a result of increased TF 

levels. To understand the transcriptional contribution of TFAP4 in mESCs, we 

attempted to rescue (i.e., downregulate) its expression level in miR-290-295_KO 

using a pool of small inhibitory RNAs (siPOOL) targeting Tfap4 mRNA (Figure S4C). 

We monitored TFAP4 levels 36h after transfection by WB and observed that TFAP4 
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was indeed expressed at near WT levels in the miR-290-295_KO mESCs (Figure 4C). 

We then sequenced the transcriptome of the siPOOL-transfected cells and assessed 

the DGE (Table S7), which also confirmed near-WT Tfap4 RNA levels (Figure 4D). In 

addition, we observed a striking number of DGE in the Tfap4 siPOOL samples with a 

large portion of them being inversely regulated (and therefore rescued back towards 

WT levels) compared to the initial DE in miR-290-295_KO mESC lines (Figure 4D). 

To discriminate and quantify rescued genes, we divided the log2FC observed in miR-

290-295_KO vs WT by the log2FC observed in the siPOOL-transfected miR-290-

295_KO mESCs and defined rescued genes to be within the range [-0.5, -2] (orange 

dots in Figure 4D). We observed 287 rescued genes for which TFAP4 acted in an 

activating and 210 for which it acted in a repressive manner. The binding motif of 

TFAP4 has been previously described, based on a chromatin immunoprecipitation 

and sequencing (ChIP-seq) experiment in another cell type (Jackstadt et al., 2013). 

To refine our set of rescue-identified potential TFAP4-targets, we used PWMScan 

(Ambrosini et al., 2018) to scan the genome for potential TFAP4 binding sites, only 

keeping rescued genes with a binding site upstream of the promoter (<1kb distance), 

which results in 121 genes (Table S7). Finally, to better understand the role of TFAP4 

in mESCs gene regulation, we performed a gene ontology analysis using the ClueGO 

tool on the 121 genes (Bindea et al., 2009). Most of the groups identified by the 

analysis, including “regulation of cell growth”, “regulation of WNT signaling pathway”, 

“regulation of cellular response to growth factor stimulus”, “nephron development” 

(Figure 4E, Table S7) are in line with previous reports of TFAP4 being an important 

regulator involved in developmental processes (Wong et al., 2021). In conclusion, our 

data demonstrate a major role for TFAP4 in stem cell gene regulation and as a TF in 

mouse early development. 
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DISCUSSION 

This study presents a novel approach that enables the accurate mapping of 

functional miRNA interactions in a given context by integrating computational and 

molecular data from various methods. We combine the well-established miRNA 

interaction prediction model (Agarwal et al., 2015), AGO2-binding profiles (Li et al., 

2020), miRNA expression data and DGE analysis of several RNAi_KO mESCs, 

revealing 707 genes to be directly and functionally regulated by miRNAs. This 

corresponds to 6% of expressed genes in mESCs. 

Earlier studies based on computational analyses of miRNA binding site conservation 

had estimated far larger numbers (60%) to be regulated by miRNAs (Friedman et al., 

2009). This number was further reduced to 20% by using AGO-immunoprecipitation 

approach (Li et al., 2020). Our data reveal that only approximately 6% of genes are 

directly targeted by miRNAs in mESCs. Although this percentage is astonishingly low, 

relative to initial estimates, it is a reflection of the rigorous integrative method 

employed in this study, which aims to eliminate miRNA-mRNA interactions that are 

not functionally relevant in a given biological context. Moreover, Tan et al. recently 

developed a statistical approach for the identification of miRNA targets based on 

correlations in miRNA and mRNA levels in 360 lymphoblastoid cell lines (LCLs). 

While their approach is highly orthogonal to our integrative one, they also estimated 6% 

of expressed genes to be regulated by miRNAs (Tan et al., 2020), suggesting that 

this percentage is reflective of functionally relevant interactions in various contexts. 

In order to evaluate the validity of our predictions, we knocked out the most highly 

expressed miRNA cluster in mESCs, miR-290-295 (Figure 3B) (Marson et al., 2008). 

Out of the 707 miRNA target genes identified in our integrative approach, 324 were 

predicted to be targeted by miR-290-295. Remarkably, the deletion of the miR-290-
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295 cluster revealed a statistically significant upregulation for 92 of these predicted 

genes, while only 9 showed significant downregulation (Figure S4A, Table S6). Most 

miRNA interaction prediction models rely on a similar set of features for the 

identification of functional miRNA interactions (Schäfer and Ciaudo, 2020). In our 

study, we combined the use of these established features (i.e., TargetScan score) 

with context-specific features (e.g., transcriptome of RNAi_KO mutants). The novel 

miR-290-295_KO cell lines allowed us to rank the contribution of the integrated 

features to the prediction of functional miRNA interactions. This demonstrated the 

importance of using several RNAi_KO cell lines for the functional validation of miRNA 

target genes, as applying one prediction model alone failed to accurately identify 

functional interactions. Our work thus overcomes the limitations of existing prediction 

models and implies that they should be combined with existing feature sets to better 

predict functional miRNA interactions in specific biological contexts such as mESCs. 

Importantly, this study also identifies TFAP4 as a novel key transcription factor in 

stem cells, which is directly regulated by miRNAs. Moreover, gene ontology analysis 

reveals important roles for TFAP4 in mouse early development, cell growth roles as 

well as in the Wnt/β-catenin pathway. In humans, Tfap4 has been previously 

described to regulate stemness and proliferation (Jackstadt et al., 2013; Jung et al., 

2008), but especially to drive cancer malignancy (for review (Wong et al., 2021)). 

