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 42 

Abstract 43 

Time is a fundamental component of ecological processes. How animal behavior changes over 44 

time has been explored through well-known ecological theories like niche partitioning and 45 

predator-prey dynamics. Yet, changes in animal behavior within the shorter 24-hour light-dark 46 

cycle have largely gone unstudied. Understanding if an animal can adjust their temporal activity 47 
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to mitigate or adapt to environmental change has become a recent topic of discussion and is 48 

important for effective wildlife management and conservation. While spatial habitat is a 49 

fundamental consideration in wildlife management and conservation, temporal habitat is often 50 

ignored. We formulated a temporal resource selection model to quantify the diel behavior of 51 

eight mammal species across ten U.S. cities. We found high variability in diel activity patterns 52 

within and among species and species-specific correlations between diel activity and human 53 

population density, impervious land cover, available greenspace, vegetation cover, and mean 54 

daily temperature. We also found that some species may modulate temporal behaviors to manage 55 

both natural and anthropogenic risks. Our results highlight the complexity with which temporal 56 

activity patterns interact with local environmental characteristics, and suggest that urban 57 

mammals may use time along the 24-hour cycle to reduce risk, adapt, and therefore persist in 58 

human-dominated ecosystems. 59 

 60 

Keywords: behavior, human disturbance, nocturnality, temporal partitioning, urban wildlife 61 

 62 

Introduction 63 

Time is a fundamental axis that shapes ecological systems. Regarding animal behavior, time and 64 

space are linked in that the spatial characteristics of an animal’s local environment influences its 65 

temporal behavior (Kronfeld-Schor and Dayan, 2003). For example, some species make seasonal 66 

changes in diel (24-hour period) activity to be most active during optimal temperatures in their 67 

local environment (Maloney et al., 2005), and other species temporally partition themselves from 68 

heterospecific competition or aggression (Kronfeld-Schor and Dayan, 2003; van der Vinne et al., 69 

2019). While temporal behavior has yet to become a major focus in animal ecology (Gaston, 70 

2019; Kronfeld-Schor and Dayan, 2003), how animals use time as an ecological resource has 71 

inspired well-known ecological phenomenon like niche partitioning (Schoener, 1974) and 72 

predator-prey dynamics (Tambling et al., 2015). From an applied perspective, understanding if 73 

an animal can make temporal adjustments to mitigate or adapt to local environmental change 74 

remains a topic of discussion (Wolkovich et al., 2014), and is important for effective wildlife 75 

management and conservation (Levy et al., 2019). 76 

 77 

Species that persist in human-dominated environments, like cities, require some degree of human 78 

avoidance to safely navigate these complex landscapes (Gehrt et al., 2009; Murray and St. Clair, 79 

2015; Riley et al., 2003). In urban ecosystems, few habitat patches remain for animals to seek 80 

spatial refuge when confronted with human disturbance and/or negative interactions with other 81 

species. In these cases, temporally partitioning from these potentially dangerous interactions 82 

might be an alternative strategy. A recent global meta-analysis suggests that mammals become 83 

more nocturnal in areas with greater human disturbance (Gaynor et al., 2018). However, only 84 

7.8% (n = 11) of these studies assessed changes in nocturnal activity in urban areas, and all 85 

explored these changes categorically between urban and non-urban areas. Binary urban and rural 86 

categorizations generally fail to capture variation in urban development and cannot generate 87 

generalizable results that correlate to other cities (McDonnell and Pickett, 1990). Additionally, 88 

cities are unique and differ in size, land use, growth patterns, and human culture (Pacione, 2009). 89 

Variation in both spatial and temporal characteristics within and among cities could have 90 

differing effects on animal behavior. Thus, key questions remain regarding the way in which 91 

animal diel activity varies across gradients of urbanization and among differing cities. For 92 

example, the magnitude of change in diel activity patterns may be larger for more densely 93 
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urbanized cities or may depend on regional variation in day and night-time temperatures. Multi-94 

city investigations that include variation in urban intensity and regional climate can elucidate 95 

such patterns. 96 

 97 

Gaynor et al. (2018) found that most studies in urban environments also focused on carnivore 98 

species, highlighting a gap in our understanding regarding changes in diel activity across taxa. 99 

For example, carnivores likely avoid humans in both space and time because of inimical human 100 

interactions (Clinchy et al., 2016; Kitchen et al., 2000). This may not be the case for mammals 101 

that do not regularly come in conflict with humans or do not evoke such visceral reactions by 102 

humans. Additionally, some species may be constrained by their morphology (e.g., number and 103 

type of cones and rods in their eyes) or may otherwise lack the ability to be active in alternative 104 

lighting. To fully understand the variability of activity patterns and assess temporal adjustments 105 

in response to urban development, a comprehensive examination of the larger suite of urban 106 

mammals and across multiple urban environments is required. 107 

 108 

While spatial habitat is a fundamental consideration in wildlife management and conservation, 109 

temporal habitat is often ignored (Gaston, 2019). Here, we link spatial landscape characteristics 110 

with the diel activity patterns of eight terrestrial mammals using remote cameras deployed across 111 

ten U.S. cities. Our objectives were to 1) determine which species change their diel activity 112 

across gradients of urbanization and identify what characteristics of the urban environments have 113 

the strongest association with changes in diel activity and 2) assess whether urbanization 114 

influences nocturnal behavior and identify what characteristics of urban environments have the 115 

strongest influence on changes in nocturnal behavior. 116 

 117 

We found high variability in diel activity patterns within and among species and species-specific 118 

correlations between diel activity and human population density, impervious land cover, 119 

available greenspace, vegetation cover, and mean daily temperature. Our results indicate that in 120 

high-risk environments, such as cities, animals may reduce risk by modulating their temporal 121 

habitat use. Our study identifies a potential mechanism by which urban wildlife species may 122 

adapt to human-dominated environments, and provides critical insight into activity patterns of 123 

urban wildlife that will prove useful for managing these species in cities 124 

 125 

Results 126 

To quantify changes in mammal diel activity in response to urbanization, we used camera 127 

detection data for eight common urban mammal species: bobcat (Lynx rufus), coyote (Canis 128 

latrans), red fox (Vulpus vulpus), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), 129 

eastern cottontail (Sylvilagus floridanus), Virginia opossum (Didelphis virginiana), and white-130 

tailed deer (Odocoileus virginianus). Cameras were deployed in a systematic fashion across ten 131 

U.S. metropolitan areas as part of the Urban Wildlife Information Network: Austin, TX, 132 

Chicago, IL, Denver, CO, Fort Collins, CO, Indianapolis, IN, Iowa City, IA, Orange County, 133 

CA, Madison, WI, Manhattan, KS, and Wilmington, DE (and Fidino et al., 2021 for details; see 134 

Magle et al., 2019).  135 

 136 

Across 41,594 trap nights (Table S1), we captured 79,659 total unique detection events. Total 137 

detections per species ranged from 102-34,931, and each species was detected in 5-10 cities at an 138 

average proportion of 0.16-0.77 sites per city (Table 1). Bobcat occurred at the lowest number of 139 
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cities and proportion of sites, while raccoon occurred in all 10 cities and at the greatest 140 

proportion of sites (Table 1, see Table S2 for the proportion of sites in each city). The number of 141 

detections captured throughout the 24-hour diel period varied among species (Table 1). 142 

 143 

Modeling diel activity 144 

We formulated a hierarchical multinomial model to quantify the diel behavior of each species 145 

and assess the effects that available greenspace, vegetation cover, impervious land cover, human 146 

population density, and daily temperature had on diel behavior of each species. Our approach 147 

operates similar to resource selection functions in which resources are selected in space. 148 

However, substituting time for space allowed us to quantify changes in diel activity across 149 

gradients of environmental change. This temporal resource selection model allowed us to 150 

estimate temporal ‘selection’ and the probability of ‘use’ in each time category. Coefficient 151 

estimates are estimates of selection for a particular time category relative to the available time in 152 

the respective category and the difference from the reference time category (‘day’). 153 

Exponentiated coefficient estimates greater than one indicates selection and less than one 154 

indicates avoidance, relative to the day reference category. Using the softmax function 155 

(Kruschke, 2011), we also estimated the influence that each predictor variable had on the 156 

probability of activity in each time category, including the ‘day’ category. 157 

 158 

Among city variation in diel activity patterns 159 

We found that most species, on average, had a higher probability of being nocturnal (active at 160 

night or during the darkest portions of night) with the exception of bobcat and white-tailed deer 161 

(Fig. 1 and 2). Most species showed variation in diel activity among cities (e.g., bobcat; Fig. 1), 162 

and some species (e.g., eastern cottontail, coyote, red fox, and bobcat) exhibited profound 163 

variation in diel activity across individual sampling sites (Fig. 2). For example, the predicted 164 

probability of nocturnal behavior for eastern cottontail at each sampled site ranged from 0.15 – 165 

0.69 (see Table S3 for a full set of ranges for each species and each time category).  166 

 167 

 168 
Figure 1. City-specific probability of activity for each species. Grey points are city specific 169 

estimates of the average probability of activity in each time category. The black point indicates 170 

the average probability of activity among cities and the horizontal lines are 95% credible interval 171 

for the average probability estimates among cities. Wider credible intervals indicate more 172 

variation among cities.173 
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Table 1. The total number of detections for each species, number of cities each species was detected in, mean proportion of sites each 174 

species was detected at per city, and total number of detections in each time category for eight urban mammal species across ten U.S. 175 

metropolitan areas between January 2017 and December 2018. 176 

 177 

Species 
Total 

detections 

No. of 

cities 

species 

detected 

Mean 

proportion of 

sites species 

detected per 

city 

No. of 'day' 

detections 

No. of 

'dawn' 

detections 

No. of 

'dusk' 

detections 

No. of 

'night' 

detections 

No. of 

'darkest 

night' 