More recently, this TF has been predicted to be involved in a regulatory network of 

TFs involved in the reprogramming of mouse primary fibroblasts into induced 

pluripotent stem cells, which is consistent with our results (Papathanasiou et al., 

2021). Thus, we hypothesize that TFAP4 might be an essential regulator of stemness 

and development. In addition to the strong impact of Tfap4 misregulation on mESC 

gene expression, we also show that it is regulated by the miR-290-295 cluster (Figure 

4), whose expression decreases after the exit from pluripotency of mESCs (Greve et 
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al., 2013). MiRNA-mediated regulation of Tfap4 has already been observed human 

cells, where Tfap4 is regulated by hsa-miR-302c. Interestingly, but perhaps 

unsurprisingly, hsa-miR-302c shares the seed sequence with some members of the 

mmu-miR-290-295 cluster (Ma et al., 2018). In fact, the observation that the human 

miR-302c binding site is conserved in mouse ultimately contributed to the prediction 

of Tfap4 as targeted by the miR-290-295 cluster in our context and leads us to 

believe that this miRNA-mRNA interaction is evolutionarily conserved and that Tfap4 

might therefore be regulated by miRNAs in a similar manner during human early 

development. 

A significant revelation that has come to light from studying this single miRNA target 

gene is that miRNAs have the potential to act as master regulators of gene 

expression in regulatory networks, e.g. early development, by repressing key 

modulators of gene expression such as TFs. Here, we observe the complexity of 

miRNA-mediated regulation and its potential role in stemness and pluripotency.  We 

therefore emphasize the importance of integrating miRNAs and other non-coding 

elements of the genome into our traditional understanding of gene regulatory 

networks. We encourage others to apply our approach to other cell types and 

contexts to generate accurate context-dependent miRNA interaction maps with the 

goal of obtaining a deeper understanding of the intricate networks that govern gene 

expression and concomitantly important biological processes. In many contexts and 

cell types, the relevant data sets have already been generated and published and 

await integrative analysis, as for example in the HCT116 cell line (Chu et al., 2020; 

Kim et al., 2016). 

 

Limitations of the study 
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A substantial part of our integrative analysis was based on transcriptomics data, and 

while we showed that predicted targets are also affected at the protein level, we 

cannot exclude that some miRNA targets are only affected at the RNA level and 

therefore not detected by our approach. Nevertheless, our datasets demonstrate a 

strong correlation between Ribo-seq and RNA-seq in mESCs as previously described 

in a different cellular context (Guo et al., 2010).  

Another aspect to take into account is that not all miRNAs require the full set of RNAi 

genes for their biogenesis (Bodak et al., 2017). Our approach is partially robust 

against this phenomenon, as we considered genes to be potential miRNA targets 

even if they are upregulated in only a subset of the RNAi_KO mutants (i.e., in at least 

two). Furthermore, based on the RNAi_KOs’ sRNA-seq data, we identified only very 

few noncanonical miRNAs in mESCs and thus believe this manner is of low 

relevance in our context (Table S2). 

Finally, as previously noted, the loss of miRNAs can lead to a cascade of 

downstream regulation events. In some cases, this may mask the expected 

upregulation in RNAi_KO mutants, such that functional interactions are not 

detectable. A similar challenge is that miRNAs are able to regulate their targets in a 

combinatorial manner; i.e. several miRNAs can target the same mRNA at the same 

time (Cursons et al., 2018).  This can lead to increased repression potential as shown 

in Figure 4B. Disentangling such combinatorial effects requires the examination of 

individual and combined miRNA_KOs. Alternatively, machine learning models 

(Schäfer & Ciaudo, 2020), including graph-aware deep learning models (Zhou et al., 

2020) might help to overcome some of these barriers by generating a system’s level 

understanding of regulation networks, potentially via the integration of a variety of 

regulatory mechanisms. 
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Our rigorous approach discards many interactions that would be falsely predicted by 

other methods, thus leading to a high-confidence set of direct and functional miRNA 

interactions in mESCs. We expect these data will be useful to the scientific 

community and also trust that they will serve as a robust data set on which to anchor 

future machine learning endeavors that can be applied to many different biological 

systems. 

 

 

MATERIALS AND METHODS 

Mouse ESC lines 

WT E14, RNAi_KO (Dgcr8_KO, Drosha_KO, Dicer_KO and Ago2&1_KO) and miR-290-295_KO 

cluster mESC lines (129/Ola background) were cultured in Dulbecco’s Modified Eagle Media (DMEM) 

(Sigma-Aldrich), containing 15% fetal bovine serum (FBS; Life Technologies) tested for optimal growth 

of mESCs, 100 U/mL LIF (Millipore), 0.1 mM 2-ß-mercaptoethanol (Life Technologies) and 1% 

Penicillin/Streptomycin (Sigma-Aldrich), on 0.2% gelatin-coated support in absence of feeder cells. 

The culture medium was changed daily. All cells were grown at 37°C in 8% CO2.  

 

CRISPR/Cas9 mediated gene knockout 

The generation of Dgcr8_KO, Drosha_KO and Dicer_KO mESC lines was previously described 

(Bodak et al., 2017a; Cirera-Salinas et al., 2017). The Ago2&1_KO1 and KO2 cell lines as well as 

miR-290-295_KO1 and KO2, were generated using a paired CRISPR/Cas9 strategy on WT mESCs as 

described previously (Wettstein et al., 2016). We generated two independent clones for the 

Ago2&1_KO line (Ago2&1_KO1, Ago2&1_KO2) using two different pairs of gRNAs to delete one or 

more exons of the Ago1 gene in the previously described Ago2_KO1 mutant mESC line (Ngondo et al., 

2018). Ago2_KO1 mESCs were transfected with pX458-sgRNA_Ago1_1/2 (Addgene #73533 and 

#73534), and pX458-sgRNA_Ago1_3/4 (Addgene #73535 and #73536) plasmids (Ngondo et al., 

2018). We generated two independent miR-290-295_KO mESC lines by transfecting WT E14 mESCs 

with pX458-sgRNA_miR290-295_3/2 for KO1 (Addgene #172711, #172710) and pX458-
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sgRNA_miR290-295_1/2 for KO2 (Addgene #172709 and #172710). After 48 hours, the GFP positive 

cells were single cell sorted in 96-well plates. The deletion was genotyped by PCR using primers listed 

in Table S8. All transfected plasmids are available in the Addgene repository. Positive clones were 

expanded and verified by genomic PCR and sequencing. 