detections 

Bobcat 102 5 0.16 29 1 9 45 18 

Coyote 2732 9 0.63 671 98 256 1318 389 

Eastern cottontail 16102 10 0.61 3984 619 1097 8317 2085 

Raccoon 34931 10 0.77 2638 642 3767 21723 6161 

Red fox 1570 8 0.51 441 35 152 744 198 

Striped skunk 990 10 0.24 89 24 98 584 195 

Virginia opossum 8357 8 0.7 407 116 1027 5087 1720 

White-tailed deer 14875 10 0.56 7965 658 816 4299 1137 

178 
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 179 

 180 
Figure 2. The predicted probability of activity in each time category at each sampling site (x-181 

axis) the species was detected. Each column on the x-axis is a stacked bar plot representing the 182 

probability of activity in each time category at each sampling site. For each bar plot, all 183 

categories sum to one. Sampling sites along the x-axis are ordered from the lowest probability of 184 

nocturnal activity to the highest. 185 

 186 

Selection for particular time categories 187 

Of the three predator species that we analyzed (coyote, bobcat, and red fox), we found that 188 

anthropogenic and natural features were associated with variation in diel activity for only coyote 189 

and red fox (Fig. 3a,b,c). Coyote selected for both nocturnal and crepuscular hours in areas of 190 

greater human population densities (Fig. 3b), and red fox avoided nocturnal hours in areas with 191 

more available greenspace (Fig. 3c). Seasonality also had an effect on both coyote and fox diel 192 

activity. Coyote selected for dawn hours (Fig. 3b) and red foxes selected for dusk hours during 193 

periods of higher daily average temperatures (Fig. 3c). We found no evidence that bobcats varied 194 

their diel activity across our environmental variables (Fig. 3a).  195 

 196 

We found diel activity for all omnivore and herbivore species was affected by anthropogenic 197 

features. Raccoon, eastern cottontail, and white-tailed deer avoided nighttime hours in areas of 198 

greater human population density (Fig 3d,g,h), whereas Virginia opossum selected for nighttime 199 

and dusk hours in areas with greater human densities (Fig. 3f). Raccoon, striped skunk, and 200 

white-tailed deer all selected for nighttime hours in areas with greater impervious land cover 201 

(Fig. 3d,e,h). 202 

 203 
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 204 

 205 
Figure 3. Mean (circle) and 95% credible intervals of estimated coefficients from natural and 206 

anthropogenic features on temporal selection of dark night, night, dusk, and dawn relative to day. 207 

 208 

Natural features were also associated with variation in diel activity for omnivore and herbivore 209 

species. As vegetation cover increased, eastern cottontails were more likely to select daytime 210 

hours (Fig. 3g), whereas raccoons and white-tailed deer were more likely to select for nighttime 211 

hours and dusk (Fig. 3d,h). As available greenspace increased, striped skunk were more likely to 212 

select nighttime hours (Fig. 3e), whereas Virginia opossum were less likely to select nighttime 213 

and dawn hours (Fig. 3f). White-tailed deer were also more likely to select nighttime and dusk 214 

hours as available greenspace increased (Fig. 3h). 215 

 216 

We found seasonality effects on all omnivore and herbivore species. Virginia opossum were 217 

more likely to avoid daytime hours as temperatures increased (Fig. 3f). Daily average 218 
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temperature had a positive relationship with diurnal selection for raccoons, striped skunk, and 219 

white-tailed deer (Fig. 3,d,e,h). Eastern cottontails, however, were more likely to select 220 

crepuscular hours and nighttime hours as daily average temperatures increased (Fig. 3g). 221 

 222 

Probability of nocturnal activity 223 

Across all species, the probability of dawn and dusk activity was low (Figure 2 and 3). 224 

Therefore, we report the probability of nocturnal activity for each species by combining the 225 

probability of activity during night and darkest night. Coyote had a lower probability of being 226 

nocturnal in areas with lower human densities, but that probability increased significantly as 227 

human population increased (Fig. 4). With a one standard deviation (hereafter sd) increase from 228 

the mean human population density (from 1,512 – 3,095 people/km2), coyotes are 19% more 229 

likely to use nighttime hours and 38% more likely with a two sd increase from 1,512 to 4,678 230 

people/km2 (Table 2). Red fox was the only species that had a significant change in the 231 

probability of nocturnal use across the available greenspace gradient (Fig. 4). Red fox were 23% 232 

less likely to use nighttime hours with a one sd increase in available greenspace from 0.41 to 233 

0.57, and 41% less likely with a sd increase from 0.41 to 0.73 (Table 2). Note that predictor 234 

values vary because they were collected at species-specific scales and not all species were 235 

detected at the same sites. 236 

 237 

White-tailed deer, eastern cottontail, and raccoon had a greater probability of being active at 238 

night where human densities were low; this probability decreased as human population increased 239 

(Fig. 4). White-tailed deer were 8% less likely to use nighttime hours with a one sd increase in 240 

population density from 1,515 to 3,003 people/km2, eastern cottontail were 9% less likely (from 241 

2,226 to 4,633 people/km2), and raccoon were 16% less likely (from 1,763 to 3,789 people/km2; 242 

Table 2). With a two sd increase in impervious cover (1,515 to 4,491 people/km2 for white-tailed 243 

deer, 2,226 to 7,040 for eastern cottontail, and 1,763 to 5,815 for raccoon), white-tailed deer 244 

were 16% less likely to be nocturnal, eastern cottontail 18% less likely, and raccoon 12% less 245 

likely to be nocturnal (Table 2). Conversely, white-tailed deer and raccoon showed a positive 246 

relationship with increased impervious cover and nocturnality (Fig. 4). White-tailed deer were 247 

13% more likely to be active at night with a one sd increase in impervious cover from 0.16 to 248 

0.31 and 29% more likely with a two sd increase from 0.16 to 0.45 (Table 2). Raccoons were 249 

10% more likely to be active at night with a one sd increase in impervious cover and 21% more 250 

likely with an a two sd increase (Table 2). 251 

 252 

Vegetation cover had a negative effect on the probability of nocturnal behavior of eastern 253 

cottontail (Fig. 4). Cottontail were 7% less likely to be nocturnal when the proportion of 254 

vegetation cover increased one sd above the mean from 0.67 to 0.92, and 14% less likely to be 255 

nocturnal when vegetation cover increased two sd above the mean from 0.67 to 1 (Table 2). We 256 

also found that white-tailed deer were 5% more likely to use nighttime hours when the 257 

proportion of available greenspace increased one sd above the mean from 0.52 to 0.75)and 11% 258 

more likely with an increase of two sd from the mean from 0.52 to 0.98 (Table 2). However, 259 

Virginia opossum were 12% less likely to be nocturnal with a one sd increase in available 260 

greenspace from 0.34 to 0.57 and 23% less likely with an increase of two sd from 0.34 to 0.78 261 

(Table 2). 262 

 263 
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 264 
 265 

Figure 4. Probability of nocturnal activity (night and dark-night combined) across each of our 266 

natural and anthropogenic characteristics of the urban environment. Solid line indicates the 267 

median predicted line and shaded areas are 95% credible interval. Darker shading represent the 268 

relationships whose odds ratios did not overlap 1.269 
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Table 2. Odds ratios for each predictor variable and a one and two standard deviation increase across their values. Bolded text indicates scenarios 270 

where the 95% credible intervals do not overlap 1. 271 

 272 

 Available greenspace Impervious cover Vegetation Cover Human pop. density Daily avg. temp. 

 

1-unit 

increase 

2-unit 

increase  

1-unit 

increase 

2-unit 

increase  

1-unit 

increase 

2-unit 

increase  

1-unit 

increase 

2-unit 

increase  

1-unit 

increase 

2-unit 

increase  

Bobcat 

0.97 (0.62-

1.38) 

0.95 (0.40-

1.95) 

1.03 (0.70-

1.76) 

1.06 (0.46-

3.16) 

0.98 (0.55-

1.56) 

0.99 (0.36-

3.00) 

1.22 (0.85-

2.81) 

1.51 (0.72-

8.28) 

0.99 (0.71-

1.37) 

0.99 (0.49-

1.89) 

Coyote 

0.99 (0.88-

1.11) 

0.97 (0.76-

1.23) 

0.94 (0.80-

1.08) 

0.88 (0.64-

1.18) 

0.95 (0.82-

1.06) 

0.90 (0.68-

1.13) 

1.19 (1.04-

1.36) 

1.38 (1.05-

1.81) 

0.95 (0.87-

1.03) 

0.89 (0.75-

1.05) 

Red fox 

0.77 (0.65-

0.90) 

0.59 (0.41-

0.81) 

0.95 (0.77-

1.15) 

0.90 (0.58-

1.33) 

1.01 (0.90-

1.13) 

1.01 (0.80-

1.28) 

1.00 (0.87-

1.17) 

1.00 (0.74-

1.36) 

0.92 (0.83-

1.02) 

0.85 (0.68-

1.03) 

Raccoon 

1.00 (0.96-

1.03) 

0.99 (0.92-

1.07) 

1.10 (1.05-

1.16) 

1.21 (1.1-

1.34) 

1.01 (0.97-

1.05) 

1.02 (0.94-

1.10) 

0.94 (0.90-

0.97) 

0.88 (0.81-

0.95) 

0.82 (0.77-

0.87) 

0.65 (0.57-

0.73) 

Striped 

skunk 

1.26 (0.93-

1.76) 

1.55 (0.82-

3.00) 

1.26 (0.92-

1.83) 

1.56 (0.80-

3.31) 

1.02 (0.86-

1.21) 

1.03 (0.74-

1.46) 

1.01 (0.79-

1.22) 

0.99 (0.57-

1.46) 

0.73 (0.58-

0.90) 

0.54 (0.34-

0.81) 

Virginia 

opossum 

0.88 (0.81-

0.96) 

0.77 (0.65-

0.92) 

1.01 (0.91-

1.12) 

1.02 (0.83-

1.25) 

1.02 (0.95-

1.09) 

1.04 (0.91-

1.18) 

1.04 (0.97-

1.12) 

1.08 (0.93-

1.24) 

1.27 (1.15-

1.38) 

1.49 (1.16-

1.77) 

Eastern 

cottontail 

1.00 (0.95-

1.04) 

1.00 (0.91-

1.08) 

1.02 (0.97-

1.09) 

1.05 (0.94-

1.18) 