 

Extraction of total RNA from mESCs 

Total RNA from 1-10 million cells was extracted using Trizol reagent (Life technologies) following the 

manufacturer`s protocol (Bodak and Ciaudo, 2016). RNA was quantified using spectrophotometry on 

the Eppendorf Biophotometer. RNA integrity was visually controlled by running 1 µg of total RNA 

extract on a 1% agarose gel. 

 

RNA-seq 

Tru-seq 

Prior to library preparation, the quality of isolated RNA was determined with a Bioanalyzer 2100 

(Agilent, Santa Clara, CA, USA). Up to 2 µg of polyA purified RNA was used for the library preparation 

using the TruSeq paired-end stranded RNA Library Preparation Kit (Illumina, San Diego, CA, USA) 

according to the manufacturer`s recommendations. The library preparation and sequencing (Illumina 

HiSeq 2000) were performed by the FGCZ (Functional Genomic center, Zurich). The paired-end 

sequencing generated about 2x60 million reads per library.  

QuantSeq 

500 ng of total RNA was used for library preparation using the QuantSeq 3’ mRNA-Seq Library Prep 

Kit FWD for Illumina (Lexogen) according to the manufacturer`s recommendations. Sequencing was 

performed by the FGCZ (Functional Genomic center, Zurich) on the Illumina NextSeq500 platform. 

Single-end sequencing generated at least 20 million reads per library.  

 

Small RNA-seq 

The Illumina TruSeq Small RNA Sample Prep Kit (Illumina, San Diego, CA, USA) was used with 1 µg 

of total RNA for the construction of sequencing libraries by the Functional Genomic Center Zurich 
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(Switzerland). Sequencing was performed on an Illumina Hiseq 2500 sequencer and generated 

between 20 and 30 millions of single reads of 50bp per library.  

 

Genomic DNA extraction and PCR 

Genomic DNA was extracted from 5 x 105 mESCs using Phenol/Choloroform/Isoamyl Alcohol (Sigma-

Aldrich). Each PCR reaction was performed using 50-100 ng of genomic DNA. Genotyping PCR 

primer sequences are listed in Table S8. 

 

Quantitative Real Time PCR Analysis of miRNAs 

For miRNA quantification, 1 μg total RNA was reverse transcribed using the miScript II Reverse 

Transcription kit (Qiagen) according to the manufacturer’s instructions (Jay and Ciaudo, 2013). After 

reverse transcription, cDNA products were diluted in distilled water (1:5). Quantification of expression 

levels was performed on a Light Cycler 480 (Roche) using 2 µl of the diluted products, the KAPA 

SYBR FAST qPCR kit optimized for Light Cycler 480 (KAPA Biosystems), miScript Universal Primer 

(Qiagen) and a primer for the targeted miRNA. Differences between samples and controls were 

calculated based on the 2−ΔΔCT method using RNU6 control primer (Qiagen) as normalizer. 

Quantitative RT-PCR assays were performed in triplicate (Jay and Ciaudo, 2013). All primers are 

listed in Table S8. 

 

Western Blot Analysis 

Whole cell extracts were obtained by lysing the cells in RIPA buffer (50mM Tris-HCl pH 8, 150mM 

NaCl, 1% IGEPAL CA-630 (w/v), 0.5% sodium deoxycholate (w/v), 0.1% sodium dodecyl sulfate (w/v) 

and protease inhibitors). Protein concentrations were determined by Bradford assay (Bio-Rad 

Laboratories). The extracts were separated on SDS-PAGE gels and transferred to polyvinylidene 

fluoride membranes (Sigma Aldrich). After blocking (5% milk in TBST: 50 mM Tris-Cl, pH 7.5. 150 mM 

NaCl, 0.1% Tween20), membranes were incubated with primary antibodies diluted in blocking solution 

overnight at 4°C. Membranes were incubated with one of the following antibodies overnight: DGCR8 

antibody 1:2000 (Proteintech; 10996-1-AP), DROSHA antibody 1:2000 (Cell Signaling; Cat#D28B1), 
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DICER antibody 1:2000 (Sigma Aldrich; SAB4200087), AGO1 antibody 1:1500 (Cell Signaling; 

Cat#5053), AGO2 antibody 1:1500 (Cell Signaling; Cat#2897S), TFAP4 antibody 1:1000 (ab223771; 

Abcam), TUBULIN antibody 1:10000 (Sigma Aldrich; Cat#T6119). For secondary antibody incubation, 

the anti-rabbit or anti-mouse IgG HRP-linked antibody (Cell Signaling Technology) was diluted to 

1:10000. Immunoblots were developed using the SuperSignal West Femto Maximum Sensitivity 

Substrate (Invitrogen) and imaged using the ChemiDoc MP imaging system (Bio-Rad Laboratories). 

TUBULIN levels or the Coomassie brilliant blue staining of the membrane are used as loading controls.  

ImageJ was used to quantify band intensity for each sample, which was then normalized to the 

Coomassie loading control. Band intensities in the mutants were then represented as a fold-change 

relative to the wild type sample. Three biological replicates were used to perform the quantification. 

 

Transfection of mESCs with miRNA mimics 

100,000 mESCs (miR-290-295 KO2 cell line) were seeded 24 hours prior to transfection. Cells were 

transfected with miRNA mimics (Horizon, PerkinElmer) for miR-291a-5p (20 nM final concentration), 

miR-291a-3p (20 nM final concentration), or a combination of both (10 nM final concentration, each) 

using the Lipofectamine RNAiMax transfection reagent (Invitrogen), according to the manufacturer’s 

protocol. A negative control miRNA mimic was also used (Table S8). Media was changed 16 hours 

after transfection and cells were harvested 36 hours after transfection for protein extraction. 

 

mESC transfection with siPOOLs 

200,000 mESCs (miR-290-295 KO2 cell line, generated in this study) were seeded 24 hours prior to 

transfection. Cells were transfected with siPOOLs (siTOOLs Biotech) against Tfap4 or a negative 

control siPOOL at a final concentration of 5 nM using the Lipofectamine RNAiMax transfection reagent 

(Invitrogen), according to the manufacturer’s protocol. Media was changed after 24 hours of 

transfection and cells were harvested after 36 hours of transfection using 0.05% Trypsin for further 

processing (RNA and protein extraction). 