0.93 (0.88-

0.98) 

0.86 (0.78-

0.95) 

0.91 (0.87-

0.95) 

0.82 (0.75-

0.89) 

0.57 (0.54-

0.61) 

0.31 (0.28-

0.35) 

White-

tailed deer 

1.05 (1.00-

1.10) 

1.11 (1.00-

1.22) 

1.14 (1.07-

1.21) 

1.3 (1.15-

1.46) 

1.04 (0.99-

1.09) 

1.08 (0.98-

1.18) 

0.92 (0.88-

0.96) 

0.85 (0.78-

0.92) 

0.88 (0.84-

0.92) 

0.77 (0.71-

0.84) 

273 
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Finally, we found an influence of daily average temperature (season) on eastern cottontail, 274 

raccoon, striped skunk, white-tailed deer, and Virginia opossum (Fig. 4). Eastern cottontail were 275 

43% less likely to use nighttime hours with a one sd increase in daily average temperature from 276 

8.17 C to 18.76 C, and 69% less likely with a two sd increase from 8.17 C to 29.36 C (Table 2). 277 

With a one sd increase in temperature from 12.00 C to 21.49 C, raccoon were 18% less likely to 278 

use nighttime hours, and 35% less likely with a two sd increase from 12.00 C to 30.99 C (Table 279 

2). Striped skunk were 27% less likely to exhibit nocturnal behavior with a one sd increase in 280 

daily average temperature from 15.3 C to 24.62 C, and 46% less with a two sd increase from 281 

15.3 C to 33.94 C (Table 2). White-tailed deer were 12% less likely with a one sd increase from 282 

12.01C to 22.65 C and 23% less likely with a two sd increase from 12.01 C to 33.30 C (Table 2). 283 

Virginia opossum, however, were 27% more likely to use nighttime hours with a one sd increase 284 

in daily average temperature from 13.85 C to 22.28 C, and 49% more likely with a two sd 285 

increase from 13.85 C to 30.71 C (Table 2). Again, temperature ranges vary because not all 286 

species were detected at the same sites and same times. 287 

 288 

Discussion 289 

Ecological processes act across both space and time. We have, however, only just begun to study 290 

how animals use diel-time as an ecological resource to avoid risk and adapt to environmental 291 

change. We quantified the diel behavior of eight mammal species across urban gradients in ten 292 

U.S. cities. Our findings indicated that mammals can modulate their use of time within the 24-293 

hour diel period as a resource to persist in urban ecosystems. We found that nocturnal activity 294 

had the greatest response to urbanization and seasonality, and that changes in nocturnality in 295 

response to urbanization were species-specific and varied among cities. Our results also 296 

illustrated the complex trade-offs that urban wildlife species must make to contend with both 297 

interspecific interactions (i.e., predation and competition) and human activity. These findings 298 

offer insight into how mammals might use time as a resource to adapt and persist in urban 299 

ecosystems. 300 

  301 

We found that coyote had a greater probability of nocturnal behavior in areas with greater human 302 

densities. These findings are in agreement with past studies from single cities that documented 303 

increases in coyote nocturnal behavior in areas of higher human activity (Gallo et al., 2019; M. I. 304 

Grinder and Krausman, 2001; Riley et al., 2003; Tigas et al., 2002). Notably, vehicular collisions 305 

are a major mortality factor for coyotes (M. Grinder and Krausman, 2001) and coyotes have been 306 

typically persecuted by humans when they come in close contact (Dunlap, 1988; Young et al., 307 

2019). Thus, a shift to nocturnal activity when traffic volumes are usually lower and humans are 308 

less active outdoors may be particularly important to survival in urban landscapes (Murray and 309 

St. Clair, 2015). 310 

  311 

Red fox became less nocturnal as the proportion of local greenspace (i.e., available habitat) 312 

increased, a finding which may be explained by competition with coyote. Coyote and red fox 313 

exhibit a clear dominance hierarchy, whereby the dominant coyote negatively affects the 314 

subordinate red fox via competition and predation (Gosselink et al., 2003). Research has shown 315 

that urban coyotes occupy larger areas of greenspace (Gehrt et al., 2009). When more greenspace 316 

is available around a site, and presumably a higher probability of coyote presence, red foxes may 317 

become more diurnal to temporally avoid coyotes and reduce the risk of an interaction. Yet, 318 
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when greenspace is limited, and presumably there is a lower probability of coyote presence, red 319 

foxes could be more active during nighttime hours with less risk of an interaction. 320 

  321 

In most cases, the human aspects of urban environments captured by our predictor variables had 322 

opposite effects on omnivores and herbivores. While human population densities increased 323 

nocturnal activity for coyote, it decreased nocturnal activity for white-tailed deer, eastern 324 

cottontail, and raccoon. Prey species are known to spatially distribute themselves near human 325 

activity to act as a shield from predators (Berger, 2007; Shannon et al., 2014). In these cases, 326 

prey species may also utilize time as a human-mediated shield, exhibiting more activity at times 327 

of high human activity (daytime) in areas of high human densities. These results may seem 328 

counterintuitive given that increasing impervious cover increased the probability of nocturnal 329 

behavior exhibited by deer and raccoon (Fig. 4) and selection for nighttime hours by striped 330 

skunk (Fig. 3). However, a majority of impervious surfaces in the U.S. are roads and parking lots 331 

– places of high vehicular traffic (Frazer, 2005). Similar to coyote, vehicular collisions are a 332 

major source of mortality for these species (Glista et al., 2009). Therefore, a shift to nocturnal 333 

activity in areas with high impervious cover may be particularly important to their survival in 334 

cities and a sign of fine-scale modulation of temporal selection based on local environments. 335 

   336 

Similarly, raccoon and white-tailed deer selected more for nighttime hours (Fig. 3) in locations 337 

with high levels of vegetation cover. More vegetation equates to more protective cover. 338 

Therefore, we suggest that raccoons and white-tailed deer can use the same temporal habitat as 339 

their predators (i.e., coyote) – but with less risk – when there is more physical cover. On the 340 

other hand, eastern cottontail were more diurnal with increased vegetation (Fig. 3 and 4), 341 

suggesting that more vegetation cover provides shelter from other perceived threats (i.e., 342 

humans; 22) and may allow eastern cottontail to select periods of high human activity (i.e. day). 343 

Interactions between various urban characteristics, which we did not examine in this study, 344 

should be further explored to fully understand how these characteristics jointly influence the 345 

temporal patterns of urban wildlife species. 346 

 347 

Our results highlight the complexity of trade-offs for urban wildlife. In most cases, we found 348 

diverging activity patterns between coyote (a common urban apex predator) and subordinate or 349 

prey species in response to physical characteristics of urban environments. To persist in urban 350 

environments, it appears that urban species may have to modulate behaviors to contend with both 351 

anthropogenic risks and risk from predation or competition. Our results add to a growing body of 352 

literature that indicate species interactions in human-dominated landscapes may be better 353 

understood by explicitly considering the role humans play in those interactions (Berger, 2007; 354 

Blecha et al., 2018; Gallo et al., 2019; Magle et al., 2014). 355 

   356 

We also found evidence that local climate, specifically temperature, regulated the diel behavior 357 

of many species. For example, white-tailed deer, eastern cottontail, and striped skunk became 358 

more diurnal as temperatures increased, presumably foraging more during the day in warmer 359 

seasons when more vegetation biomass is available. Virginia opossum showed a decrease in 360 

nocturnal behavior at lower temperatures. Given their poor thermoregulation abilities, poorly 361 

insulated fur, and cold-sensitive hands, ears, and tails (Kanda, 2005), it seems likely that Virginia 362 

opossum are morphologically constrained and thus unable to alter their diel activity patterns at 363 

colder temperatures. These results call attention to the importance of considering the impacts of 364 
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morphology, physiology, and life history on a species’ capacity to adapt to environmental 365 

change. Given the interacting effects of climate change and urbanization (Stone, 2012), future 366 

research should explore how life history traits mediate temporal distributions of species activity 367 

– particularly as cities are rapidly warming (Oleson et al., 2015). 368 

 369 

We did not find changes in diel activity for some species in response to our predictor variables. 370 

These results could be due to a lack of data on a particular species (i.e., bobcat) or because we 371 

did not sample across a large enough urban-rural gradient. Remote regions were not sampled in 372 

our study design, and some species may change their behavior at a lower level of urban intensity 373 

that we did not sample. Combining datasets from more rural and remote areas (e.g., Snapshot 374 

Serengeti (Swanson et al., 2015), Snapshot USA (Cove et al., 2021)) could allow us to identify 375 

the level of human development that elicits changes in diel activity for potentially sensitive 376 

species. Finally, our analysis was limited to the physical characteristics of cities. Additional 377 

characteristics like chronic noise, light pollution, resource supplementation, and species 378 

interactions influence animal behaviors and should be explored in future research  . 379 

 380 

Resource selection functions have been a popular and valuable tool to measure the relationship 381 

between available resources and animal populations, and have been used intensely in wildlife 382 

management and conservation (Strickland and McDonald, 2006). However, very little work has 383 

been done to quantify temporal habitat selection specifically (Cox et al., 2021; Gaston, 2019). 384 

Here, we built upon Farris et al. (Farris et al., 2015) and developed an analytical approach to 385 

quantify temporal resource selection across environmental gradients. While we have developed 386 

an analytical tool to measure temporal selection, a theoretical context for temporal habitat 387 

selection is needed and a further understanding of disproportional selection relative to the 388 

number of hours available is a promising avenue for future animal biology research. 389 

 390 

Temporal partitioning may facilitate human-wildlife coexistence and effectively increase 391 

available habitats for species in cities. Temporal partitioning may also limit contact between 392 

people and animals, potentially reducing negative encounters like disease transmission and 393 

attacks on people (Gaynor et al., 2018). From a management perspective, ignoring diel behavior 394 

can result in biased estimates of species abundance and patterns of habitat use and lead to 395 

misinformed conservation measures (Gaston, 2019). Additionally, recognizing plasticity in 396 

species behavior can lead to better predictions of vulnerability to anthropogenic disturbances 397 