 

Proteome analysis by SWATH-MS  
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The MS data acquisition (SWATH-MS and DDA mode) was performed on TripleTOF 5600 mass 

spectrometer equipped with a NanoSpray III source and operated by Analyst TF 1.5.1 software (AB 

Sciex). The samples were injected onto a C18 nanocolumn packed in-house directly in a fused silica 

PicoTip emitter (New Objective, Woburn, MA, USA) with 3-μm 200 Å Magic C18 AQ resin (Michrom 

BioResources, Auburn, CA, USA) and reverse phase peptide separation was performed on a NanoLC-

Ultra 2D Plus system (Eksigent–AB Sciex, Dublin, CA, USA).  The total acquired data were analyzed 

using a pipeline configured on the euler-Portal platform at ETH Zurich. 

 

Sample preparation and protein digestion 

The five distinct mESC lines (i.e., WT, Dgcr8_KO, Drosha_KO, Dicer_KO, and Ago2&1_KO) were 

prepared in biological duplicates (e.g., two independent CRISPR/Cas9 mutants), totaling 10 distinct 

samples for proteomic analysis. Corresponding cells from each 10 cm plate, were washed and 

scraped with ice-cold phosphate-buffered saline (PBS 1X). Then, their pellets (~ 5*106 cells) collected 

by centrifugation at 1000 rpm, were frozen in liquid nitrogen and left at -80 °C. The cell pellets were 

lysed on ice using a lysis buffer containing 8�M urea (EuroBio), 50�mM NH4HCO3 (Sigma-Aldrich), 

and complete protease inhibitor cocktail (Roche). The mixture was sonicated at 4�°C for 5�min using 

a VialTweeter device (Hielscher-Ultrasound Technology) at the highest setting and centrifuged at 2500 

rpm at 4�°C for 15 min to remove the insoluble material. An equal volume of 200 μL per sample was 

used for protein digestion, prior to which all samples were reduced by 5�mM 

tris(carboxyethyl)phosphine (Sigma-Aldrich), and alkylated by 30�mM iodoacetamide (Sigma-Aldrich). 

The samples, adjusted to 1.5 M UREA, were digested with sequencing-grade porcine trypsin 

(Promega) at a 1:50 protease/protein ratio overnight at 37�°C in 100�mM NH4HCO3 (Sigma-Aldrich). 

The next day, the peptide digests were purified on MicroSpin Column SilicaC18 (5-60 µg capacity, 

Nest Group Inc., Southborough, MA), and solubilized in 50 μL of 0.1% aqueous formic acid (FA) with 2% 

acetonitrile (ACN). The final peptide amount was determined using Nanodrop ND-1000 (Thermo 

Scientific), and the samples adjusted to 1 µg/µL of peptide concentration. Prior to MS injection, an 

aliquot of retention time calibration peptides from an iRT-Kit (RT-kit WR, Biognosys) was spiked into 

each sample at a 1:20 (v/v) ratio to correct relative retention times between acquisitions, and each 

sample injected into the duplicates (i.e., technical replicates). 

 

SWATH assay library generation 
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The samples were recorded in data-dependent acquisition (DDA) mode to generate a mouse SWATH 

assay library, which is used for targeted data extraction from SWATH-MS recorded data. 15 mESC 

samples recorded in DDA mode were combined with 65 available DDA files originating from 

fractionated mouse liver peptide digest to create a common mouse assay library. The nanoLC gradient 

used for all acquired DDA data was linear from 2 to 35% of buffer B (i.e., 0.1% formic acid in ACN) 

over 120 min at a 300 nl/min flow rate. Electrospray ionization was performed in positive polarity at 2.6 

kV, and assisted pneumatically by nitrogen (20 psi). Mass spectra (MS) and tandem mass spectra 

(MS/MS) were recorded in “high-sensitivity” mode over a mass/charge (m/z) range of 50 to 2000 with 

a resolving power of 30,000 (full width at half maximum [FWHM]). DDA selection of the precursor ions 

in a survey scan of 250 ms was as follows: the 20 most intense ions (threshold of 50 counts) 

corresponding to 20 MS/MS-dependent acquisitions of 50 ms each, charge state from 2 to 5, isotope 

exclusion of 4u, and precursor dynamic exclusion of 8 s leading to a maximum total MS duty cycle of 

1.15 s. External mass calibration was performed by injecting a 100-fmol solution of β-galactosidase 

tryptic. Raw data files (.wiff) were centroided, and converted into mzXML as a final format using 

openMS.  

The converted data files were searched in parallel using the search engines X! TANDEM Jackhammer 

TPP (2013.06.15.1 - LabKey, Insilicos, ISB) and Comet (version ”2016.01 rev. 3”) against the ex_sp 

10090.fasta database (reviewed canonical Swiss-Prot mouse proteome database, released 

2017.12.01) appended with common contaminants and reversed sequence decoys (Elias and Gygi, 

2007) and iRT peptide sequence. The search parameters were conducted using Trypsin digestion and 

allowing 2 missed cleavages. Included were ’Carbamidomethyl (C)’ as static and ’Oxidation (M)’ as 

variable modifications. The mass tolerances were set to 50 ppm for precursor-ions and 0.1 Da for 

fragment-ions. The identified peptides were processed and analyzed through the Trans-Proteomic 

Pipeline (TPP v4.7 POLAR VORTEX rev 0, Build 201403121010) using PeptideProphet (Keller et al., 

2002), iProphet (Shteynberg et al., 2011), and ProteinProphet scoring. Spectral counts and peptides 

for ProteinProphet were filtered at FDR of 0.009158 mayu-protFDR (=0.998094 iprob). The raw 

spectral libraries were generated from all valid peptide spectra through automated library generation 

workflow on the euler-Portal platform as described earlier (Schubert et al., 2015). The final generated 

spectral library contained high quality MS assays for 37988 tryptic peptides from 4107 mouse proteins.  

 

SWATH-MS measurement and data analysis 
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Reverse phase peptide separation during SWATH-MS acquisition was performed with linear nanoLC 

gradient from 2 to 35% of buffer B (0.1% formic acid in ACN) over 60 min at a 300 nl/min flow rate. 