(Gaynor et al., 2018). Therefore, we recommend that diel activity and temporal partitioning be 398 

considered in conservation and management approaches. 399 

 400 

We have shown that mammals have significant variation in the use and selection of time 401 

throughout the diel period. Additionally, our approach allowed us – for the first time – to 402 

quantify changes in diel activity across gradients of environmental change and across multiple 403 

urban areas, revealing that changes in diel patterns are influenced by natural and human 404 

landscape characteristics. Our results highlight the need to understand how a larger proportion of 405 

the animal community responds to urbanization, and provide evidence of behavioral plasticity 406 

that allows some species to adapt to and persist in human-dominated systems. 407 

 408 

Materials and Methods 409 

 410 
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Study Design 411 

The number of sampling sites per city ranged from 24-113 (x̅ = 45.30, sd = 28.65). In each city, 412 

sampling sites were placed along a gradient of urbanization (high to low population density and 413 

impervious cover). At each sampling site (n = 453) we placed one Bushnell motion-triggered 414 

infrared Trophy Cam (Bushnell Corp., Overland Park, KS, USA). Sampling sites were located in 415 

greenspaces, such as city parks, cemeteries, natural areas, utility easements, and golf courses. To 416 

increase the detection probability of each species we placed one synthetic fatty acid scent lure in 417 

the camera line of sight, and lures were replaced on two-week intervals if missing to remain 418 

consistent throughout the study. However, Fidino et al. (2020) later found that this type of lure 419 

has little to no effect on the detectability of most urban mammals. We used observation data 420 

collected between January 2017 and December 2018. However, not all cities were sampled 421 

continuously throughout the study period (Table S1). 422 

 423 

Data processing 424 

For each species, we defined a single detection event as all photos taken within a 15-minute 425 

period at each camera station (Farris et al., 2015; Ridout and Linkie, 2009). We categorized each 426 

detection event as either ‘dawn’, ‘dusk’, ‘day’, ‘night’, and ‘darkest night’ using the suncalc 427 

package (Thieurmel and Elmarhraoui, 2019) in R ver 4.2.0 (R Core Team, 2019). The suncalc 428 

package defines and calculates ‘dawn’ as starting when morning astronomical twilight begins 429 

and ending when the bottom edge of the sun touches the horizon. ‘Dusk’ was defined as the 430 

beginning of evening twilight to the point when it became dark enough for astronomical 431 

observations. ‘Day’ was defined as the period between dawn and dusk. We considered the 432 

nighttime as two distinct time periods (night and darkest night), because some species may be 433 

nocturnal but use the darkest hours of the night to reduce the risk of human interactions (Gehrt et 434 

al., 2009). We defined ‘night’ as the periods between the end of dusk and one hour before the 435 

darkest moment of the night (when the sun is at the lowest point), and from one hour after the 436 

darkest moment to dawn. The ‘darkest hours’ of the night were categorized as one hour before 437 

and after the darkest moment in the night. We accounted for the date, geographical location, and 438 

daylight savings time of each detection events. Therefore, the amount of time available in each 439 

category could vary geographically and seasonally. 440 

 441 

Predictor Variables 442 

To assess how characteristics of urban environments influenced diel activity of urban wildlife 443 

mammals, we calculated site-level predictor variables within a fixed-radius buffer around each 444 

sampling site. Fixed-radius buffers varied in size among species and were based on the typical 445 

home range of each species: 500 m fixed-radius buffer for eastern cottontail (Hunt et al., 2014), 446 

Virginia opossum (Fidino et al., 2016; Wright et al., 2012), and white-tailed deer (Etter et al., 447 

2002); 1 km fixed-radius buffer for striped skunk (Weissinger et al., 2009) and raccoon (Rosatte, 448 

2000), and 1.5 km fixed radius buffer for coyote (Gehrt et al., 2009; Riley et al., 2003), red fox 449 

(Mueller et al., 2018), and bobcat (Riley et al., 2003). In our analysis, we included variables that 450 

described two contrasting characteristics of urban ecosystems, the natural and the human-built 451 

environment (Table S4). We also included average temperature to account for possible seasonal 452 

changes in diel activity. 453 

 454 

Urban features – To characterize urbanization around each sampling site, we calculated human 455 

population density (individuals/km2) and mean impervious cover (%). Population density was 456 
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extracted from Block Level Housing Density data (Radeloff et al., 2018) created from 2010 U.S. 457 

Census data (U.S. Census Bureau, 2010). Mean impervious cover was calculated from the 2011 458 

National Land Cover Database (NLCD) 30-m resolution Percent Developed Imperviousness data 459 

(Homer et al., 2015).  460 

 461 

Natural features – To characterize natural features, we calculated the proportion of vegetation 462 

cover and the proportion of available greenspace (i.e., potential habitat) around each site. To 463 

calculate the proportion of vegetation cover around each sampling site, we first calculated the 464 

Normalized Difference Vegetation Index (NDVI) using U.S. Geological Survey 30-m resolution 465 

LandSat 8 data that 1) covered the entire study area of each city, 2) was taken during a summer 466 

month that coincided with the respective city’s sampling period, and 3) contained less than 15% 467 

cloud cover. LandSat 8 imagery was downloaded with R using the getSpatialData package 468 