Quadrupole settings in SWATH acquisition method were optimized for the selection of 64 variable 

wide precursor ion selection windows as described earlier (Röst et al., 2014). An accumulation time of 

50 ms was used for 64 fragment-ion scans operating in high-sensitivity mode. At the beginning of each 

SWATH-MS cycle, a TOF MS scan (precursor scan) was also acquired for 250 ms at high resolution 

mode, resulting in a total cycle time of 3.45 s. The swaths overlapped by 1 m/z, thus covering a range 

of 50-2000 m/z. The collision energy for each window was determined according to the calculation for 

a charge 2+ ion centered upon the window with a spread of 15. Raw SWATH data files were 

converted into the mzXML format using ProteoWizard (version 3.0.3316) (Chambers et al., 2012), and 

data analysis performed using the OpenSWATH tool (Röst et al., 2014) integrated in the euler-Portal 

workflow. The OpenSWATH workflow input files consisted of the mzXML files from the SWATH 

acquired data, the TraML assay library file created above, and the TraML file for iRT peptides. SWATH 

data were extracted with 50 ppm around the expected mass of the fragment ions and with an 

extraction window of +/-300 sec around the expected retention time after performing iRT peptide 

alignment. The runs were subsequently aligned with a target FDR of 0.01 and a maximal FDR of 0.1 

for aligned features. In the absence of a confidently identified feature, the peptide and protein 

intensities were obtained by integration of the respective background signal at the expected peptide 

retention time. The recorded feature intensities after OpenSWATH identification were filtered through 

R/Bioconductor package SWATH2stats (Blattmann et al., 2016) to reduce the size of the output data 

and remove low-quality features. The filtered fragment intensities were introduced into the 

R/Bioconductor package MSstats (version MSstats.daily 2.3.5), and converted to a quantification 

matrix of relative protein abundances using functions of data pre-processing, quality control of MS 

runs, and model-based protein quantification (Choi et al., 2014). Quantification matrices were used as 

an input data template to perform further differential analysis by One-way ANOVA test for multiple-

group comparison. A TukeyHSD post hoc test revealed significant changes across control samples 

(WT) and four different cell line clones (i.e., Dgcr8_KO, Drosha_KO, Dicer_KO, and Ago2&1_KO). The 

raw counts and differential expression data are available as excel files (Table S4). 

 

Ribosome Profiling and data analysis 
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Ribosome Profiling sample/library preparation and sequencing 

Ribosome profiling and parallel RNA-seq were performed in duplicate for WT, Dgcr8_KO, Drosha_KO, 

Dicer_KO, and Ago2&1_KO mESC lines, following the TruSeq Ribo Profile Kit (RPHMR12126, 

Illumina) with minor modifications (see below), using one 15 cm dish of confluent mESCs per replicate. 

Cells were briefly pretreated with cycloheximide (0.1 mg/mL) for 2 min at 37°C and then immediately 

harvested by scraping down in ice-cold PBS (supplemented with cycloheximide). The cell pellet was 

collected by brief centrifugation, snap-frozen in liquid nitrogen and stored at -80°C. From the cell 

pellets, lysates were prepared and ribosome-protected mRNA fragments were generated by RNase I 

digestion as previously described using 5 units of RNase I per OD260 (Castelo-Szekely et al., 2019). 

Of note, before RNase I digestion, mESC lysates were spiked-in with Drosophila S2 cell lysates 

prepared using the same lysate buffers (spike-in ratio 15mESC:1S2, based on OD260 measurements). 

After digestion, footprint-containing monosomes were purified via MicroSpin S-400 columns (GE 

Healthcare) and footprints were purified with miRNeasy Mini kit (217004 Qiagen). 5 µg fragmented 

RNA was used for ribosomal RNA removal using Ribo-Zero Gold rRNA Removal Kit (MRZG12324 

Illumina) according to Illumina’s protocol for TruSeq Ribo Profile Kit (RPHMR12126, Illumina). 

Footprints were excised from 15% urea-polyacrylamide gels (with single strand RNA oligonucleotides 

of 26 nt and 34 nt as size markers for excision). Sequencing libraries were generated essentially 

following the Illumina TruSeq Ribo Profile protocol. cDNA fragments were separated on a 10% urea-

polyacrylamide gel and gel slices between 70-80 nt were excised. The PCR-amplified libraries were 

size-selected on an 8% native polyacrylamide gel (footprint libraries were at ~150 bp). From the same 

initial extracts (containing the S2 lysate spike-in), parallel RNA-seq libraries were prepared essentially 

as described (PMID 30982898) and following the Illumina protocol. Briefly, after total RNA extraction 

using miRNeasy RNA Extraction kit (Qiagen), ribosomal RNA was depleted using Ribo-Zero Gold 

rRNA (Illumina), and sequencing libraries were generated from the heat-fragmented RNA as 

previously described (Castelo-Szekely et al., 2019). All libraries were sequenced in-house (Lausanne 

Genomic Technologies Facility) on a HiSeq2500 platform. 

 

Ribosome Profiling Data Analysis 

Initial analysis, including mapping and quantification of mRNA and footprint abundance, were 

performed as previously described (Castelo-Szekely et al., 2017). Briefly, purity-filtered reads were 
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adapters and quality trimmed with Cutadapt v1.8 (Martin, 2011). Only reads with the expected read 

length (16 to 35 nt for the ribosome footprint and 35 to 60 nt for total RNA) were kept for further 

analysis. Reads were filtered out if they mapped to Mus musculus ribosomal RNA (rRNA) and transfer 

RNA (tRNA) databases (ENSEMBL v91, (Cunningham et al., 2019)) using bowtie2 v2.3.4.1 

(Langmead and Salzberg, 2012). The filtered reads were aligned against Mus musculus transcripts 

database (ENSEMBL v91) using bowtie2 v2.3.4.1. Finally, remaining reads were mapped against D. 

melanogaster transcript database (ENSEMBL v78). Reads mapping to transcripts belonging to 

multiple gene loci were filtered out. Reads were then summarized at a gene level using an in-house 

script and mouse samples were then normalized by using corresponding fly spike-in read counts. 

Differential ribosome occupancy was defined by DESeq2 with an absolute fold change > 0.5 and FDR 

(adjusted p-value) < 0.05. The spike-in normalized counts and differential expression data are 

available as excel files (Table S5). 

 

sRNA-seq analysis 

Reads were trimmed using Cutadapt 1.13 (Martin, 2011) with adapter 

TGGAATTCTCGGGTGCCAAGG and arguments “-m 14 -M 40” and aligned to the mouse genome 

(GRCm38 primary assembly, annotation: GENCODE vM20) using STAR 2.4.2a (Dobin et al., 2013) 

with arguments “--outFilterMismtachNoverLmax 0.05” to allow for 0 mismatches for reads < 20bp. 

Next, reads were counted using subread-featureCounts 1.5.0 (Liao et al., 2014) with arguments “-f -O 

-s 1 --minOverlap 17” for 3 different annotations (miRbase v21 (Griffiths-Jones et al., 2006), 

GENCODE vM20 and GtRNAdb2 mm10 (Chan and Lowe, 2016) to collect gene counts for the 

following groups of small RNAs: miRNAs, small nuclear RNAs, small nucleolar RNAs, mitochondrial 

tRNAs and tRNAs. To take the global reduction of small RNAs in RNAi_KO mESC lines into account, 

miRNA expression was normalized by small nuclear RNA, small nucleolar RNA, mitochondrial tRNA 

and tRNA expression using estimateSizeFactors from DESeq2 1.18.1 (Love et al., 2014). Read counts 

normalized in this way are referred to as CPM-like in this manuscript. 

 

RNA-seq analysis 

Raw and normalized read counts for both genes and transcripts were computed by the RNA-seq 

pipeline from snakePipes 2.3.1 (Bhardwaj et al., 2019) using the ENSEMBL GRCm38.98 primary 
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assembly and annotation. The following command line arguments were passed “--trim --trimmer 

trimgalore --trimmerOptions ‘--illumina --paired’ --mode ‘alignment,alignment-free,deepTools_qc --

fastqc”. The RNA-seq pipeline was further run for each RNAi_KO mESC line with an according sample 

sheet and the “--sampleSheet” option to perform differential gene expression (DGE) analysis. Briefly, 

the pipeline employs TrimGalore/Cutadapt (Martin, 2011), STAR (Dobin et al., 2013), featureCounts 

(Liao et al., 2014) and DESeq2 (Love et al., 2014) to produce read counts and DGE data on a per-

gene basis. Salmon (Patro, 2017) was employed to derive per-transcript expression. 

 

QuantSeq analysis 

In accordance with the QuantSeq manual, first, adapters were trimmed using TrimGalore with 

arguments “--stringency 3 --illumina” then the polyA tail was trimmed using TrimGalore with argument 

“--polyA”. Next, snakePipes (Bhardwaj et al., 2019) RNA-seq pipeline was run with the arguments “--

libraryType 1 --featureCountOptions ‘--primary’ --mode alignment,alignment-free,deepTools_qc”. The 

RNA-seq pipeline was further run for miR-290-295_KO mESC line with an according sample sheet 

and the additional “--sampleSheet” option to perform DGE analysis. 

 

Integration of multi-OMICs miRNA interaction data 

Retrieval and preparation of TargetScan score 

Conserved and nonconserved site context score tables were downloaded from TargetScan mouse 7.2 

(Agarwal et al., 2015) and concatenated. The context++ score from these data is referred to as 

TargetScan score in this manuscript. 

 

AGO2 binding data analysis 

AGO2 binding peaks were downloaded from GEO (GSE139345) as provided by (Li et al., 2020) and 

miRNA seed matches (7merA1, 7merm8 and 8mer; 6mers were discarded) in peaks were identified 

for all mouse miRNAs (miRBase v21 (Griffiths-Jones et al., 2006)). Seed matches were then mapped 

to gene regions to further associate them with a gene ID (if applicable) and the region type (5’UTR, 

CDS or 3’UTR). 

 

Integration of AGO2 binding, TargetScan, miRNA expression and gene upregulation in RNAi 

KO mESC lines 
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AGO2 binding data and TargetScan scores were preprocessed as explained above and reduced such 

that there was only a single entry for each (gene, region_type, miRNA, seed_match_type)-tuple. In the 

rare cases of duplicates, the associated scores (peak size for AGO2 binding data and context++ score 

for TargetScan interactions) were computed as the exponentially decaying weighted sum (e.g. 

1 �max_value�
�

�
� second_value �

�

�
� third_value). Next, prepared TargetScan scores were joined on 

the set of unique keys (gene, region_type, miRNA, seed_match_type) such that data entries without a 

match in one of the datasets were kept and missing data fields were set to 0 (as in an outer-join 

operation). The result was stored as integrated, unfiltered set of interactions.  

 

Filtering and scoring of integrated interaction data 

Filtering was performed in three steps. First, interactions with an AGO2-binding value of 0 were 

deleted. Next, interactions where the corresponding miRNA was expressed with less than 10 CPM-like 

in WT mESCs were deleted. Finally, interactions were deleted where the corresponding mRNA was 

not in the set of upregulated genes. This set was defined as follows: log2(fold-change) should be 

higher than -0.4 in all, and higher than 0.5 (with an adjusted p-value < 0.1) in at least two RNAi_KO 

mutants. Filtering for TargetScan’s context++ score (< -0.15) was only performed for comparison and 

not for downstream analysis. 

To allow for a confidence ranking of interactions, the mean of the four feature scores WT miRNA 

expression, AGO2 binding, TargetScan score and mutant upregulation was used as Interaction score. 

The four scores were produced by scaling to [0, 1] after applying the log2 to the miRNA expression 

and AGO2 binding peak enrichment. The mutant upregulation was computed as count of mutants with 

stat. sign. upregulation (adj. p-value < 0.1, log2(fold-change) > 0.5). 