(Schwalb-Willmann, 2019). We then calculated vegetation cover as the proportion of cells within 469 

each fixed-radius buffer that had an NDVI value representing substantial vegetation cover (> 0.2; 470 

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-471 

noaa-avhrr). To calculate available greenspace, we extracted the proportion of 2011 NLCD Land 472 

Cove 30-m resolution raster cells within each fixed-radius buffer that were classified as forest, 473 

shrubland, herbaceous, wetland, and developed open space (which included urban green spaces). 474 

 475 

Seasonality – Because weather that defines each calendar season varies across our sampled 476 

longitudinal gradient, we used daily average temperature (i.e., mean temperature on the day of a 477 

given detection event) as a continuous covariate to describe seasonality. For each day and 478 

location of a detection event, we recorded the daily average temperature from the National 479 

Climatic Data Center using the R package rnoaa (Chamberlain, 2020). We used data from the 480 

nearest weather station to each city that recorded daily weather during our study period (Table 481 

S5).  482 

 483 

Quantifying the influence of urban characteristics on diel patterns 484 

By splitting diel time into k in 1,…,K categories, we estimated the probability a detection event 485 

occurs in each category for each species. To do so, we let yi be the time category of the ith in 486 

1,…,I detection events, and assume it is a Categorical random variable, where 𝝓 is a probability 487 

vector of the K categories 𝝓 = [𝜙1𝜙2𝜙3𝜙4𝜙5], 𝜙1 = 1 − 𝜙2 − 𝜙3 − 𝜙4 − 𝜙5  , and 1 ⋅  𝝓 = 1 488 

such that:  489 

 490 

𝑦𝑖 ~ Categorical(𝝓).   (1) 

 491 

To understand mechanistic changes in species-specific diel activity patterns and assess the 492 

influence that each predictor variable had on the temporal activity of each species, we let 𝝓𝒊 be a 493 

function of covariates with the softmax function,   494 

 495 

𝜙𝑖,𝑘 =  
𝑒𝑥𝑝(𝜆𝑖,𝑘)

∑ 𝑒𝑥𝑝 (𝜆𝑖,𝑘)𝐾
𝑘=1

 
 (2) 

 496 

where 𝜆𝑖,𝑘 is the log-linear predictor for detection event i and category k. We set our reference 497 

category as ‘day’ (i.e., k = 1). In our model the log-linear predictor of each outcome is then  498 
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 499 

𝜆𝑖,𝑘  = {
𝑙𝑜𝑔(𝛼𝑖,𝑘)  𝑘 =  1

𝒙𝑗
𝑇𝜷𝑗,𝑘 + 𝛽𝑐[𝑖],𝑘 +  𝑙𝑜𝑔 (𝛼𝑖,𝑘) 𝑘 >  1.

  (3) 

In Eq. 3, j,k coefficients correspond to the effect of greenspace availability, impervious cover, 500 

vegetation cover, human population density, and daily average temperature for k > 1. As 501 

detection events within each city may not be wholly independent, we included a random 502 

intercept for city, c[i],k, where c is a vector of length I that denotes which city detection event i 503 

occurred (Gelman and Hill, 2006). Finally, to account for the different amount of time available 504 

to animals among the K categories, we also included a log offset term, log(αk,i), where αk,i is the 505 

number of hours available in category k at the time of detection event i. This form of multinomial 506 

regression is equivalent to a logistic regression model with a spatial categorical covariate with K 507 

levels, where the offset accounts for varying availability. As such, our model approximates the 508 

weighted distribution used in resource selection functions assuming an exponential link (Hooten 509 

et al., 2017). Exponentiated coefficient estimates greater than one indicates ‘selection’ and less 510 

than one indicates ‘avoidance’, relative to the day reference category. 511 

 512 

Because we considered ‘day’ (k = 1) as our reference outcome, we set βc[i],1 = 0 and  βj,1 = 0 (Eq. 513 

3). The remaining βj,k  parameters were given Laplace(0,π) priors as a form of categorical 514 

LASSO regularization (Tutz et al., 2015). We took a fully Bayesian approach to variable 515 

selection by estimating the hyperparameter  (van Erp et al., 2019) which was given a 516 

uniform(0.001,10) prior distribution. βc[i],k was given a Normal(μk,τk) prior for each city where μk 517 

~ Normal(0,10) and τk ~ Gamma(1,1). 518 

 519 

Models were fit using an Markov Chain Monte Carlo (MCMC) algorithm implemented in JAGS 520 

ver 4.2.0 (Plummer, 2003) using the runjags package (Denwood, 2016) in R. Fourteen parallel 521 

chains were each run from random starting values. The first 20,000 iterations from each chain 522 

were discarded and every 7th iteration was kept to reduce autocorrelation among the samples. A 523 

total of 75,000 iterations were obtained for each model. Model convergence was assessed by 524 

checking that the Gelman-Rubin diagnostic statistic for each parameter was <1.1 (Gelman and 525 

Rubin, 1992) and by visually inspecting the trace plots of MCMC sample 526 
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