To allow for a ranking of genes, such that high confidence targets of miRNAs are ranked highest, 

interaction scores were grouped and combined on a per-gene basis in the following manner: the 

mutant upregulation score (which is logically the same for all interactions of the same gene) was 

added to the geometric mean of the maximum and of the sum of the three summed miRNA-associated 

features. Here, the rationale was to rank genes higher if they were subject to larger numbers of 

interactions, however, to avoid high ranking of genes with a large number of interactions with low 

scores, the geometric mean dampened their score while favoring genes with large numbers of 

interactions and interactions with high scores. 
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Gene ontology analysis of Tfap4 targets 

Potential Tfap4-targets (as determined from their degree of rescue in the siPOOL-treated cells) were 

further filtered for TFAP4-binding sites in the genome. The PWMScan website (Ambrosini et al., 2018) 

was used with default parameters. The GRCm38/mm10 genome was selected and scanned for 

human CIS-BP TFAP4 binding motifs. The resulting bed file was downloaded and used to select those 

genes that had a binding motif closely upstream to their transcription start site (<1kb distance). Gene 

ontology analysis was performed for these genes using ClueGO (Bindea et al., 2009) with the 

following options: Network specificity was set to medium-1, GO term fusion was enabled, only 

pathways/terms with pV < 0.05 were shown and terms from WikiPathways, KEGG, GO Biological 

Processes, GO Cellular Components and GO Molecular Function from 2021/05/13 were used. 

 

Custom data analyses, visualizations 

Data analyses and visualizations were realized as described in the last sections using bash and 

python scripting, organized in a Snakemake pipeline (Mölder et al., 2021). PCA analysis was 

performed using scikit-learn (Pedregosa et al., 2011).  
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Figure Legends 

 
Figure 1: Gene expression is globally perturbed in RNAi_KO mESCs 
(A) PCA plot of gene expression as measured by RNA sequencing (RNA-seq) in 
RNAi_KO and WT samples. Biological replicates are indicated with the same color.  
(B) MA plots of the DGE analysis in RNAi_KO mutants. Significant up- and 
downregulated genes are determined based on cutoffs (FDR < 0.1 and log2(fold-
change) > 0.5 / < - 0.5) and colored in red and blue respectively. 
(C) Heatmap indicating the number of genes commonly upregulated across mutants 
for two different selection dimensions: Y-axis denotes maximum false discovery rate 
(FDR) to consider a gene as upregulated. Matrix fields correspond to the number of 
upregulated genes, identified in at least 2, 3 or 4 mutants, as denoted by the x-axis. 
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Figure 2: Multi-OMICs integration allows the identification of functional miRNA 
interactions in mESCs 
(A) Graphical overview of data sources and integration. Data are integrated on a per-
interaction basis, filtered by miRNA expression, AGO2-binding, target upregulation 
and scored on a per-interaction and per-gene basis. Filtering and scoring are 
described in detail in the Materials and Methods section. The latter allows for a 
certainty-ranking of interactions and target genes. 
(B and C) Example of integrated data for the Tfap4 gene with multiple evidences for 
functional miRNA interactions. (B) shows AGO2-binding profile and called peaks as 
obtained from (Li et al., 2020), along with predicted miRNA binding sites with the 
expression of the corresponding miRNA in WT mESCs (Only binding sites for 
miRNAs with minimal expression of 10 CPM-like are shown). (C) shows the 
misregulation of Tfap4 in RNAi_KO mutants in log2FoldChanges compared to WT.  
(D and E) Example of integrated data for the Axin2 gene with no evidence for 
functional interactions. Same data are shown as in (B, C). 
(F) Number of identified functional miRNA target genes for different integrative 
filtering approaches. The integration and filtering by mutant upregulation and AGO2-
binding data leads to a restrictive selection of target genes. Reported targets (the 
bold column) were not filtered by TargetScan scores to avoid filtering of interactions 
in the coding sequence (CDS) and 5’UTR. 
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Figure 3: Validation and refinement of miRNA interaction predictions 
(A) Cumulative distribution function of differential ribosome occupancy as detected by 
ribosome profiling (Ribo-seq) in RNAi_KO mutants. Of 707 predicted miRNA target 
genes, 670 (95%) were detectable in the Ribo-seq data and appear in the plot. 
(B) Bar plot of expression and number of predicted target counts for top 5 expressed 
miRNA clusters. 
(C) MA plot of the DGE analysis in miR-290-295_KO mESCs. Significant genes were 
selected using thresholds of FDR < 0.1 and log2FoldChange > 0.5 / < -0.5. 
(D) Cumulative distribution function of differential expression in miR-290-295_KO for 
different gene groups. Colored gene groups correspond to different identification 
methods for miR-290-295 target genes based on different data sets. The pink 
line/group corresponds to 324 miR-290-295-targeted genes out of the 707 miRNA 
target genes that have been identified in the integrative analysis (Figure 2A). 
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Figure 4: Tfap4 is a key regulator of gene expression in mESCs 
(A) Top: Immunoblot analysis of TFAP4 in Drosha_KO, Dicer_KO, Wild type (WT), 
miR-290-295_KO1 and miR-290-295_KO2 mESCs. Immunoblots were stained with 
Coomassie blue dye as loading control. Blot is a representative image of three 
biological replicates. Bottom: Bar graph showing quantification of TFAP4 intensity, 
normalized to Coomassie and relative to the WT sample in three biological replicates. 
(B) Top: miR-291a regulates TFAP4 expression in mESCs. Immunoblot analysis of 
TFAP4 after transfection of miRNA mimics (miR-291a-5p, miR-291a-3p and miR-
291a-5p+miR-291a-3p combined) in miR-290-295_KO2 mESCs. Immunoblots were 
stained with Coomassie blue dye as a loading control. Blot is a representative image 
of three biological replicates. Bottom: Map of Tfap4 3’UTR indicating miRNA 
response elements for the transfected miRNA mimics.  
(C) Immunoblot validation of siPOOL-mediated knock down of TFAP4. TFAP4 levels 
were compared between untreated WT versus miR-290-295_KO2 cells treated with a 
negative control and a Tfap4-targeted siPOOL. Immunoblots were stained with 
Coomassie blue dye as a loading control. Blot is a representative image of two 
biological replicates. 
(D) Scatterplot of differential gene expression in miR-290-295_KO control versus 
siPOOL-Tfap4. SiPOOL experiments were performed in miR-290-295_KO2 cells and 
DE was assessed relative to a negative control siPOOL transfection. Only genes that 
are statistically significantly differentially expressed in miR-290-295_KO2 are shown. 
Genes predicted to be targeted by miR-290-295 are marked in blue. Genes are 
defined as rescued (orange) if the log2FoldChange-ratio between miR-290-295_KO 
control and siPOOL-Tfap4 is in the range [-2, -1/2]. Tfap4 is marked by a red circle. 
(E) Gene ontology analysis of 121 putative Tfap4 target genes using ClueGO. Only 
members of the top 5 terms (indicated by different colors) are shown. Colors and 
edges indicate associated terms. Dot size indicates statistical significance as 
indicated by the legend.  
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Supplementary Figure 1: Characterization of RNAi_KO mESC lines. Related to 
Figure 1. 
(A) Schematic representation of paired CRISPR-Cas9 KO strategies for the 
generation of RNAi_KO mESC lines. Red arrows indicate loci targeted by sgRNAs. 
(B) Immunoblot analysis of RNAi proteins in WT and RNAi_KO mESC lines. 
TUBULIN was used as a loading control. Representative blot of three independent 
experiments is shown. 
(C) PCA plot of miRNA expression as measured by sRNA-seq in RNAi_KO and WT 
samples. Biological replicates are indicated with the same color.  
(D) Cumulative distribution function of differential miRNA expression in RNAi_KO 
versus WT mESCs as measured by sRNA-seq. Values smaller than zero indicate 
reduced expression as compared to WT. 
(E) Pairwise scatterplot matrix comparing DEG (log2FoldChanges) in RNAi_KO 
mESCs. Each small cross represents a single gene and the correlation between each 
pair of samples is represented by Pearson correlation in the top-left corner of each 
sub-plot.  
(F) Heatmap indicating the number of genes commonly downregulated across 
mutants for two different selection dimensions: Y-axis denotes maximum false 
discovery rate (FDR) to consider a gene as downregulated. Matrix fields correspond 
to the number of downregulated genes, identified in at least 2, 3 or 4 mutants, as 
denoted by x-axis. 
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Supplementary Figure 2: Examples of integrated data for genes with 
contradictory signals. Related to Figure 2. 
(A, B) No statistically significant AGO2-binding in 3’UTR of the Rps26 gene and no 
8mer binding sites in 3’UTR, yet with observed upregulation in all RNAi_KO mESC 
lines. 
(C, D) AGO2-binding in 3’UTR of the Ctcf gene with multiple potent binding sites, yet 
without observed upregulation in RNAi_KO mESC lines. 
(E, F) No statistically significant AGO2-binding in 3’ UTR of the Apoe gene, yet 
statistically significant binding to the CDS at a strongly expressed 8mer binding site 
along with a consistent upregulation in all four mutants. 
For a more detailed subplot description, refer to the figure legend of Figures 2B, C, D, 
E. 
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Supplementary Figure 3: Full proteome analysis and characterization of miR-
290-295_KO mESC lines. Related to Figure 3. 
(A) Cumulative distribution function of differential protein abundance as detected by 
SWAT-MS in RNAi_KO mESCs. Of 707 predicted miRNA target genes, 186 (26%) 
were detectable in the SWATH-MS data and appear in the plot. Enrichments for 
positive log2FoldChanges were significant for all four mutants (p<0.002 for every 
mutant, student’s t-test). 
(B) Schematic representation of the paired CRISPR/Cas9 KO approach for the 
generation of miR-290-295_KO cluster mESC lines. Genomic loci of miRNAs are 
indicated by blue boxes. Red lines mark sgRNA positions. Primers for screening of 
the genomic deletion are indicated by pink half-sided arrows and pink lines show 
PCR products. 
(C) Genomic PCR screening of miR-290-295_KO mESCs. Three screening primers, 
one around the 5’ cut site, one around the 3’ cut site and one around the entire KO 
region (O) were used, as annotated in Figure S3B. Expected amplicon sizes are 
denoted below the lanes. An X denotes no expected product. 
(D) Quantitative PCR for representative miR-290-295 members in WT and miR-290-
295_KO mESC lines. Expression levels were normalized to RNU6. Statistical 
comparison was performed using 2-way ANOVA test. **** p < 0.0001. 
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Supplementary Figure 4: Tfap4 is a high-confidence target of miRNAs in 
mESCs. Related to Figure 4. 
(A) Funnel analysis representing miR-290-295 regulated transcription factors 
previously implicated in stem cell functions and pluripotency in the scientific literature. 
(B) Interaction scores from our integrative analysis (Figure 2) for all transcription 
factors predicted to be targeted by miR-290-295. Number of distinct miRNA binding 
sites for the miR-290-295 cluster, mean of interaction score and maximum of 
interaction score are shown. 
(C) Schematic representation describing the workflow to rescue Tfap4 expression by 
treating miR-290-295_KO2 mESCs with pool of siRNAs (siPOOL) targeting Tfap4. 
Transfected cells were harvested and analyzed on the transcriptomics level using 
RNA-seq. Illustrations were extraction from BioRender.com. 
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Table S1: RNA-seq TPM values and differential expression for WT and/versus 

RNAi_KO mESCs. Related to Figure 1. 

 

TableS2: sRNA-seq (miRNAs) CPM values and differential expression for WT 

and/versus RNAi_KO mESCs. Related to Figures S1C, D. 

 

Table S3: Filtered interactions from integrative analysis. Related to Figure 2E. 

 

Table S4: Differential expression analysis for protein abundances in RNAi_KO 

versus WT mESCs. Related to Figure S3A. 

 

Table S5: Ribo-seq differential expression analysis from RNAi_KO versus WT 

mESCs. Related to Figure 3A. 

 

Table S6: QuantSeq NGS CPM values and differential expression for miRNA 

290-295_KO mESCs. Related to Figure 3C. 

 

Table S7: QuantSeq NGS CPM values and DE for siPOOL-knockdown of Tfap4 

transcription factor. Related to Figure 4D. 

 

Table S8: Primers list. 
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